高速铁路机车和车辆技术
- 格式:ppt
- 大小:15.39 MB
- 文档页数:93
浅谈高速铁路机车车辆技术【摘要】高度铁路机车车辆技术主要包括牵引传动技术、高性能转向架技术、外形空气动力学设计技术以及车辆间密接式连接技术等,涉及电子、机械、材料、计算机以及数控等多个领域,在研究上存在一定难度。
本文阐述了我国高速铁路机车车辆发展过程,并针对重点技术进行了分析。
【关键词】高速铁路;机车车辆;关键技术高速铁路行业的快速发展,促进了社会经济的发展以及人们生活质量的提升。
高速铁路机车车辆技术的存在,对保证机车车辆运行安全的重要保证,其牵引系统是否能够正常运行,发挥其所具有的功能与性能,又或者是外型空气动力学设计是否合理,都影响着列车运行安全[1]。
因此,必须要加强对高速铁路机车车辆技术的研究,提高列车运行的稳定性与安全性。
一、高速铁路机车车辆技术发展概述随着科学技术的发展,我国高速铁路机车车辆发展快速,逐渐实现了由传统蒸汽机车牵引向内燃、电力牵引的转换。
高速铁路机车车辆牵引传动多为电力牵引传动方式,即便有采用内燃牵引的高速列车也是电传动方式。
而所谓的电传动方式就是将外部输入的电能或者是自身产生的能源通过一整套的电能转换与传递装置,实现电能与机械能之间的转换,以此来完成驱动牵引机车前进[2]。
以电传动装置所采用的牵引电动机类型可以将电动机车分为两种,即直流电传动方式和交流电传动方式,其中交流电传动方式有可分为交流同步电传动方式与交流异步电传动方式两种。
早期投入运行的高速铁路机车车辆基本都是直流电传动方式,随着大功率可控硅变流技术的发展,三相交流传动技术逐渐得到了应用,此后相继出现交通同步传动方式、交流异步传动方式等,推动了我国高速铁路机车车辆技术的发展。
二、高速铁路机车车辆技术研究分析1.牵引传动技术高速列车与普通车辆相比,其牵引传动装置需要大额定输出功率,牵引电机重量轻,能够在恶劣的环境中正常运行,并且要易维修。
同时还可逆空转,提高高速下粘着利用,电机无换向,不会引起电气、机械损耗。
交-直-交变流系统是高速列车应用最多的牵引传动技术,其主要是将单相交流电转变为可调频调压的三相交流电,以此做为牵引电机牵引动力[3]。
高速铁路机车车辆关键技术分析随着科技的发展和社会的进步,高速铁路成为了现代交通运输体系中不可或缺的一部分。
高速铁路的建设和运营需要大量的先进技术支持,其中机车车辆作为高铁系统中的核心部件,其关键技术的发展对整个高速铁路系统的安全、舒适和运行效率都有着重要的影响。
高速铁路机车车辆的关键技术主要包括机车车辆的设计、动力系统、车体结构、空气动力学等方面,下面将对这些关键技术进行具体分析。
一、机车车辆设计技术高速铁路机车车辆的设计是整个高铁系统中的核心环节,其关键技术包括外观设计、内部结构设计、运行性能设计等多个方面。
外观设计是机车车辆设计中的一个重要方面,良好的外观设计可以提高列车的整体美观性,增强列车的品牌形象,与此外观设计还需要考虑列车的空气动力学,尽量减少列车运行时的风阻,降低列车的能耗。
内部结构设计是机车车辆设计中的另一个重要方面,包括车厢布局、乘客座椅设计、车厢设施配置等方面。
良好的内部结构设计可以提高列车的乘坐舒适度,提升乘客体验,提高列车的运营效率。
运行性能设计是机车车辆设计中的一个关键环节,包括机车车辆的牵引性能、制动性能、加速性能等方面。
良好的运行性能设计可以保障列车在运行过程中的安全性和稳定性,提高列车的运行效率。
二、动力系统技术高速铁路机车车辆的动力系统是其最重要的组成部分,其性能直接关系到列车的运行速度和牵引能力,因此动力系统技术是高速铁路机车车辆关键技术中的重点之一。
动力系统技术主要包括牵引电机技术、牵引变流器技术、牵引控制系统技术等方面。
牵引电机技术是机车车辆的关键技术之一,它直接影响到列车的加速性能和维持高速行驶状态下的牵引力。
目前,高速铁路机车车辆广泛采用的是三相异步电机作为牵引电机,其优点是结构简单、维护成本低、可靠性高,但在大功率、高速牵引的情况下,需要克服电机本身的一些技术难题。
牵引变流器技术和牵引控制系统技术也是动力系统技术中的重要组成部分,它们直接关系到列车的牵引效率和牵引控制的稳定性。
铁路运输技术一、铁路运输技术的概述铁路运输是人类社会历史上发展较早、技术较为成熟的运输方式之一。
铁路运输技术主要包括:铁路车辆技术、轨道技术、供电技术、通信技术以及信号控制技术等。
二、铁路车辆技术铁路车辆技术是铁路运输技术的一个重要组成部分。
铁路车辆主要由机车、客车、货车、动车组等组成。
其中,机车是铁路列车的动力源,通常分为电力机车、内燃机车、蓄电池机车等类型。
客车主要负责人员和旅客的运输,通常分为普通客车、高级软卧车、硬卧车等不同类型。
货车主要负责货物的运输,通常分为敞车、罐车、平板车、封闭车等类型。
动车组是铁路运输技术的一种新型成果,通过快速换装不同车型车厢,实现高速列车的多功能化运营。
三、轨道技术轨道技术是铁路运输技术中不可缺少的一环,它直接关系到列车的安全、稳定运行和运输效率。
轨道技术涉及到铁路线路的建设、维护、修复等,通常分为路基、轨道、道床三个部分。
其中,路基主要是指铁路远距离上的土石方和经过的水流的工程学中间结构,目的是为了将列车承载的荷载分散到不同的地层。
轨道则是指铁路路面上的轨、枕、钉等构成的一系列元件。
道床是指轨道所铺设在的桥梁、涵洞、隧道、排水系统等设施,确保列车在复杂路况下通畅行驶。
四、供电技术铁路交通采用的是电力牵引,因此供电技术的先进性和稳定性至关重要。
供电技术主要包括牵引供电、信号供电、照明供电、车站设备供电等多个方面。
传统的牵引供电方式是通过触头供电方式实现的,现在逐步向架空输电和地杆输电发展。
信号供电主要负责传输信号信息,现在已经逐步发展完成地面表示信号、无线电信号、移动末端装置等智能化信号系统的推广。
照明供电主要用于铁路线路沿线和车站场地照明,车站设备供电则负责车站设备的电力需求。
五、通信技术通信技术作为铁路运输技术不可或缺的一环,除了保证列车之间的联络和交通管制的安全,同时也保证了乘客在乘车时的安全和舒适度。
通信技术主要采用的是无线和有线通信两种形式,有线通信主要负责列车信号、各种站场信号的传输,另外一种是通过无线通信,实现列车之间、列车与车站之间、车站间的数据和语音通信。
高速铁路技术简介一、概述(一)线路地理位置和径路(二)线路在国民经济与路网中的意义和作用(三)研究工作概述二、高速铁路主要技术条件铁路等级:高速铁路;正线数目:双线;运输组织模式:本线和跨线列车混合运行的客运专线模式;设计速度:设计最高运行速度350km/h,初期最高运行速度300km/h。
跨线列车运行速度200km/h及以上;列车类型:本线列车采用最高运行速度300km/h及以上的动车组;跨线列车采用最高运行速度200km/h及以上的动车组;线间距:5.0m;最小曲线半径:7000m;最大坡度:12‰;到发线有效长度:700m;牵引种类:电力;列车运行控制方式:自动控制;调度指挥方式:综合调度集中;三、高速铁路的设计特点高速铁路设计速度350km/h,初期开通运行速度300km/h,与传统铁路相比,表面上看,只是列车运行速度提高了。
但实际上,由于速度的提高,各种运行工况下的不利因素在高速条件下被放大了:行车事故的后果在高速条件下被放大了;对列车运行控制系统的安全性要求和技术难度在高速条件下提高了;弓网受流特性在高速条件下更复杂了;线路平纵断面条件和轨道不平顺对旅客乘座舒适度的影响在高速条件下更敏感了;列车运行对周围环境的影响在高速条件下增大了……。
因此,高速铁路不是列车运行速度的简单提高,也不是单项专业技术标准的简单提高,而是当代新型牵引动力、高性能轻型车辆、高质量线路、高速运行控制指挥和经营管理等方面技术进步的集中反映,它具有不同于传统铁路的技术内涵和特定要求。
高速铁路以高速、安全、准时、方便、舒适、全天候为综合优势,需要以高性能的技术装备、高质量的基础设施、高水平的运营管理和高度科学的规划布局为支撑条件。
作为高速铁路的设计,必须充分体现高速铁路的以上技术经济优势,具备高度的系统工程观念,系统地解决由于行车速度的提高而带来的一系列技术难点,确保高速列车高速、安全、舒适地运营。
1.运输组织模式高速铁路的运输组织模式与其他铁路一样,与国情、路情和沿线经济、社会条件等密切相关,具有很强的地域特征,不可能完全照搬国外现成的模式。
浅谈高速铁路机车车辆技术【摘要】高度铁路机车车辆技术主要包括牵引传动技术、高性能转向架技术、外形空气动力学设计技术以及车辆间密接式连接技术等,涉及电子、机械、材料、计算机以及数控等多个领域,在研究上存在一定难度。
本文阐述了我国高速铁路机车车辆发展过程,并针对重点技术进行了分析。
【关键词】高速铁路;机车车辆;关键技术高速铁路行业的快速发展,促进了社会经济的发展以及人们生活质量的提升。
高速铁路机车车辆技术的存在,对保证机车车辆运行安全的重要保证,其牵引系统是否能够正常运行,发挥其所具有的功能与性能,又或者是外型空气动力学设计是否合理,都影响着列车运行安全[1]。
因此,必须要加强对高速铁路机车车辆技术的研究,提高列车运行的稳定性与安全性。
一、高速铁路机车车辆技术发展概述随着科学技术的发展,我国高速铁路机车车辆发展快速,逐渐实现了由传统蒸汽机车牵引向内燃、电力牵引的转换。
高速铁路机车车辆牵引传动多为电力牵引传动方式,即便有采用内燃牵引的高速列车也是电传动方式。
而所谓的电传动方式就是将外部输入的电能或者是自身产生的能源通过一整套的电能转换与传递装置,实现电能与机械能之间的转换,以此来完成驱动牵引机车前进[2]。
以电传动装置所采用的牵引电动机类型可以将电动机车分为两种,即直流电传动方式和交流电传动方式,其中交流电传动方式有可分为交流同步电传动方式与交流异步电传动方式两种。
早期投入运行的高速铁路机车车辆基本都是直流电传动方式,随着大功率可控硅变流技术的发展,三相交流传动技术逐渐得到了应用,此后相继出现交通同步传动方式、交流异步传动方式等,推动了我国高速铁路机车车辆技术的发展。
二、高速铁路机车车辆技术研究分析1.牵引传动技术高速列车与普通车辆相比,其牵引传动装置需要大额定输出功率,牵引电机重量轻,能够在恶劣的环境中正常运行,并且要易维修。
同时还可逆空转,提高高速下粘着利用,电机无换向,不会引起电气、机械损耗。
交-直-交变流系统是高速列车应用最多的牵引传动技术,其主要是将单相交流电转变为可调频调压的三相交流电,以此做为牵引电机牵引动力[3]。
第21卷 第2期 郑州铁路职业技术学院学报 Vol .21 No .2 2009年6月 Journal of Zhengzhou Rail w ay Vocati onal &Technical College Jun .2009 收稿日期:2008-12-10 作者简介:李新东(1969-)男,河南新密人,郑州铁路职业技术学院机电工程系副教授。
卢桂云(1966-)女,河南商丘人,郑州铁路职业技术学院机车车辆系副教授。
高速铁路机车车辆关键技术分析李新东 卢桂云(郑州铁路职业技术学院 河南郑州 450052)摘 要:针对高速铁路机车车辆应普遍具有的牵引传动技术、复合制动技术、高性能转向架技术、车辆轻量化技术、外形的空气动力学设计技术、高速列车的控制、检测和诊断技术、车辆间密接式连接技术、车厢密封减噪及集便排污技术、高速列车倾摆技术、高速受电弓技术等十大关键技术进行分析,提出高速列车应进一步完善的技术问题。
关键词:高速铁路 机车车辆 关键技术 高速列车是高速铁路的技术核心,是机车车辆现代化的有效载体。
如果说高速铁路是现代高新技术的综合集成,则高速列车是机械、电子、材料、计算机、数控等现代技术综合集成的集中体现。
根据国务院批准执行的“中长期铁路网规划”要求,2020年前我国将修建四纵四横的客运专线及三个城际快速客运系统,共计达12000k m 以上。
为此,研究高速列车关键技术,推进我国机车车辆现代化建设已成为铁路科技工作者面临的紧迫任务。
高速列车按列车动力轮对分布和驱动设备的设置来分类,可分为动力集中型和动力分散型;按列车转向架布置和车辆联结方式来分,可分为独立式转向架和铰接式转向架。
随着高速列车速度进一步提高到300k m /h 以上,动力集中与动力分散两种类型正在相互靠拢,动力分散式相对集中,动力集中式将动轴扩展,粘着利用将更加充分。
各型高速列车不论其具体结构及设备如何,其关键技术基本是一致的,主要可以概括为以下十大方面:1 牵引传动技术1.1 高速列车牵引传动装置的特殊要求高速列车牵引传动装置的特殊要求是大额定输出功率,牵引电机重量轻,易维修,耐恶劣环境条件,速度控制方便,电机的转矩—速度特性较陡,可抑制空转,提高高速下粘着利用,电机无换向,不会引起电气、机械损耗。