小学六年级几何图形练习题
- 格式:doc
- 大小:43.50 KB
- 文档页数:3
人教版六年级数学下册《图形与几何》专项训练姓名: ___________班级: ___________考号: ___________一、填空题1. 一个等腰三角形的一条边长是, 另一条边长是, 那么这个等腰三角形的周长是(______)。
2. 钟面上, 经过3小时, 时针旋转了(______);经过30分钟, 分针旋转了(______)。
3. 一个梯形的下底是, 如果下底缩短, 那么面积就减少, 并且得到的新图形是一个平行四边形, 原来梯形的面积是(__________)。
4. 如右图, 直角梯形的周长, 它的面积是(________)。
5. 一个长方体正好可以切成4个棱长为的正方体, 原长方体的棱长总和可能是(______), 也可能是(______)。
6.右图是一个圆柱和一个圆锥, 圆柱的底面直径是圆锥的2倍, 它们的高度相等。
一个这样的圆柱可以熔铸成(________)个这样的圆锥。
7.观察下图, 图①和图②中的三角形均为等边三角形, 图①中小三角形的面积是大三角形面积的。
图③中小正方形的面积占大正方形面积的。
8. 小明从一个长方体纸盒上撕下两个相邻的面(展开后如右图), 这个纸盒的底面积是_____平方厘米, 体积是_____立方厘米.9.如下图所示, 一张长方形铁皮, 切割下阴影部分的两个圆和一个长方形刚好能做一个油桶, 这个油桶的容积是(________)。
10. 右图中圆的面积与长方形面积相等。
圆的周长是, 那么阴影部分的周长是(______)。
二、选择题11. 图中正方形的面积()平行四边形的面积。
A. 大于B. 等于C. 小于D. 无法判断12.用10倍的放大镜看40°的角, 看到的角是()A. 40°B. 400°C. 4°13.一个等腰三角形的一个底角是, 它的顶角是()。
A. B. C. D.14.下列四个图形中, 不能通过基本图形平移得到的是()。
1、 六年级总复习几何图形练习题2.在半径为10厘米,圆心角为90°的扇形中,分别以两条半径的中点E 和F 为圆心,以扇形半径之半为半径,画两个半圆交于D.求图中阴影部分的面积(如下图).3.如上图扇形的半径OA=OB=6厘米.角AOB 等于45°,AC 垂直OB 于C 点,那么图中阴影部分面积是多少平方厘米?( =3.14) 20、如下图,已知直角三角形ABC 中,AB 边上的高是4.8厘米,求阴影部分的面积.21、如上图,把一个圆剪成一个近似的长方形,已知长方形的周长是33.12厘米,求阴影部分面积.22、如下图,求阴影部分面积.(单位:厘米)23、求下列各图的阴影部分面积.(单位:厘米)31、求下面立体图形的体积.(单位:cm )32、如果,一个酒瓶里面深24厘米,底面内径是16厘米,瓶里酒深15厘米.把酒瓶塞紧靠后,使其瓶口向下倒立,这时酒深19厘米,酒瓶容积是多少毫升?33、一个瓶子,它的瓶身呈圆柱形(不计瓶颈),如图,已知瓶内装有1.6升的水,当瓶子正放时瓶内水面高为12厘米,当瓶子倒立时瓶内空余部分高3厘米,求瓶子的容积.34、一个饮料瓶,它的瓶身呈圆柱形(不计瓶颈),如下图所示,已知它的容积为1200立方厘米,当瓶子正放时瓶内水面高为18厘米,倒放时瓶内空余部分高6厘米,瓶内装有多少立方厘米的饮料?36、下图中三角形ABC 的高是5厘米,三角形的面积是30平方厘米,求阴影部分的面积.37、如右图是四个半径均为1厘米的圆,求阴影部分的面积.339、已知直径AB=AD=20厘米,∠CAB的度数为45度,求图中阴影部分的面积(π取3.14)一、填空(34分)1.上海在北京的南偏东约30°的方向上,那么北京在上海的()偏()约()的方向上.2. 图形的变换方式有平移、()、().3. 观察钟面,(1)指针从12 绕点O顺时针方向旋转90°到().(2)指针从8绕点O顺时针方向旋转()°到10. 4.相交于同一个顶点的三条棱的长度分别叫做长方体的()、()、().正方体是()、()、()都相等的长方体,也叫().5.长方体和正方体都有()个面、()条棱、()个顶点.6.一个长方体长10厘米,宽9厘米,高5厘米,它的上、下面的面积分别是()平方厘米,前、后面的面积分别是()平方厘米,左、右面的面积分别是()平方厘米.它的表面积是()平方厘米,体积是()立方厘米.7.一个棱长是6分米的正方体,它的占地面积是()平方分米,表面积是()平方分米,体积是()立方分米.8.要做一个长5厘米,宽4厘米,高3厘米的长方体框架,至少需要( )厘米的铁丝.9.用36厘米的铁丝正好围成一个正方体框架,这个正方体框架的棱长是()厘米.要在它的外面贴一层红纸,至少需要()平方厘米的红纸.11.至少要()个小正方体才能拼成一个大正方体.12.一个正方体的棱长扩大3倍,那么它的表面积(),体积().二、判断(10分)1. 半圆的周长就是圆周长的一半.()2.棱长是6厘米的正方体的体积和表面积相等.()3.长方体的6个面中,至少有4个面是长方形.()4.一个物体的体积是1m³,这个物体的形状一定是正方体.()5.把一个正方体切成两部分,它的体积和表面积都不变.()6木箱的体积就是木箱的容积.()8.长方体和正方体的底面积相等,高也相等,它们的体积一定相等.()9.钟表的指针从12绕O逆时针旋转90°到3.()10.体积相等的两个正方体,它们的表面积也一定相等.()三、选择(16分)1.下列图形中,不一定是轴对称的图形是().A 正方形B三角形 C 圆 D 线段3.一个长方体水箱的容积是150升,这个水箱底面是一个边长为5分米的正方形,则水箱的高是()(水箱厚度忽略不计)A 30分米B 10分米C 4分米D 6分米4.汽车公路上行驶是()现象,风车的运动是()现象 A 平移 B 旋转C移动D转动5.两个长方体拼成一个正方体后,它的体积(),表面积().A 变大,变大B 变小,变小C 不变,变大D不变,变小6.我们在画长方体时一般只画出三个面,这是因为长方体().A 只有三个面 B 只能看到三个面C 最多只能看到三个面7.一个棱长为8分米的正方体鱼缸,水面距缸口3分米,则鱼缸里装水().A 320升B 192升C 512升D 24升8.把一个长方体切成两个正方体,表面积增加了60平方分米,已知原长方体长3米,则它的体积是().A 180立方分米B 900立方分米C 1800立方分米D 90立方分米四、按要求画图(6分)1. 画出下图关于直线的轴对称图形.2.画出下图绕点A顺时针旋转90°的图形.3. 画出下图绕点O逆时针旋转90°的图形,并将原图向右平移4格.5.王叔叔要做一个棱长为3分米的无盖鱼缸,至少需要多少平方分米的玻璃?这个鱼缸最多可装水多少升?(玻璃的厚度忽略不计)1.农民要挖一个长30米,宽20米,深3.5米的养鱼池,要挖土多少立方米?如果要在池底和四周抹水泥,抹水泥的面积是多少平方米?。
人教版六年级数学下册几何图形专项练习1. 计算一节圆柱形通风管的铁皮用量,就是求圆柱的()A .侧面积B .表面积C .侧面积加一个底面积2. 小明站在楼顶往下看这辆小汽车,小明看到的形状是()A .B .C .3. 图中小朋友看到的是()A .B .C .4. 用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()A .侧面积和高都相等B .高一定相等C .侧面积一定相等D .侧面积和高都相等5. 如下图,甲部分的周长和乙部分相比()A .甲大B .乙大C .一样大6. 在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是()A .B .C .D .7. 下列各图形面积计算公式的推导过程中,没有用到平移或旋转的是()。
A .三角形B .长方形C .圆D .平行四边形8. 把一个礼品盒放在桌子上,站在不同的位置看一看,每次最多能看到()个面。
A .1B .2C .39. 下面()的运动是平移.A .转动着的呼啦圈B .电风扇的运动C .拔算珠10. 一个圆,从圆心到圆上任意一点的距离()A .都相等B .都不相等C .不一定相等11. 图形平移有二个关键要素,一是平移的______,二是平移的______。
12. 一个圆柱体的侧面积为150平方厘米,底面半径是4厘米,它的体积是______立方厘米.13. 请按要求写出算式并算出得数:侧面的数-上面的数÷前面的数,列式:______。
14. 小明越走近房子,看到的房子就越______,看到房子后面的树就越______。
15. 一个长方体的小药箱,一次可能看到这个物体的______个一面,也可能看到这个物体的______个面,也可能看到这个物体的______个面。
16. 填表.(按从左到右的顺序填写,得数保留两位小数)17. 把圆柱的侧面展开,得到一个______,它的长等于圆柱底面的______,宽等于圆柱的______。
六年级数学几何图形相关问题试题答案及解析1.判断下列图a、图b、图c能否一笔画.【答案】图a和图c能,图b不能。
【解析】图a能,因为有2个奇点,图b不能,因为图形不是连通的,图c能,因为图中全是奇点。
2.下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【答案】甲蚂蚁,从奇点出发才能一笔画出图形。
【解析】要想不重复爬出,需要图形能一笔画出,由于图中有两个奇点,所以应该从奇点出发才能一笔画出图形,所以甲蚂蚁能够。
3.下图是儿童乐园的道路平面图,要使游客走遍每条路并且不重复,那么出、入口应设在哪里?【答案】入口和出口应该分别放在F和I点。
【解析】要想不重复,需要路线能一笔画出,由于图中有两个奇点,所以入口和出口应该分别放在两个奇点出,即F和I点。
4.如图,在188的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?【答案】【解析】我们数出阴影部分中完整的小正方形有8+15+15+1654个,其中部分有6+6+8 20个,部分有6+6+820(个),而1个和1个正好组成一个完整的小正方形,所以阴影部分共包含54+2074(个)完整小正方形,而整个方格纸包含818144(个)完整小正方形.所以图中阴影面积占整个方格纸面积的,即.5.用一条线段把一个长方形平均分割成两块,一共有多少种不同的分割法?【答案】无穷多【解析】怎样把一个图形按照规定的要求分割成若干部分呢?这就是图形的分割问题.按照规定的要求合理分割图形,是很讲究技巧的,多做这种有趣的训练,可以培养学生的创造性思维,发展空间观念,丰富想象,提高观察能力.这道题要求把长方形平均分割成两块,过长方形中心的任意一条直线都可以把长方形平均分割成两块,根据这点给出如下分法(如右图):⑴做长方形的两条对角线,设交点为⑵过点任作一条直线,直线将长方形平均分割成两块.可见用线段平分长方形的分法是无穷多的.6.将下图分割成大小、形状相同的三块,使每一小块中都含有一个○.【答案】【解析】图中一共有18个小方格,要求分割成大小、形状相同的三块,每一块有:(块),而且分割成大小、形状相同的三块,可以看出图形的中心点是,而且上面的部分是对称的,但是只有5块,需要对称的再加上一块,再由图形的特点.7.请把下面的图形分成形状、大小都相同的块,使每一块里面都有“春蕾杯赛”个字.【答案】【解析】如下图所示:答案不唯一.8.如图,它是由个边长为厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后个小图形的周长总和与原来大图形的周长相差厘米.【答案】;8;22【解析】⑴因为总共有个小正方形,所以分成个大小形状相同的图形后每个图形应该有(个)小正方形,如图.⑵每个小图形的周长为厘米.⑶个小图形的周长和:(厘米),原图形的周长:(厘米),所以相差(厘米).9.如图,将一个正方形分割成互相不重叠的21个小正方形,这些小正方形的大小不一定相同,请画图表示.【答案】【解析】分割的方法不唯一,如右图所示.10.用同样大小的四块等腰直角三角板,能否拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形?若能,画出示意图.【答案】【解析】能用四块同样大小的等腰直角三角板拼出一个三角形、一个正方形、一个长方形、一个梯形、一个平行四边形五种图形.11.有6个完全相同的,你能将它们拼成下面的形状吗?【答案】→→【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照上面的顺序标号即可完成.12.三种塑料板的型号如图:() () ()已有型板30块,要购买、两种型号板若干,拼成正方形10个,型板每块价格5元,型板每块价格为4元.请你考虑要各买多少块,使所花的总钱数尽可能少,那么购买、两种板要花多少元?【答案】192【解析】要使花的钱尽可能的少,已有30个型板最好能用上,而价格较贵的型板尽可能少用,因为型与型的面积都为3,所以在拼成的的正方形中,除了型外,余下的面积应能被3整除.有或能被3整除知,只能用4块型板或1块型板,考虑尽可能多地使用型板,有如下图1、图2 的拼法:图1 图2图1的拼法要花(元),图2的拼法要花(元),因为只有30块型板,所以在10快的正方形中,图2的拼法只能有4块,剩下6块用图1拼法,共需:(元) 13.小龙的妈妈在街上卖边角布料的地摊上,买回了一块形状是等腰直角三角形的绸布,想用它来做长方形的窗帘,为了不把布剪的太碎,裁剪的块数就要尽可能的少,请问小龙的妈妈应该怎样剪拼呢?【答案】【解析】要使裁剪的块数少,就要充分利用等腰直角三角形的特点,还要尽可能多的让长方形的边与三角形的边重合,假设拼好的长方形以为长,现在要把△补到△的位置上,这就要求这两个三角形完全一样,显然,只要取、分别为、的中点即可.所以首先连接的中点和的中点,将△沿剪开,再按顺时针方向旋转180°即可.14.把一个正方形分成8块,再把它们拼成一个正方形和一个长方形,使这个正方形和长方形的面积相等.【答案】⑴⑵⑶【解析】连接正方形的对角线,把正方形分成了4个相等的等腰直角三角形,再连接各腰中点,又把它们分成4个小等腰直角三角形和4个等腰梯形.(如图⑴所示),出于分成正方形、长方形面积相等的要求考虑:分别取出两个小等腰直角三角形和两个梯形,就能一一拼出所要求的正方形和长方形了(如图⑵、⑶所示).15.把下图中两个图形中的某一个分成三块,最后都拼在一起,使它们成为一个正方形.【答案】【解析】不管分其中的哪一块,最后拼得正方形的面积与图中两块面积和相等,甲面积(平方厘米);乙面积(平方厘米).所以甲面积乙面积(平方厘米),也就是最后拼得正方形的边长为10厘米.甲、乙两图形各有一边是10厘米,可视为正方形的一条边,然后把乙剪成三块拼成的正方形,即可.16.有个小长方形,它们的长和宽分别相等,用这个小长方形拼成的大长方形(如图)的面积是平方厘米,求这个大长方形的周长.【答案】29【解析】从图上可以知道,小长方形的长的倍等于宽的倍,所以长是宽的倍.每个小长方形的面积为平方厘米,所以宽宽,所以宽为厘米,长为厘米.大长方形的周长为厘米.17.右图的长方形被分割成个正方形,已知原长方形的面积为平方厘米,求原长方形的长与宽.【答案】12;10【解析】大正方形边长的倍等于小正方形边长的倍,所以大正方形的边长是小正方形边长的倍,大正方形的面积是小正方形面积的倍,所以小正方形面积为平方厘米,所以小正方形的边长为厘米,大正方形的边长为厘米,原长方形的长为厘米,宽为厘米.18.如图,是矩形,,,对角线、相交.、分别是与的中点,图中的阴影部分以为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米?(取3)【答案】180【解析】扫出的图形如右上图所示,白色部分实际上是一个圆柱减去两个圆锥后所形成的图形.两个圆锥的体积之和为(立方厘米);圆柱的体积为(立方厘米),所以白色部分扫出的体积为(立方厘米).19.如图,,,,,.求.【答案】【解析】本题题目本身很简单,但它把本讲的两个重要知识点融合到一起,既可以看作是”当两个三角形有一个角相等或互补时,这两个三角形的面积比等于夹这个角的两边长度的乘积比”的反复运用,也可以看作是找点,最妙的是其中包含了找点的种情况.最后求得的面积为.20.如图,在长方形中,是的中点,是的中点,如果厘米,厘米,求三角形的面积.【答案】24【解析】∵是的中点,是的中点,∴,,又∵是长方形,∴ (平方厘米).21.如图,在三角形ABC中,厘米,高是6厘米,E、F分别为AB和AC的中点,那么三角形EBF的面积是多少平方厘米?【答案】6【解析】∵是的中点∴同理∴(平方厘米).22.如图ABCD是一个长方形,点E、F和G分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG的面积是多少个平方单位.【答案】9【解析】如右图分割后可得,(平方单位).23.将一个边长为4厘米的正方形对折,再沿折线剪开,得到两个长方形.请问:这两个长方形的周长之和比原来正方形的周长多几厘米?【答案】8【解析】剪开后的图形与原图形相比,多了两条边,这两条边的长度即为所求.4×2=8厘米24.用7根长度都是1寸的火柴棍拼成了一个三角形.请问:这个三角形的三条边长分别是多少?【答案】3,3,1或3,2,2【解析】3寸、3寸、1寸或3寸、2寸、2寸.25.有两个相同的直角三角形纸片,三条边分别为3厘米、4厘米、5厘米.不许折叠,用这两个直角三角形可以拼成几种平行四边形?【答案】3【解析】3种.26.若干棱长为1的立方体拼成了一个11×11×11的大立方体,那么从一点望去,最多能看到多少个单位立方体?【答案】331【解析】从一点望去,最多可以看见三个两两相邻的面,如下图所示:而每个面对应有11×11=121个小立方体,但是注意到公共棱上对应的小正方体被计算了两次,应减去三个棱上对应的小立方体,但是此时顶点(望去的那一点)又多减了1次,所以必须补上,于是有:一眼看去,有121×3-11×3+1=331个单位立方体可以看到.27.如图,在直线上两个相距l厘米的点A和B上各有一只青蛙.A点的青蛙沿直线跳往关于B点的对称点Al ,而B点的青蛙跳往关于A点的对称点Bl;然后B1点的青蛙跳往关于Bl点的对称点A2,Bl点的青蛙跳往关于Al点的对称点B2.如此跳下去,两只青蛙各跳了7次后,原来在A点的青蛙跳到的位置距离B点有多少厘米?【答案】1093【解析】两只青蛙各跳一次,距离增加为原来的3倍,所以A7B7=37×1=2187(寸),而且A7在右,B7在左(跳奇数次时,A点的青蛙在左.跳偶数次时,B点的青蛙在左).显然有B7A=BA7,所以BA7=(B7A7-AB)÷2=(2187-1)÷2=1093,即答案为1093.28.如图,正方形的树林每边长1000米,里边有白杨树和榆树.小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰到一株榆树就往正东走,最后他走到了东北角上.问小明一共走了多少米的距离?【答案】2000【解析】小明往正北走路程可能分许多段.不管是多少段,各段距离的和正好是正方形南北方向的一条边长1000米;同样小明往正东方向走若干段距离的和也正好是东西方向的一条边长1000米.所以,小明一共走了1000+1000=2000(米).29.图1、图2是两个形状、大小完全相同的大长方形.在每个大长方形内放入4个如图3所示的小长方形,斜线区域是空下来的地方.已知大长方形的长比宽多6厘米,问:图1、图2中画斜线的区域的周长哪个大?大多少厘米?【答案】第一个大,大12cm【解析】为了方便叙述,在原图中标上字母,如下图所示:图1中画阴影区域的周长恰好等于大长方形的周长,图19-9中画阴影区域的周长显然比大长方形的周长小,两者之差是2AB.从图2中的竖直方向看,AB=a-CD.再从图2的水平方向看,大长方形的长是a+2b,宽是2b+CD.已知大长方形的长比宽多6厘米,所以(a+2b)-(2b+CD)=a-CD=6(厘米),从而AB=6(厘米) .因此图1中画斜线区域的周长比图2中的画斜线区域的周长大2AB=12(厘米).30.如图,有一个八边形,任意相邻的两条边都互相垂直.为确定这个八边形的周长,最少需要知道其中几条边的长度?【答案】3【解析】我们利用例4的方法,放一只小虫使它沿八边形的边缘爬行一周回到原出发点,有向左的长度等于向右的长度,向下的长度等于向上的长度,而爬行一周的路程即为图形的周长,所以只用量出向上,向左的长度,在下图中(实际小虫是在八边形的边上爬行,而不是沿示意线爬行),即为AB,ED,AG的长度.显然只用量出3条线段的长度,即可求出八边形的周长.。
【练习1】【练习2】【练习3】【练习4】【练习5】【练习6】【练习7】【练习8】【练习9】【练习10】、相交于点;已知三角形与三角平方厘米,那么梯形的面积是平方厘【练习11】【练习12】,问阴影部分面积为多少?【练习13】【练习14】,三角形的面积为,那么三【练习15】【练习16】【练习17】【练习18】【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.【练习23】【练习24】【练习25】【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm【练习34】计算下面各圆锥体积(单位:厘米)(取)【练习35】【练习36】【练习1】【练习2】几何四边形一半模型等积变形【练习3】【练习4】,所以【练习5】【练习6】【练习7】【练习8】【练习9】:,所以【练习10】根据梯形中的蝴蝶模型(平方厘米),方厘米),故总面积为(平方厘米).蝴蝶模型【练习11】,根据蝴蝶模型和一半模型求出每一块的面积如图上标几何四边形蝴蝶模型基本梯形蝴蝶模型【练习12】如图,梯形面积为,四边形连接,在梯形中,;在梯形中,,并且四边形面积为,所以梯形空白部分的面积是,所以阴影的面积是【练习13】【练习14】.【练习15】【练习16】.【练习17】【练习18】平方厘米.【练习19】【练习20】【练习21】【练习22】,则三角形的面积是.可以看成三角形的“假高”(都是从顶点到底边连线,且两条“高”共线),【练习23】【练习24】【练习25】,【练习26】(取).【练习27】【练习28】【练习29】【练习30】平方厘米.【练习31】【练习32】【练习33】cm2,体积是cm(3)(4)【练习34】【练习35】【练习36】圆柱与圆锥圆柱与圆锥基本概念运用。
六年级数学几何图形相关问题试题答案及解析1.观察下面的图,看各至少用几笔画成?【答案】图(1)要4笔画出,图(2)能1笔画出,图(3)能1笔画出。
【解析】图(1)有8个奇点,所以要4笔画出,图(2)有12个奇点,所以要一笔画出,图(3)能一笔画出。
2. 18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【答案】【解析】欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了。
而图B中有4个奇点显然不能一笔画出.3.右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【答案】能够【解析】将图形中的6个区域看成6个点,每个门看成连结他们的线段,显然6个点都是偶点,所以有人能一次不重复的走过所有的门。
4.如图所示,四个全等的圆每个半径均为2m,阴影部分的面积是.【答案】16【解析】我们虽没有学过圆或者圆弧的面积公式,但做一定的割补后我们发现其实我们并不需要知道这些公式也可以求出阴影部分面积.如图,割补后阴影部分的面积与正方形的面积相等,等于.5.图中小圆的面积是30平方厘米,则大圆的面积是多少平方厘米.(取)【答案】60【解析】设图中大圆的半径为,正方形的边长为,则小圆的直径等于正方形的边长,所以小圆的半径为,大圆的直径等于正方形的对角线长,即,得.所以,大圆的面积与小圆的面积之比为:,即大圆的面积是小圆面积的2倍,大圆的面积为(平方厘米).6.直角三角形放在一条直线上,斜边长厘米,直角边长厘米.如下图所示,三角形由位置Ⅰ绕点转动,到达位置Ⅱ,此时,点分别到达,点;再绕点转动,到达位置Ⅲ,此时,点分别到达,点.求点经到走过的路径的长.【答案】【解析】由于为的一半,所以,则弧为大圆周长的,弧为小圆周长的,而即为点经到的路径,所以点经到走过的路径的长为(厘米).7.把任意一个三角形分成面积相等的4个小三角形,有许多种分法.请你画出4种不同的分法.【答案】【解析】根据等底等高的三角形面积相等这一结论,只要把原三角形分成4个等底等高的小三角形,它们的面积必定相等.而要得到这4个等底等高的小三角形,只需把原三角形的某条边四等分,再将各分点与这边相对的顶点连接起来就行了.根据上面的分析,可得如左下图所示的三种分法.又因为,所以,如果我们把每一个小三角形的面积看做1,那么就可以视为把三角形的面积直接分成4等份,即分成4个面积为1的小三角形;而可以视为先把原三角形分成两等份,再把每一份分别分成两等份.根据前面的分析,在每次等分时,都要想办法找等底等高的三角形.根据上面的分析,又可以得到如右下图的另两种分法.8.下图是一个直角梯形,请你画一条线段,把它分成两个形状相同并且面积相等的四边形.【答案】【解析】直角梯形的上底为1,下底为2,要分成两个相同的四边形,需要一条边可以分成1和2,边长正好为3,所以边分成两段,找到的三等分点,现在,,,,所以还要找到的中点,连接,就把梯形分成完全相同的两部分.如右上图.9.把下图四等分,要求剪成的每个小图形形状、大小都一样.除了剪正方形外,你还有别的方法吗?【答案】【解析】先把图形分成相等的两块,每一块中再分成相等的两份,这样就不难分成四块了,如右上图.10.如图,它是由个边长为厘米的小正方形组成的.⑴请在原图中沿正方形的边线,把它划分为个大小形状完全相同的图形,分割线用笔描粗.⑵分割后每个小图形的周长是厘米.⑶分割后个小图形的周长总和与原来大图形的周长相差厘米.【答案】;8;22【解析】⑴因为总共有个小正方形,所以分成个大小形状相同的图形后每个图形应该有(个)小正方形,如图.⑵每个小图形的周长为厘米.⑶个小图形的周长和:(厘米),原图形的周长:(厘米),所以相差(厘米).11.有6个完全相同的,你能将它们拼成下面的形状吗?【答案】→→【解析】利用染色法以及图形的对称性,对称轴两侧都有三个小图形,按照上面的顺序标号即可完成.12.试用图a中的8个相等的直角三角形,拼成图b中的空心正八边形和图c中的空心正八角星.【答案】【解析】把一个直角三角形的斜边与另一个直角三角形的一条直角边重合,同时,斜边上的一个锐角顶点与直角顶点重合,像这样依次摆放下去,便可得空心正八边形.若把一个直角三角形的斜边与另一个直角三角形的直角边的一部分重合,但顶点均不重合,依次摆放下去,便可由这八个相等的直角三角形组成空心正八角星.13.如下图两个正方形的边长分别是和(),将边长为的正方形切成四块大小、形状都相同的图形,与另一个正方形拼在一起组成一个正方形.【答案】【解析】拼成大正方形的面积应是,设边长,则有等式,又因为将边长为的正方形切成四个全等形,那么分割线一定经过正方形中心,假设切割线为大正方形边长,如图⑴,一定有,而,则:,所以,由此可以确定,然后将绕中心旋转到位置,即可把正方形切成符合要求的4块.如图⑵与图⑶.这种分法同时确保图⑶的中间部分就是边长为的小正方形.这是因为:⑴中心四边形的角即边长为的正方形的四个角,∠,∠,∠,∠,又因为各边长度相等.因此中心四边形是正方形.⑵中心正方形的边长.因此,中间部分是边长为的正方形.14.下图是一个锯齿状的零件,每一个锯齿的两条线段都长2厘米,求这个零件的周长.【答案】48【解析】平移法,将锯齿状的零件转化成平行四边形,两组对边相等都等于24厘米,所以这个零件的周长是24×2=48(厘米).15.求右图所示图形的周长(单位:分米)【答案】220【解析】这道题最简单的方法也是用平移法来解.下面我们来看一个基本解法.这是一个组合图形,由两个矩形组成,不要误认为两个矩形周长的和就是组合图形的周长.仔细观察图形可以发现:右边矩形的右边边长可以移到左边,这样就可以使左边的矩形变得完整.所以,这个组合图形的周长就是左边矩形的周长再加上右边矩形的一条已知边长的倍.即:(分米)16.如右图所示,在一个正方形内画中、小两个正方形,使三个正方形具有公共顶点,这样大正方形被分割成了正方形区域甲,和形区域乙和丙.甲的周长为厘米,乙的边长是甲的周长的倍,丙的周长是乙的周长的倍,那么丙的周长为多少厘米?长多少厘米?【答案】2【解析】乙的周长实际上是正方形的周长(我们可将乙与甲重合的两条线段分别向左、向下平移),同样的,丙的周长也就是正方形的周长.由于,,所以丙的周长为厘米,(厘米).17.如图,平行四边形,,,,,平行四边形的面积是,求平行四边形与四边形的面积比.【答案】1/18【解析】连接、.根据共角定理∵在和中,与互补,∴.又,所以.同理可得,,.所以.所以.18.一个长方形分成4个不同的三角形,绿色三角形面积占长方形面积的,黄色三角形面积是.问:长方形的面积是多少平方厘米?【答案】60【解析】黄色三角形与绿色三角形的底相等都等于长方形的长,高相加为长方形的宽,所以黄色三角形与绿色三角形的面积和为长方形面积的,而绿色三角形面积占长方形面积的,所以黄色三角形面积占长方形面积的.已知黄色三角形面积是,所以长方形面积等于().19.如图,在长方形中,是的中点,是的中点,如果厘米,厘米,求三角形的面积.【答案】24【解析】∵是的中点,是的中点,∴,,又∵是长方形,∴ (平方厘米).20.如图ABCD是一个长方形,点E、F和G分别是它们所在边的中点.如果长方形的面积是36个平方单位,求三角形EFG的面积是多少个平方单位.【答案】9【解析】如右图分割后可得,(平方单位).21.数一数,图中共有多少个角?【答案】8【解析】锐角、直角各4个,共8个角.22.将一个边长为4厘米的正方形对折,再沿折线剪开,得到两个长方形.请问:这两个长方形的周长之和比原来正方形的周长多几厘米?【答案】8【解析】剪开后的图形与原图形相比,多了两条边,这两条边的长度即为所求.4×2=8厘米23.用12个边长为1的小正方形拼一个大长方形,这个长方形的周长最短是多少?【答案】14【解析】拼成的图形长和宽最接近时,新的图形周长最短.即新图形边长为3和4时,周长最短,为(3+4)×2=1424.长方形有四个角,剪掉一个角,还剩几个角?【答案】如解析【解析】共有三种情况,如下图,分别剩下5、4、3个角.25.有两个相同的直角三角形纸片,三条边分别为3厘米、4厘米、5厘米.不许折叠,用这两个直角三角形可以拼成几种平行四边形?【答案】3【解析】3种.26.如图所示,剪一块纸片可以做成一个多面体的纸模型(沿虚线折,沿实线粘).那么这个多面体的面数、顶点数和棱数的总和是多少?【答案】74【解析】多面体的面数,可以直接从侧面展开图中数出来,12个正方形加8个三角形,共20面.下图是多面体上部的示意图共有9个顶点;同样,下部也是9个顶点,共18个顶点.棱数要分三层来数,上层从示意图数,有15条;下层也是15条;中间部分分为6条.一共15×2+6=36条棱.20+18+36=74.所以多面体的面数、顶点数和棱数的总和为74.27.如图,这是一个用若干块体积相同的小正方体粘成的模型.把这个模型的表面(包括底面)都涂上红色,那么,把这个模型拆开以后,有3面涂上红色的小正方体比有2面涂上红色的小正方体多多少块?【答案】12【解析】三面涂上红色的小正方形有2×4+5×4=28(个);两面涂上红色的小正方形有3×4+1×4=16(个),所以多出28-16=12(个).28.如图,四边形的面积是平方米,,,,,求四边形的面积.【答案】13.2【解析】连接.由共角定理得,即同理,即所以连接,同理可以得到所以平方米29.如图,正方形的树林每边长1000米,里边有白杨树和榆树.小明从树林的西南角走入树林,碰见一株白杨树就往正北走,碰到一株榆树就往正东走,最后他走到了东北角上.问小明一共走了多少米的距离?【答案】2000【解析】小明往正北走路程可能分许多段.不管是多少段,各段距离的和正好是正方形南北方向的一条边长1000米;同样小明往正东方向走若干段距离的和也正好是东西方向的一条边长1000米.所以,小明一共走了1000+1000=2000(米).30.在图中,共有多少个不同的三角形?【答案】85【解析】下图中共有35个三角形,两个叠加成题中图形时,又多出5+5×2=15个三角形,共计35×2+15=85个三角形.。
小学六年级数学几何图形练习题及答案本文将为小学六年级的学生提供一些数学几何图形的练习题及答案,帮助他们巩固和提高几何图形的认知和理解能力。
以下是一些常见的几何图形及其练习题:一、直线、线段、射线1. 完成下图:画出两条不同的线段,并用字母标记它们。
答案:答案因为文字发不了图片二、点、面、角1. 下图中的阴影部分是什么?答案:阴影部分是一个三角形。
三、正方形1. 下图中的图形是什么?答案:下图中的图形是一个正方形。
2. 画出一个边长为5cm的正方形。
答案:答案因为文字发不了图片四、长方形1. 下图中哪个图形是长方形?答案:图形B是长方形。
2. 画出一个长6cm、宽3cm的长方形。
答案:答案因为文字发不了图片五、圆形1. 下图中哪个图形是圆形?答案:图形A是圆形。
2. 画出一个直径为8cm的圆。
答案:答案因为文字发不了图片六、三角形1. 画出一个任意形状的三角形。
答案:答案因为文字发不了图片2. 判断下列各形状是否是三角形:(1)正方形 (2)长方形 (3)梯形答案:(1)正方形不是三角形 (2)长方形不是三角形 (3)梯形是三角形七、梯形1. 下图中哪个图形是梯形?答案:图形C是梯形。
2. 画出一个上底为4cm,下底为8cm,高为3cm的梯形。
答案:答案因为文字发不了图片以上是一些小学六年级数学几何图形的练习题及答案,希望能帮助学生们更好地理解和掌握这些几何图形的特性和性质。
学习数学要多做题多练习,通过实际操作加深对知识的理解,才能在数学学习中取得好成绩。
祝愿学生们能够在几何图形的学习中取得更进一步的进展!。
六年级几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个图形是轴对称图形?A. 正方形B. 圆形C. 长方形D. 不规则多边形答案:A2. 一个圆的周长是62.8厘米,它的直径是多少厘米?A. 10B. 20C. 30D. 40答案:B3. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,它的体积是多少立方厘米?A. 240B. 180C. 120D. 60答案:A4. 一个三角形的三个内角的度数之和是多少?A. 90°B. 180°C. 270°D. 360°答案:B5. 下列哪个图形的面积最大?A. 边长为4厘米的正方形B. 半径为2厘米的圆C. 长为6厘米、宽为4厘米的长方形D. 底为5厘米、高为3厘米的三角形答案:B二、填空题(每题2分,共10分)1. 一个圆的半径是3厘米,它的面积是______平方厘米。
答案:28.262. 一个圆柱的底面半径是4厘米,高是10厘米,它的体积是______立方厘米。
答案:502.43. 一个长方体的体积是120立方厘米,长是10厘米,宽是3厘米,那么它的高是______厘米。
答案:44. 一个平行四边形的底是8厘米,高是5厘米,它的面积是______平方厘米。
答案:405. 一个正方体的棱长总和是60厘米,它的表面积是______平方厘米。
答案:150三、解答题(每题10分,共20分)1. 一个长方体的长是10厘米,宽是8厘米,高是6厘米。
求它的表面积和体积。
答案:表面积= 2(10×8 + 10×6 + 8×6) = 376平方厘米体积= 10×8×6 = 480立方厘米2. 一个圆的直径是14厘米,求它的周长和面积。
答案:周长= π×14 = 43.96厘米面积= π×(14/2)^2 = 153.94平方厘米。
几何图形练习题
1、一条小河的一边有两个点A 和点B 。
从A 点出发,到小河里挑水,再到B 点。
怎么走最近?请你画出挑水的路线,并说明。
3、如图,三角形ABC 的面积是120平方厘米,AE=DE , DC=2
1
BC 。
求阴影部分的面积。
4、用篱笆围一块梯形范围的苗圃(如图),一面利用围墙不用篱笆, 这样共用去篱笆45米。
这块苗圃的面积是多少?
5、如图,在三角形ABC 中,D 、E 是两个将BC 边平均分成三份的两个点,F 为AB 的中点,如果三角形DEF 的面积是12平方厘米,则三角形ABC 的面积是多少?
D
C
6、有一个平行四边形的周长是80厘米,它的相邻两条边上的高是12厘米和8厘米。
求这个平行四边形的面积。
7、右图三角形ECD中EC=12厘米,CD=8厘米,并且它们的面积
是长方形ABCF的2倍,那么三角形ADF的面积是()。
8、如果三角形的两条边分别是4cm和7cm,那么第三条边的
取值范围是(),取整厘米数可以是()。
9、一个直角三角形三条边分别是6厘米、8厘米和10厘米,那么,它的斜边上的高是()。
10、2002年在北京召开了国际数学家大会,大会的会标如右图所示,它是由四个相同的直角三角形拼成的,直角三角形两条直角边边长分别是2和3.问:大正方形的面积是多少?
D B
11、有一条小河,河道原来面宽15米,底宽2米,深3米。
挖后面宽不变,底宽3米,深4米,求横截面中阴影部分的面积。
一条是长方形,一条是平行四边形。
那么,草地部分的面积是多少?
10。
六年级几何图形练习题(运用平移、翻折与旋转不、割补等法求面积类)1、下图ABC是等腰直角三角形,求阴影部分的面积。
(单位:厘米)2、求出下图中阴影部分的面积。
(单位:厘米)3、求出下图中阴影部分的面积。
(单位:厘米)4、求出下图中阴影部分的面积。
(单位:厘米)5、在半径为10厘米,圆心角为90°的扇形中,分别以两条半径的中点E和F为圆心,以扇形半径之半为半径,画两个半圆交于D。
求图中阴影部分的面积(如下图)。
6、求出下图阴影部分的面积。
(单位:厘米)7、求出下图阴影部分的面积。
(单位:厘米)8、下图,直径AB=20厘米,阴影Ⅰ的面积比阴影Ⅱ的面积大7平方厘米,求BC 的长。
9、如下图,四个圆的直径均为4厘米,求阴影部分面积。
(单位:厘米)10、下图中各小圆的半径为1,求该图中阴影部分的面积。
11、已知右图中两个正方形的边长分别是3厘米和6厘米,求阴影部分的面积。
12、下图的中的正方形的边长是2厘米,以圆弧为分界线的Ⅰ、Ⅱ两部的面积的差是多少平方厘米( =)12、如下图,已知直角三角形的面积是12平方厘米,求阴影部分的面积。
13、如下图,O为圆心CO垂直于AB,三角形ABC的面积是45平方厘米,以C为圆心,CA为半径画弧将圆分成两部分,求阴影部分的面积。
14、如下图扇形的半径OA=OB=6厘米。
角AOB等于45°,AC垂直OB于C点,那么图中阴影部分面积是多少平方厘米(π=)15、下图中,图①是一个直径为3厘米的半圆,AB是直径,让A点不动,整个半圆逆时针旋转60°角,此时B 点移动到B′(如图②)。
那么,图中阴影部分的面积是多少平方厘米(π=)16、求下列图形的阴影部分。
17、下图中长方形的面积是45平方米,求阴影部分的面积。
18、把一块公顷的长方形田地划分成两部分(如下图),其中三角形田地比梯形田地少公顷,三角形的底是60米。
这块长方形地的长和宽各是多少米19、如下图,半圆的直径是10厘米,阴影部分甲比乙的面积少平方厘米,求三角形△ABC的边OA的长。
六年级几何图形练习题
1、一条小河的一边有两个点A 和点B 。
从A 点出发,到小河里挑水,再到B 点。
怎么走最近?请你画出挑水的路线,并说明。
3、如图,三角形ABC 的面积是120平方厘米,AE=DE , DC=2
1
BC 。
求阴影部分的面积。
4、用篱笆围一块梯形范围的苗圃(如图),一面利用围墙不用篱笆, 这样共用去篱笆45米。
这块苗圃的面积是多少?
5、如图,在三角形ABC 中,D 、E 是两个将BC 边平均分成三份的两个点,F 为AB 的中点,如果三角形DEF 的面积是12平方厘米,则三角形ABC 的面积是多少?
6、有一个平行四边形的周长是80厘米,它的相邻两条边上的高是12厘米和8厘米。
求这个平行四边形的面积。
D
C
7、右图三角形ECD 中EC=12厘米,CD=8厘米,并且它们的面积 是长方形ABCF 的2倍,那么三角形ADF 的面积是( )。
8、如果三角形的两条边分别是4cm 和7cm ,那么第三条边的
取值范围是( ),取整厘米数可以是( )。
9、一个直角三角形三条边分别是6厘米、8厘米和10厘米,那么,它的斜边上的高是( )。
10、2002年在北京召开了国际数学家大会,大会的会标如右图 所示,它是由四个相同的直角三角形拼成的,直角三角形两条 直角边边长分别是2和3.问:大正方形的面积是多少?
11、有一条小河,河道原来面宽15米,底宽2米,深3米。
挖后面宽不变,底宽3米,深4米,求横截面中阴影部分的面积。
D
C
B
12、右图是一块长方形草地,长方形的长16米,宽是10米,之间有两条道路,一条是长方形,一条是平行四边形。
那么,草地部分的面积是多少?
10。