幂的乘方与积的乘方导学案
- 格式:docx
- 大小:94.23 KB
- 文档页数:3
幂的乘方与积的乘方教案:深入掌握指数和幂的运算规律一、教学目标学习指数和幂的乘方、积的乘方规律,掌握指数与幂之间的互相转化方法,培养学生对指数和幂的敏感度,从而提高学生的数学思维能力和应用能力。
二、教学内容1.指数和幂的乘方、积的乘方规律2.指数与幂之间的互相转化方法3.练习与解题三、教学重难点1.指数和幂的乘方、积的乘方规律的应用2.指数与幂之间的互相转化方法的理解和运用四、教学方法1.讲述与演示相结合2.多元素启发式教学方法3.练习与解题五、教学准备1.白板、黑板、笔2.教科书、讲义、试卷3.练习和解题材料4.示范题六、教学过程1.引入从同学们最熟悉的数学公式-乘方式入手,大概介绍指数和幂之间的关系,并且让同学们自己研究一下同底数的幂的乘方有怎样的规律,再加以证明。
2.讲授指数和幂的乘方、积的乘方规律与运用。
2.1.幂的乘方同底数幂的乘方规律:$(a^{m})^{n}$ $=$ $a^{mn}$,即同一底数幂的乘方等于底数不变,指数相乘。
示范题:$(2^{3})^{2}$ $=$ $2^{6}$ $=$ $64$。
2.2.积的乘方如何化简幂的积:$a^{m}$ $\times$ $a^{n}$ $=$ $a^{m+n}$,即相同指数幂的积等于底数不变,指数相加。
示范题:$2^{4}$ $\times$ $2^{3}$ $=$ $2^{7}$。
2.3.指数与幂之间的互相转化方法(1)同底数幂之间的乘和除,可用指数相加、相减:$a^{m} \times a^{n}$ $=$ $a^{m+n}$;$\frac{a^{m}}{a^{n}}$ $=$ $a^{m-n}$。
(2)不同底数幂之间可先化为同底数再变幂:$2^{m}$ $\times$ $3^{m}$ $=$ $(2 \times 3)^{m}$;$\frac{2^{m}}{3^{n}}$ $=$ $\frac{{2^{\left(m-n\right)}}}{3^{n}}$。
初中数学【幂的乘方】导学案一、导入激学:你能快速说出3个2是多少吗?3个103呢?20个103呢?你会用简单的方法比较233与322的大小吗?相信通过本节课的学习,同学们都能掌握新的运算方法来解决上述问题。
二、导标引学学习目标:1、经历探究幂的乘方运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
2、能利用幂的乘方的性质解决一些实际问题。
学习重难点:幂的乘方运算及与积的乘方运算性质的综合应用。
三、学习过程(一)导预疑学利用5分钟,自主预习课本80-81页后,完成下列问题,小组展示疑难问题。
1.预学核心问题(1)你还记得乘方的意义、同底数幂的乘法、积的乘方的运算法则吗?(2)根据乘方的意义及同底数幂乘法填空,看看计算的结果有什么规律?①()3232323323=⨯⨯=⎪⎭⎫⎝⎛②()aaaaa=⨯⨯=⎪⎭⎫⎝⎛22232③()amamamama=⨯⨯=⎪⎭⎫⎝⎛3(m为正整数)(3)类比与猜想:猜想()n m a= (m,n为正整数)。
2.预学检测下列计算对不对?如果不对,应怎样改正?(1)(x3)2=x5(2)x3·x5=x15(3)x4·x4=x8(4)(x6)4=x103.预学评价质疑通过预学,你学会了什么?还有什么疑问没有解决呢?请把它们写下来小组交流。
(二)导问互学问题一:从小组提出的问题中概括出来的核心问题是:师生设计的活动是:问题二:幂的乘方的运算法则是:,用符号表示为,你会证明吗,每一步的依据是什么?活动1:说一说,上面预学核心问题1(2)的3个题目中,左边都是什么运算?右边结果的底数与左边的底数有什么关系?右边结果的指数与左边的指数有什么关系?活动2:由此可猜想出()n m a= (m,n为正整数)。
活动3:请你验证这个猜想是否正确。
问题三:运用幂的乘方解决问题。
活动1:现在你能快速说出3个2是多少吗?3个103呢?20个103呢?活动2:你会用简单的方法比较233与322的大小吗?解决问题评价:你在解决问题时在哪里遇到了困难?此类问题今后怎么处理?(三)导根典学1. 计算(1) (-3xy2)2 (2)(-x4)5+(-x5)4知识之根探索:1、幂的乘方法则运用时,注意与同底数幂相乘、积的乘方的区别以及指数的变化;2、注意指数为奇数和偶数时符号的变化;3、幂的几种运算一般交错使用,计算时先要弄清运算顺序,再确定运算法则。
幂的乘方与积的乘方一、教学目标(一)知识目标1。
经历探索幂的乘方的运算性质的过程,进一步体会幂的意义.2。
了解幂的乘方的运算性质,并能解决一些实际问题.(二)能力目标1.在探索幂的乘方的运算性质的过程中,发展推理能力和有条理的表达能力.2.学习幂的乘方的运算性质,提高解决问题的能力.(三)情感目标在发展推理能力和有条理的表达能力的同时,进一步体会学习数学的兴趣,培养学习数学的信心,感受数学的内在美.二、教学重难点(一)教学重点幂的乘方的运算性质及其应用.(二)教学难点幂的运算性质的灵活运用。
三、教具准备投影片三张第一张:做一做,记作(§1。
4.1 A)第二张:例题,记作(§1.4。
1 B)第三张:练习,记作(§1.4。
1 C)四、教学过程Ⅰ。
提出问题,引入新课[师]我们先来看一个问题:一个正方体的边长是102毫米,你能计算出它的体积吗?如果将这个正方体的边长扩大为原来的10倍,则这个正方体的体积是原来的多少倍?[生]正方体的体积等于边长的立方.所以边长为102毫米的正方体的体积V=(102)3立方毫米;如果边长扩大为原来的10倍,即边长变为102×10毫米即103毫米,此时正方体的体积变为V1=(103)3立方毫米。
[师](102)3,(103)3很显然不是最简,你能利用幂的意义,得出最后的结果吗?大家可以独立思考.[生]可以。
根据幂的意义可知(102)3表示三个102相乘,于是就有(102)3=102×102×102=102+2+2=106;同样根据幂的意义可知(103)3=103×103×103=103+3+3=109。
于是我们就求出了V=106立方毫米,V1=109立方毫米。
我们还可以计算出当这个正方形边长扩大为原来的10倍时,体积就变为原来的1000倍即103倍.[生]也就是说体积扩大的倍数,远大于边长扩大的倍数.[师]是的!我们再来看(102)3,(103)3这样的运算。
幂的乘方和积的乘方北师大版数学初一下册教案幂的乘方和积的乘方:教案幂的乘方:公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则。
积的乘方:1.掌握积的乘方的运算法则;(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么?学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加.幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方.知识点1.地球的半径长约为6×103 km,用S,r分别表示赤道所围成的圆的面积和地球半径,则S=πr2,计算赤道所围成的圆的面积约为1.13×108__km2.(π取3.14,结果精确到0.01)2.用公式表示图中阴影部分面积S,并求出当a=1.2×103 cm,r=4×102 cm时,S的值.(π取3.14)《1.2幂的乘法与积的乘方》同步测试一、选择题1.计算:(m3n)2的结果是()A.m6nB.m6n2C.m5n2D.m3n22.计算(x2)3的结果是()A.xB.3x2C.x5D.x63.下列各式计算正确的是()A.(a2)2=a4B.a+a=a2C.3a2+a2=2a2D.a4-a2=a84.下列计算正确的是()A.a3-a4=a12B.(a3)4=a7C.(a2b)3=a6b3D.a3÷a4=a(a≠0)《1.2幂的乘方与积的乘方》课时练习含答案解析一.填空题(a3)2-a4等于;答案:a10解析:解答:(a3)2-a4=a6-a4=a10.分析:先根据幂的乘方算出(a3)2=a6,再同底数幂的乘法法则可完成此题.。
《幂的乘方与积的乘方》教学设计一、教学目标1、知识与技能目标理解幂的乘方和积的乘方的运算法则。
能够熟练运用幂的乘方和积的乘方的运算法则进行计算。
2、过程与方法目标通过观察、类比、猜想、归纳等数学活动,经历幂的乘方和积的乘方运算法则的推导过程,培养学生的逻辑推理能力和数学思维能力。
通过实际问题的解决,让学生体会数学与生活的紧密联系,提高学生应用数学知识解决实际问题的能力。
3、情感态度与价值观目标让学生在数学活动中体验成功的喜悦,增强学习数学的自信心。
培养学生勇于探索、敢于创新的精神,以及合作交流的意识。
二、教学重难点1、教学重点幂的乘方和积的乘方的运算法则。
正确运用幂的乘方和积的乘方的运算法则进行计算。
2、教学难点幂的乘方和积的乘方运算法则的推导过程。
灵活运用幂的乘方和积的乘方的运算法则解决问题。
三、教学方法讲授法、启发式教学法、练习法四、教学过程1、导入新课回顾同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加。
即:\(a^m×a^n = a^{m+n}\)(\(m\)、\(n\)为正整数)提出问题:如果一个幂的指数再乘方,或者几个同底数幂相乘,结果又会怎样呢?从而引出本节课的课题——幂的乘方与积的乘方。
2、讲授新课(1)幂的乘方计算:\((a^m)^n\)(\(m\)、\(n\)为正整数)引导学生思考:这个式子表示什么意义?讲解:\((a^m)^n\)表示\(n\)个\(a^m\)相乘,即:\\begin{align}(a^m)^n&=a^m×a^m×\cdots×a^m\\&=a^{m+m+\cdots+m}\\&=a^{mn}\end{align}\得出幂的乘方法则:幂的乘方,底数不变,指数相乘。
即:\((a^m)^n = a^{mn}\)(\(m\)、\(n\)为正整数)(2)积的乘方计算:\((ab)^n\)(\(n\)为正整数)引导学生思考:这个式子表示什么意义?讲解:\((ab)^n\)表示\(n\)个\(ab\)相乘,即:\\begin{align}(ab)^n&=(ab)×(ab)×\cdots×(ab)\\&=(a×a×\cdots×a)×(b×b×\cdots×b)\\&=a^n×b^n\end{align}\得出积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
书山有路勤为径;学海无涯苦作舟
今天的努力是为了明天的幸福幂的乘方与积的乘方导学案
以下是为您推荐的幂的乘方与积的乘方导学案,希望本篇文章对您学习有所帮助。
幂的乘方与积的乘方导学案
老师寄语:上节课我们学过了同底数幂的乘法”,本节课让我们共同探究一下幂的乘方,即(am)n = ?相信:认真完成这个导学案,我们一定会有很多收获。
开始吧。
【明确学习目的,激发学生学习兴趣。
】
一、知识回忆
(1)an 的意义?即an = ;
(2) am• an = ,可叙述为
(3)可不能光说不练”哟!试试看:
计算:(-a)3•(-a)5 = ;-a2•a3 = ;
b6 = b2• b( ) ; (-y)3•(-y)4•(-y)5 = 。
【复习巩固已经学过的内容,引入将要学习的内容】
二、自学探究
让我们来完成下面各题:
(1)(23)4 = 23 乘以23 乘以23 乘以23 = 2( ) ,即(23)4 = ;
(2)(52)3 = 52 乘以52 乘以52 = 5( ) ,即(52)3 = 。
通过计算、比较指数之间的关系,你得出什幺结论了吗?
【通过具体数字的运算,学生易于掌握,】
再验证一下:
(1)(a3)4 = a3 • a3 • a3• a3 = a( ) ,即(a3)4 = ;。