华东师大版八年级数学下期17.3.2一次函数图像(第二课时)
- 格式:pptx
- 大小:373.72 KB
- 文档页数:14
华师大版 数学 八年级 下册
会利用描点法画一次函数的图象;通过观察归纳出两点法画一次函
数图象.
通过一次函数图象总结出图象平移规律并应用解题.
2
3+
=x
y
y
2
3+ =x
y
2
3+ =x
y
y =3x+2的位
设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,则s
s=570-95t
与t的函数关系式为___________________________________________________________________
问题:画出上述问题中小明距北京的路程s 与开车时间t 之间函数s=570
-95t的图象.
这里s和t
取的
值悬殊较大,
怎么办?
分析:在实际问题中,我们可以在表示时间的 t 轴和表示路程的s轴上分别选取适当的单
6.拖拉机开始工作时,油箱中有油24L,那么油箱中剩余原油量y(L)与工作时间x(h)之间的函数关系式和图象是( )
A. y=4x-24(0≤x ≤ 6)
B. y=24-4x
C. y=24-4x (0≤x ≤ 6 )
D. y=-24+4x
D
直线y=kx+b与x轴的交点坐标为 与y轴的交点坐标为 .
)0,
(
k
b
(0,b)。
17.3.2 一次函数的图象(2)(一)本课目标1.了解一次函数图象与坐标轴的交点的求法.2.会画实际问题中的一次函数的图象.3.了解一次函数与一次方程的关系.4.学会利用一次函数图象解答简单问题. (二)教学流程 1.情境导入已知直线2x+y=6与两条坐标轴别离相交于点A 、B(如图17-3-3所示), 你能求出△AOB 的面积吗? 2.课前热身在上节课的实践活动中,你们发觉了什么现象?关于直线y=kx+b(k≠0),当k>0,b>0时,直线通过 第一、二、三 象限;当k>0,b<0时,直线通过 第一、三、四 象限;当k<0,b>0时,直线通过 第一、二、四 象限; 当k<0,b<0时,直线通过 第二、三、四 象限.3.合作探讨 (1)整体感知上节课咱们学习了一次函数的图象特点和一次函数图象的画法, 本节课咱们将学习一次函数的图象与坐标轴的交点坐标的求法和实际问题中一次函数图象的画法.(2)四边互动师:利用多媒体演示幻灯片.【例2】求直线y=-2x-3与x 轴和y 轴的交点,并画出这条直线.师:(点拨)由于横轴上各点的纵坐标为0,因此咱们把横轴的解析式规定为y=0, 一样把纵轴的解析式规定为x=0. 咱们明白在函数图象上的点的坐标必然知足函数的解析式(能够看成方程),即函数图象上一点的坐标是图象方程的一个解, 那么两个函数图象的交点坐标必然同时知足这两个图象的方程, 说明交点坐标是这两个图象方程的一个公共解,即交点坐标是两个图象方程组成的方程组的解, 如此咱们就把求函数图象的交点坐标问题转化成解方程组问题.生:在教师的点拨下动手尝试,然后交流结果,并归纳求函数交点坐标的方式. 明确 解:求直线y=-2x-3与x 轴的交点问题能够转化为解方程组230y x y =--⎧⎨=⎩, 解方程组得 1.50x y =-⎧⎨=⎩,因此直线与x 轴的交点为(-1.5,0);一样求得直线与y 轴的交点为(0,-3).过点(-1.5,0)和(0,-3)作直线,如图17-3-4所示,确实是直线y=-2x-3的图象. 图17-3-4由上面的操作归纳可知:求两个函数图象的交点坐标问题, 能够第一联立这两个函数的方程,通过解方程组来解决问题,求直线y=kx+b(k≠0)与x 轴的交点问题, 实际上是求一次方程kx+b=0的解.xy 图17-3-3OB A师:请利用所学知识解答本课开始提出的问题.生:动手尝试,然后彼此交流并在小组之间进行互评. 明确教师利用多媒体演示解答进程.解:依题意得26x yy+=⎧⎨=⎩,26x yx+=⎧⎨=⎩解方程组得B(3,0),A(0,6),因此OA=6,OB=3,因此S△AOB=12OA·OB=9.互动3师:利用多媒体演示幻灯片.【例3】画出问题1中小明距北京的路程s与开车时刻t之间函数s=570-95t 的图象.师:(点拨)在实际问题中,咱们能够在表示时刻的t轴和表示路程的s 轴上别离选取适当的单位长度,画出平面直角坐标系,如图17-3-5所示.生:(在讲义中)动手尝试,交流画图的结果.师:利用多媒体演示画出的函数图象(如图17-3-6所示),对照所画的图象, 求小明离北京的距离是475千米时,汽车行驶了多长时刻?图17-3-5)图17-3-6)生:动手尝试,举手回答下列问题.师:当汽车行驶2-3小不时,汽车离北京的路程在什么范围?生:分组合作,推选代表回答.师:对照画出的函数的图象,请作如下的讨论.讨论:(1)那个函数是不是一次函数?(2)那个函数中自变量t的取值范围是什么?函数的图象是什么?(3)在实际问题中,一次函数的图象除直线和此题的图形外, 还有无其他情形?你能不能找出几个例子加以说明?生:分组讨论,并推选代表说明本组讨论的结果.明确画实际问题的函数图象时应注意以下几个问题:(1)要依如实际选择适合的单位长度别离作为纵、横轴的单位长度( 两个数轴上的单位长度能够不一样).(2)要依如实际确信函数自变量的取值范围, 预测其图象的进展趋势和画图的区域范围(关于一次函数而言,当自变量的取值范围是一切实数时, 其图象必然要画成直线;当自变量的取值范围介于某两个实数之间时,其图象是线段, 要画出它的两个端点;当自变量的取值范围大于或小于某个实数时,其图象是射线, 要画出射线的端(3)画一次函数图象时,常常选择图象与坐标轴的两个交点来定位.互动4师:请同窗们解答讲义上第48页的练习.生:独立尝试后和同桌交流.明确教师利用多媒体演示操作的进程和结果,验证学生操作结果的正确性.4.达标反馈(多媒体演示)(1)一次函数y=-2x+3的图象通过第一、二、四象限.(2)直线y=kx+b与x轴的交点横坐标确实是方程 kx+b=0 的解.(3)已知一次函数的图象如图17-3-7所示,那么 (B)A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0(4)若是直线y=(m-2)x+(m-1)通过第一、二、四象限,那么实数m的取值范围是(D)A.m<2B.m>1C.m≠2D.1<m<2(5)汽车由天津驶往相距120千米的北京,它的平均速度是30千米/时, 那么汽车距北京的路程s(千米)与行驶的时刻t(小时)的函数关系用图象应为图17-3-8中的(C)ABC图17-3-85.学习小结(1)内容总结一次函数图象与坐标轴的交点坐标的求法.(2)方式归纳求函数图象的交点坐标问题,一样都能够通过联立图象的方程,解方程组解决.(三)延伸拓展1.链接生活一辆小轿车油箱储油30升,已知耗油量为0.2升/千米.(1)写出轿车油箱中剩余油量y(升)与行驶的路程x(千米)之间的函数关系式;(2)画出那个函数的图象.2.实践探讨(1)实践活动画出函数y=2x+1和y=-3x-2的图象,并探讨当x增大时,y的值将随着x如何转变?xy 图17-3-7(2)巩固练习讲义第52页习题17.3第7题和第9题;第68页温习题第5题.(四)板书设计:┌────────────────┬────┐│课题│ ││一次函数图象与坐标轴交点的求法│ 投影幕││实际问题中一次函数图象的画法│ │└────────────────┴────┘。