交直流调速实验报告(图形 文字)-电力牵引交流传动系统
- 格式:doc
- 大小:2.33 MB
- 文档页数:6
实验一直流电力牵引系统实验一、实验目的1.了解熟悉直流电力牵引系统的构成及各部分作用;2.重点掌握三段桥的工作原理;3.了解直流牵引系统牵引和制动原理;4.了解交直流传动系统对电网的谐波和无功污染。
二、实验内容1.直流电力牵引系统牵引和制动原理实验;2.测试三段桥各段桥的电压;3.测试直流电力牵引系统工作时电网的谐波和无功功率。
三、实验线路及原理整个实验系统组成框图如图1-1图1-1三相380V交流电进入配电柜后,由柜中变压器将其变为交直传动柜和交直交柜所需的单相交流电,控制台发出相应控制指令到交直传动柜,由其将交流电整流成直流电,再去驱动电动机组,系统所需的交流辅助电源由交直交柜提供,直流辅助电源由配电柜提供。
以上几部分连接原理图如图1-2:图1-2QS101-输入空气开关TM101-交直传动变压器QA101,QA102-牵引绕组空气开关QA103-电机励磁绕组空气开关TC301-同步变压器U301,U302-直流变流器模块M501-直流电机R305-磁场削弱电阻PWM-蓄电池充电模块MF301-辅助风机R306-制动电阻KZ301,KZ302-散热器过热保护器TV301-直流输出电压传感器TV302-励磁直流电压传感器TA301-直流输出电流传感器TA302-直流励磁电流传感器R301,R302,R303-空载电阻KM301-电机电枢接触器KM302,KM303-位置转换开关KM305-励磁输出接触器KM306-电阻制动接触器KM307-转向转换开关PV301,PV302,PV303-显示仪表●直流电力牵引系统各主要部件工作原理和作用:交直传动变压器TM101:将380伏三相工频交流电电源降压成三段单相电,其次边绕组分别为a1-b1-x1,a2-x2,a3-x3,其中a1-b1-x1电压为154V,a2-x2电压为77V,这两段电压为单相三段经济桥提供交流电,a3-x3电压为77V,这一段为电机励磁提供交流电。
电力拖动自动控制系统实验报告令狐采学实验一双闭环可逆直流脉宽调速系统一,实验目的:1.掌握双闭环可逆直流脉宽调速系统的组成、原理及各主要单元部件的工作原理。
2.熟悉直流PWM专用集成电路SG3525的组成、功能与工作原理。
3.掌握双闭环可逆直流脉宽调速系统的调试步骤、方法及参数整定。
二,实验内容:1.PWM控制器SG3525的性能测试。
2.控制单元调试。
3.测定开环和闭环机械特性n=f(Id)。
4.闭环控制特性n=f(Ug)的测定。
三.实验系统的组成和工作原理图6—10 双闭环脉宽调速系统的原理图在中小容量的直流传动系统中,采用自关断器件的脉宽调速系统比相控系统具有更多的优越性,因而日益得到广泛应用。
双闭环脉宽调速系统的原理框图如图6—10所示。
图中可逆PWM 变换器主电路系采用MOSFET 所构成的H 型结构形式,UPW 为脉宽调制器,DLD 为逻辑延时环节,GD 为MOS 管的栅极驱动电路,FA 为瞬时动作的过流保护。
脉宽调制器UPW 采用美国硅通用公司(Silicon General )的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM 控制器。
由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。
四.实验设备及仪器1.MCL 系列教学实验台主控制屏。
TAUUi ASR ACR UPW DLD GD PWMFA GM++ TGM2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—10组件或MCL—10A组件。
4.MEL11挂箱5.MEL—03三相可调电阻(或自配滑线变阻器)。
6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13组件。
7.直流电动机M03。
8.双踪示波器。
五.注意事项1.直流电动机工作前,必须先加上直流激磁。
2.接入ASR构成转速负反馈时,为了防止振荡,可预先把ASR的RP3电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR的“5”、“6”端接入可调电容(预置7μF)。
实验一 直流电机转速特性测定一、实验目的1.了解转速开环直流调速系统的组成。
2.测定晶闸管-电动机调速系统的转速特性。
二、实验系统组成及工作原理采用闭环调速系统, 可以提高系统的静、动态性能指标。
转速开环直流调速系统是闭环系统的基础, 实验图1-1是转速开环直流调速系统的实验线路图。
实验图1-1 带电流截止负反馈的转速单闭环直流调速系统图中电动机的电枢回路由晶闸管组成的三相桥式全控整流电路VT 供电, 转速给定信号 作为移相触发器GT的控制电压 , 由此组成转速开环直流调速系统。
三、实验设备及仪器 1.主控制屏MC012.直流电动机-负载直流发电机3.直流调压器 7.万用表 四、实验内容1.检查实验装置的有关单元2.测定晶闸管-电动机系统的开环转速特性 五、实验步骤及方法1.主控制屏开关按实验内容需要设置2.调压设备的检查和调整检查和调整电位器调节偏置电压, 使控制电压 -220, 并用万用表检测。
3.调压-电动机系统开环机械特性的测定(动机空载(发电机负载回路开路), 慢慢加电压, 使电动机转速慢慢上升至额定转速, 改变负载变阻器的阻值, 使主回路电流达到额定电流, 此时即为额定工作点(, )。
然后再改变负载变阻器,使主回路电流从额定电流减少至空载电流, 画出转速特性。
n(r/min)I a(A)六、实验注意事项1. 调压电路正常后, 方可合上主回路电源开关SW。
2.不允许突加给定开关起动电动机, 这时, 每次起动时必须慢慢增加给定, 以免产生过大的冲击电流。
更不允许通过突合主回路电源开关SW起动电动机。
七、实验思考题n1. 电枢电压不变, 电机转速随电枢电流如何变化?答:根据Ua=CeΦn+RaIa , 由于电枢电压Ua不变, 电枢电流Ia增大, 电枢绕组等效电阻Ra上的分压变大, 而感应电动势CeΦn减小, 所以转速n下降。
实验二直流电机调压调速一、实验目的1.了解转速开环直流调速系统的组成。
一、实习目的通过本次实习,使学生了解直流调速系统的基本原理、组成和运行方式,掌握直流调速系统的设计、调试和运行方法,提高学生动手实践能力和实际工程应用能力。
二、实习内容1. 直流调速系统基本原理直流调速系统是一种广泛应用于工业领域的电力拖动控制系统,其基本原理是利用晶闸管整流电路将交流电源转换为直流电源,通过调节直流电源的电压来控制直流电动机的转速。
2. 直流调速系统组成直流调速系统主要由以下几部分组成:(1)晶闸管整流电路:将交流电源转换为直流电源。
(2)平波电抗器:抑制整流电路输出的直流电压中的纹波。
(3)调节器:根据转速反馈信号和给定转速信号,调节晶闸管整流电路的控制角,从而实现直流电动机转速的调节。
(4)直流电动机:将电能转换为机械能,实现负载的拖动。
(5)转速反馈装置:将直流电动机的实际转速转换为电信号,反馈给调节器。
3. 直流调速系统设计(1)选择合适的晶闸管整流电路:根据负载要求,选择合适的整流电路,如三相桥式整流电路。
(2)设计调节器:根据转速反馈信号和给定转速信号,设计合适的调节器,如PI调节器。
(3)设计转速反馈装置:根据直流电动机的实际转速,设计合适的转速反馈装置,如测速发电机。
(4)设计平波电抗器:根据整流电路的输出电流和负载要求,设计合适的平波电抗器。
4. 直流调速系统调试(1)安装调试:将各个部件按照设计要求进行安装,并连接好电路。
(2)参数整定:根据实际负载要求,对调节器参数进行整定,使系统满足性能要求。
(3)系统调试:在负载条件下,对系统进行调试,确保系统运行稳定。
5. 直流调速系统运行(1)启动:按启动按钮,使直流电动机开始运行。
(2)调速:根据负载要求,调整给定转速信号,实现直流电动机转速的调节。
(3)停止:按停止按钮,使直流电动机停止运行。
三、实习总结1. 通过本次实习,使学生掌握了直流调速系统的基本原理、组成和运行方式。
2. 学生学会了直流调速系统的设计、调试和运行方法,提高了动手实践能力和实际工程应用能力。
工业大学实验报告__ 自动化__学院 __ 自动化 __专业 _ 1 __班成绩评定___________学号 3114000825 _伍宏淳_(合作者____学号____) 教师签名_______实验_ 一 _ 题目_ 直流调速系统的稳态调速性能实验 _ 第_11 周星期三_一、实验目的1. 掌握PWM直流调速系统的组成结构和工作原理;2. 掌握直流调速系统的机械特性测试方法;3. 理解开环、闭环调速方法的稳态机械特性;4. 理解转速负反应的作用。
二、实验容和要求1. 完成PWM直流调速系统的接线;2. 测定开环调速方式的机械特性;3. 测定转速负反应有静差、无静差调速方式的静特性;4. 分析比照开环、有静差、无静差调速的稳态机械特性。
三、实验结果和数据处理1. 实验结果表1 直流开环调速的机械特性〔N*=1000 rpm〕表2 直流单闭环无静差调速的机械特性〔N*=1000 rpm〕表3 直流双闭环有静差调速的静特性〔N*=1000 rpm〕Ia(A)N(rpm) 250 240 230 217 208表4 直流双闭环无静差调速方式的静特性〔N*=1000 rpm〕Ia(A)N(rpm) 1003 1000 999 996 9962. 调速方式的稳态机械特性分析比照①根据表1和表2的数据,绘制开环调速、单闭环无静差调速的稳态机械特性图,分析比照这两种调速方式的稳态机械特性。
1、闭环系统静特性可以比开环系统机械特性硬得多;2、闭环系统的静差率要比开环系统小得多;3、如果所求的静差率一定,如此闭环系统可以大大提高调速围。
②根据表3和表4的数据,绘制双闭环有静差调速、双闭环无静差调速的稳态机械特性图,分析比照这两种调速方式的稳态机械特性。
1、双闭环有静差调速的输出只取决于输入偏差量的现状;2、双闭环无静差调速的输出包含了输入偏差量的全部历史,虽然到稳态时▷Un=0,只要历史上有过▷Un,其积分就有一定数值,足以产生稳态运行所需要的控制电压Uc。
交直流调速实训报告一.实训题目:双闭环直流调速系统的MATLAB建模与仿真二.实训目的:1.了解双闭环直流调速系统2.掌握MATLAB软件的使用方法3.使用MATLAB构建双闭环调速系统的仿真模型4.绘制出电流、转速波形曲线三.电机参数:额定电压U=220V 额定电流I=136A 转速n=1500r/min晶闸管装置放大倍数Ks=62.5 电枢回路总电阻Ra=0.863电流反馈系统=0.028V/A 转速反馈系统=0.0041V/(r/min)电流调节器参数Kc=1.15 c=0.028s转速调节器参数Ks=20.12 s=0.092s双闭环直流调速系统与单闭环直流调速系统的区别也是针对控制电路和控制参数。
双闭环直流调速系统包括电流反馈环和转速反馈环两个闭环系统,它比单闭环直流调速系统又增加了一个电流反馈环部分,实现电动机对电流的调节作用。
电流转速双闭环直流调速系统分别采用两个有限幅的PI调节器进行电流环和转速环的调节。
控制电路由给定信号、转速PI调节器、电流PI调节器、限幅器、偏置、反向器、转速反馈、电流反馈等环节构成。
本例中给定值设置为120rad/s。
转速反馈系数设为1,转速PI调节器的比例系数设为40,积分系数设为0.01。
电流反馈系数设为0.25,电流PI调节器的比例系数设为10,积分系数设为0.1 。
四、实验内容:1. 双闭环系统的组成调速系统中设置了两个调节器,分别调节转速和电流。
结构原理图如图1所示,图中符号的意义分别为:ASR-转速调节器;ACR-电流调节器;TG-测速发电机;TA-电流互感器;UPE-电力电子变换器U*n;-转速给定电压;Un-转速反馈电压;U*i-电流给定电压;Ui-电流反馈电压。
2. 转速、电流双闭环调节系统的特点在双闭环调速系统中,若将转速反馈和电流反馈信号同时引入一个调节器的输入端,则两种反馈量会互相牵制,不可能获得理想效果,因此在系统中设置了两个调节器,分别控制转速和电流,并且将两个调节器实行串级连接。
电力拖动实验报告电力拖动实验报告引言:电力拖动是一种利用电能驱动机械运动的技术,广泛应用于工业和交通领域。
本实验旨在研究电力拖动的原理和应用,并通过实际操作验证其效果。
一、电力拖动的原理电力拖动是通过电动机将电能转化为机械能,驱动设备进行运动。
电动机是电力拖动的核心组件,其工作原理基于电流在磁场中产生力矩。
根据电动机类型的不同,电力拖动可分为直流电力拖动和交流电力拖动两种。
1. 直流电力拖动直流电力拖动通过直流电动机实现。
当电流通过直流电动机的线圈时,电动机产生磁场,磁场与永磁体或其他磁体相互作用,产生力矩,从而驱动机械运动。
直流电力拖动具有转速范围宽、可调性好的特点,适用于需要频繁启停和调速的场合。
2. 交流电力拖动交流电力拖动主要通过交流电动机实现。
交流电动机根据转子结构可分为异步电动机和同步电动机。
异步电动机通过电动机的旋转磁场与转子的感应电流之间的相互作用,产生力矩,驱动机械运动。
同步电动机则通过电动机的旋转磁场与转子的磁场之间的相互作用,产生力矩,驱动机械运动。
交流电力拖动具有结构简单、成本低的特点,适用于大功率和长时间运行的场合。
二、电力拖动的应用电力拖动广泛应用于工业和交通领域,为生产和生活提供了便利。
1. 工业应用电力拖动在工业生产中的应用非常广泛。
例如,电动机驱动的输送带可实现物料的自动输送,提高生产效率;电动机驱动的机床可实现零件的自动加工,提高加工精度和效率;电动机驱动的泵和风机可实现流体的输送和通风,满足工艺要求等。
电力拖动在工业生产中的应用不仅提高了生产效率,还降低了劳动强度和能源消耗。
2. 交通应用电力拖动在交通运输中的应用也非常广泛。
例如,电动机驱动的电动汽车和电动自行车可实现零排放和低噪音的交通方式,减少了对环境的污染;电动机驱动的电动列车可实现高速、高效的铁路交通,提高了运输能力和舒适度。
电力拖动在交通运输中的应用不仅改善了交通状况,还促进了可持续发展。
三、实验操作与结果为验证电力拖动的效果,我们进行了一组实验。
实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的1.了解MCL-II电机及控制教学实验台的结构及布线情况。
2.熟悉晶闸管直流调速系统的组成及其基本结构。
3.掌握晶闸管直流调速系统参数及反馈环节测定方法。
二.实验内容1.测定晶闸管直流调速系统主电路电阻R2.测定晶闸管直流调速系统主电路电感L3.测定直流电动机—直流发电机—测速发电机组(或光电编码器)的飞轮惯量GD24.测定晶闸管直流调速系统主电路电磁时间常数Td5.测定直流电动机电势常数Ce和转矩常数CM6.测定晶闸管直流调速系统机电时间常数TM7.测定晶闸管触发及整流装置特性Ud = f (Uct)8.测定测速发电机特性UTG = f (n)三.实验系统组成和工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug 作为触发器的移相控制电压,改变Ug的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
四.实验设备及仪器1.电机导轨及测速发电机、直流发电机2.MCL—01挂箱3.MCL—02挂箱4.直流电动机M035.MEL—03三相可调电阻器(或自配滑线变阻器)6.双踪示波器7.万用表五.注意事项1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。
2.为防止电枢过大电流冲击,每次增加Ug须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。
3.电机堵转时,大电流测量的时间要短,以防电机过热。
六.实验方法1.电枢回路电阻R的测定电枢回路的总电阻R包括电机的电枢电阻Ra,平波电抗器的直流电阻RL和整流装置的内阻Rn,即R=Ra+RL+Rn为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图2-1所示。
将变阻器RP(可采用两只900Ω电阻并联)接入被测系统的主电路,并调节电阻负载至最大。
电力拖动实验报告电力拖动实验报告引言:电力拖动是一种利用电力驱动机械设备运转的技术,广泛应用于工业生产和交通运输领域。
本实验旨在通过搭建一个简单的电力拖动系统,探究电力拖动的原理和应用。
一、实验装置和原理实验装置由电源、电动机、传动装置和负载组成。
电源提供电能,电动机将电能转化为机械能,传动装置将机械能传递给负载,实现运动。
1. 电源:本实验采用直流电源,通过调节电压和电流大小,控制电动机的输出功率。
电源的稳定性和安全性对实验结果具有重要影响。
2. 电动机:电动机是实验中的核心部件,将电能转化为机械能。
根据实验需求,我们选择了直流电动机。
电动机的转速和输出扭矩可以通过调节电源电压和电流来控制。
3. 传动装置:传动装置将电动机的旋转运动转化为负载的线性或旋转运动。
常见的传动装置包括齿轮传动、皮带传动和链条传动等。
实验中,我们选择了齿轮传动作为传动装置。
4. 负载:负载是电力拖动系统中被驱动的设备或机械部件。
在实验中,我们可以通过改变负载的阻力大小来观察电动机的运行情况。
二、实验步骤和结果分析1. 实验步骤:(1)连接电源和电动机,确保电路连接正确并稳定。
(2)调节电源电压和电流,使电动机转速适中。
(3)观察电动机的运行情况,记录转速和输出扭矩。
(4)改变负载的阻力大小,观察电动机的运行情况。
2. 结果分析:通过实验观察和数据记录,我们得出以下结论:(1)电动机的转速与电源电压和电流成正比,输出扭矩与电流成正比。
这说明电动机的运行速度和输出功率可以通过调节电源的电压和电流来控制。
(2)当负载阻力增大时,电动机的转速下降,输出扭矩增大。
这是因为负载阻力增大会使电动机需要更大的力矩来克服阻力,从而降低转速。
三、电力拖动的应用电力拖动技术在工业生产和交通运输领域有着广泛的应用。
以下是几个常见的应用案例:1. 工业生产:电力拖动技术在工厂生产线上广泛应用,如机械加工、装配线、输送带等。
通过电力拖动,可以实现设备的自动化和高效运作,提高生产效率。
交流传动机车牵引与控制实训报告交流传动机车牵引与控制实训报告一、实训目的本次实训旨在通过对交流传动机车牵引与控制系统的学习与实践,使学生掌握交流传动机车的基本原理、牵引与控制系统的结构和工作原理,以及相关故障排除方法。
二、实训内容1. 交流传动机车牵引系统1.1 交流传动机车的基本原理在交流传动机车中,电能由接触网供给给主变压器,经过变压器升压后再供给给牵引变流器。
通过牵引变流器将直流电转换为交流电,进而驱动牵引电机工作。
同时,通过对电源频率和相位的调节,可以实现对机车速度和力矩的精确控制。
1.2 牵引变流器牵引变流器是交流传动机车中最关键的部件之一。
它负责将直流电转换为可调频率、可调幅度的交流电,并将其供给给牵引电机。
通过改变输出频率和幅度,可以实现对机车速度和力矩的精确控制。
2. 交流传动机车控制系统2.1 控制系统结构交流传动机车的控制系统主要由牵引控制器、制动控制器和辅助控制器组成。
其中,牵引控制器负责对牵引电机的频率和幅度进行调节,从而实现对机车速度和力矩的控制;制动控制器则负责对机车进行刹车操作;辅助控制器则用于监测和保护机车各个部件的工作状态。
2.2 控制系统工作原理交流传动机车的控制系统通过接收驾驶员输入的指令,经过处理后输出给牵引变流器和制动系统,从而实现对机车速度和力矩的精确调节。
在运行过程中,控制系统还会不断监测各个部件的工作状态,并根据需要进行相应的保护操作。
3. 故障排除方法在实际运行中,交流传动机车可能会出现各种故障。
为了能够及时准确地排除故障,我们需要熟悉常见故障的表现以及相应的排除方法。
常见故障包括但不限于:牵引电机过热、电源供应异常、牵引变流器故障等。
针对不同类型的故障,我们需要采取不同的排除方法,以确保机车的正常运行。
三、实训过程1. 理论学习在实训开始前,我们首先进行了相关的理论学习。
通过教师的讲解和课堂讨论,我们了解了交流传动机车的基本原理、牵引与控制系统的结构和工作原理,以及常见故障的排除方法。
直流电机驱动电路设计摘要:在自动控制中,计算机控制一直成为人们的关注焦点,但控制的实现还得借助电子控制器来实现,其中电机的驱动是一个最为普遍的问题。
本文所给出的直流电机驱动电路相当直观,直流电机的驱动比较简单,既可通过继电器或功率晶体管驱动,也可利用可控硅或功率型MOS场效应管驱动。
此课程设计目的在于驱动较大功率直流电动机,解决驱动电路发热,功率不足的问题。
驱动目标在于能够实现直流电机的正反转,快慢调速,启动停止等。
关键词:直流电机,正反转调速,MOS管,H桥,单片机目录一、引言................................ 错误!未定义书签。
二、直流电机的优势及总体方案............ 错误!未定义书签。
三、功能模块............................ 错误!未定义书签。
一、电源模块 (6)二、控制模块 (8)三、驱动模块 (10)四、测试调试分析 (11)一、程序及仿真 (12)二、软件设计 (14)五、参考文献 (15)六、附录 (16)1、pcb图 (18)2、备用驱动程序 (18)七、实验总结 (19)第一章引言在电气传动领域中,随着各项技术水平的不断提高,使得传统工艺有了深层次的提高,对人类的生产与生活,产生了深刻且深远的影响,已经与我们息息相关。
由于直流电动机具有良好的起动、制动性能,适宜在大范围内平滑调速,因此在许多需要调速或快速正反向的电力拖动系统中得到了广泛的应用。
而且,从控制的角度来看,直流调速还是交流调速,都用到拖动系统的基础。
随着单片机技术的日新月异,使许多控制功能及算法可以采用软件技术来完成,不但为直流电动机的控制提供了更大的灵活性,而且使系统能达到了更高的性能,从而大大节约了人力资源,降低了系统成本,有效地提高了工作效率。
单片机具有小巧灵活、成本低、易于产品化、可靠性好、适应温度范围宽、易扩展、控制功能强等优点,用单片机取代模拟电路作为电动机的控制器,使电路更简单,模拟电路为了实现控制逻辑需要许多电子元件,使电路复杂,使用单片机微处理器后,绝大多数控制逻辑可通过软件实现可以实现较复杂的控制,单片机有更强的逻辑功能,运算速度和精度高、有大容量的存储单元,因此有能力实现复杂的控制灵活性和适应性强,单片机的控制方式是由软件完成的,如果需要修改控制规律,一般不必改变系统的硬件电路,只需修改程序即可,在系统调试和升级时,可以不断尝试选择最优参数,非常方便无零点漂移,控制精度高、数字控制不会出现模拟电路中经常遇到的零点漂移问题,无论被控量的大小,都可以保证足够的控制精度可提供人机界面,多机联网工作等优点。
一、实验题目:基于DSP的异步电机恒压频比控制的调速系统二、实验内容:1.熟悉交-直-交变频调速系统的整个实物模型;特别是中间直流环节到逆变器,再到异步电机转动的具体过程。
2.在恒压频比控制下,分别观测空载时的定子磁链的波形、转速和转矩的关系波形,负载时的启动转矩和到达平稳时的转矩波形、转矩和电流的关系波形等,并对结果进行分析。
三、实验系统组成及工作原理:本实验系统利用TI公司的32位高性能DSP最新产品TMS320F2812作为控制核心芯片,要求学生自己编程控制电机。
控制信号出DSP后经过74HCT240加强驱动能力,进入驱动箱分C、G、E三线进IGBT箱。
主电路由三相电经调压器和整流变压器后进入整流器,然后进支撑电容、IGBT、电机。
在交流变频调速系统中,恒压频比控制是最常用的一种变频调速控制方法。
该方法是通过使V/f恒定,从而使磁通保持不变,并通过控制转差频率来控制电机的转矩和转速。
采用恒压频比的转速闭环控制,可得到平滑而稳定的调速,获得较高的调速范围。
该方法由于实现简单、稳定可靠,调速方便,在一些对动态性能要求不太高的场合如对通风机、水泵等的控制,恒压频比控制是首选的控制方式。
通常在恒压频比控制中采用空间电压矢量脉宽调制技术SVPWM,它能用逆变器不同的开关模式产生的实际磁通去逼近基准磁通圆,不但能达到较高的控制性能,而且由于它把逆变器和电机看作一个整体处理,所得模型简单,便于数字化实现,并具有转矩脉动小、噪声低、电压利用率高等优点。
电机的速度由装在电机轴上的光电码盘检测并计算得到。
光电码盘测得位置角信号转换成两路正交脉冲信号A和B,直接送入到DSP的QEP单元(正交编码脉冲单元)。
经译码逻辑单元产生4倍频的脉冲信号CLK。
GPT2中的T2CNT记下在一个采样周期内码盘输出的脉冲数。
若光电编码器的位置分辨率为每转个脉冲,那么电机转子在一个采样周期内转过的 角位移为:242c c M e e N N N N πθπ∆== 则转速为:2c M M M e MN T N T πθω∆==。
实验二交流电力牵引系统实验一.实验目的1.了解交流传动系统的结构,调速特性及其对电网的影响;2.了解脉冲整流器的原理和控制方法;3.了解交流牵引系统牵引和制动原理和不同的控制方法;4.了解交流传动控制系统的设计方法和实验方法;5.了解交流传动和直流传动的优点。
二.实验内容1.脉冲整流器和逆变器牵引和制动原理验证;2.交流传动系统对电网的谐波和无功污染分析;三.实验原理及线路1.交直交牵引传动系统工作原理交直交牵引传动系统原理图如图2-1所示。
LC图2-1 交直交牵引传动系统原理图从图中可见,交直交牵引传动系统主要由整流器、逆变器和中间直流环节三大部分组成。
整流器为脉冲整流器(也称四象限整流器),作用是将输入的交流电转换为直流,同时通过控制脉冲整流器的输入侧电压,使输入脉冲整流器的电流与电网电压同相位,达到整个系统的功率因数为1的目的,从而使整个交直交牵引控制系统满足电网谐波和功率因数的要求。
中间储能环节为电容储能,为逆变器提供支撑直流电压,此类型的交直交牵引传动系统也叫做电压型交直交牵引传动系统。
逆变器为三相电压型逆变器,采用矢量控制方法,将直流电变换成电压和频率均可调的交流电,为感应电机供电,实现电机的各种工况的运转。
详细工作原理见教材相关章节。
2.实验线路交直交牵引传动系统电气系统原理图如图2-2所示。
包括:配电柜、控制台、交直交传动柜和电动机组。
配电柜为整个实验系统提供主电路、辅助电路电源及控制电源。
交直交传动柜和交流电动机共同完成交流传动的模拟控制,控制台完成对交直交传动柜的控制。
在控制台内设有中央控制单元CCU,在交直交传动柜内设有交流传动控制单元DCU2,这两个单元构成整个交直交实验系统的控制网络。
控制网络采用MODBUS 现场总线。
图2-2 交直交牵引传动系统电气系统原理图CCU-中央控制单元 DCU2-交流传动控制单元具体的实验线路主电路和交流辅助电路如图2-3所示。
主电路采用电压型交直交变频电路,包括脉冲整流器U1,牵引逆变器U2,中间储能环节——支撑电容C1~C4,三相感应电动机M以及连接电抗器UL1等。
实验报告册专业:班级:姓名:学号:课程:电力传动控制系统实验项目名称: 开环直流调速系统的仿真实验 实验时间:5-13—5-20 同组人:实验报告评分:一、预习报告(实验课前了解实验目的,预习实验原理、实验步骤):1、实验目的(简述):1. 掌握开环直流调速系统的原理;2. 掌握利用simulink 编程进行仿真的方法。
2、实验原理(简述):直流电动机的转速方程为:a aeU RI n C -=Φ (1)从转速方程可以看出,调节电枢供电电压U a 即可实现调速,这种调速方法的优点是既能连续平滑调速,又有较大的调速范围,且机械特性也很硬。
开环直流调速系统的电气原理图如图1.1所示。
三相晶闸管桥式整流电路经平波电抗器L 为直流电动机电枢供电,通过改变触发器移相控制信号U c ,可以调节晶闸管的触发角α,从而改变整流电路的输出电压平均值U d ,实现直流电动机的调速。
1-5 V-M 系统的结构示意图AC~图1.1 开环直流调速系统电气原理图开环直流调速系统数据直流电动机额定参数:U N=220V,I N=136A,n N=1460r/min,四极,R a=0.21Ω,GD2=22.5N·m2。
励磁电压U f=220V,励磁电流I f=1.5A。
三相桥式整流器内阻为R rec=0.5Ω。
平波电抗器L d=20mH。
3、实验步骤:1.掌握直流电动机调压调速的原理。
2.分析三相桥式整流电路中触发角α与输出直流电压平均值之间的关系。
3.根据开环直流调速系统电气原理图,编制Simulink实验程序,上机调试,记录结果。
4.分析实验结果,完成书面实验报告,并完成相应的思考题。
二、实验数据(记录相应的表格或图表):1、实验数据表格:1)设置模块参数①供电电源电压②电动机参数励磁电阻:励磁电感在恒定磁场控制是可取“0”。
电枢电阻:电枢电感由下式估算:电枢绕组和励磁绕组互感:因为所以电动机转动惯量③额定负载转矩④模型参考数见表1—1表1.2直流电动机开环调速系统模型参数2)设置仿真参数:仿真算法ode15a,仿真时间1.5S,电动机空载启动,启动0.5s后加额定负载T L=171.4N.m2、实验图表:1)直流电动机开环调速系统仿真图如下图1.32)启动仿真并观察结果:仿真的结果如图1.3所示。
交直流调速系统综合实验报告姓名:班级:学号:设计题目: PWM 直流电源驱动的双闭环直流调速仿真实验时间: 2016年 7月17日综合实验成绩:交直流调系统综合实验课程设计任务书一、基本数据在本实验的双闭环直流调速系统中,直流电机的参数为额定功率(Kw):学生学号*2额定电压:200V额定转速:1000r/min空载转速:1100r/min转动惯量:学号*0.05kg·m2母线电压:300V变流器:采用H桥,双极可逆PWM驱动;开关频率为10KHz;二、计算以下参数已知忽略主电路中除电枢绕组以外的电机电阻和电感;转动惯量: GD2=0.05kg·m*17=0.85kg·m2;飞轮惯量: GD2=0.05kg·m*17*4*9.8=33.32kg·m2;电流滤波器时间常数: Toi=0.4ms;转速滤波器时间常数: Ton=1ms;额定功率: PN =17*2=34KW;额定电压: UN=200V;电磁时间常数: Tl=Ta=0.011s;ASR的限幅值: Uim=10V;ACR的限幅值: Uctm=10V;求得额定电流: IN=934A;反电动势系数: Ce=0.182;转矩系数: CM=9.55*0.182=1.74;电流反馈系数:α=1;转速反馈系数:β=1;电枢绕组电阻: Ra=0.01927 Ω;电枢绕组电感: La=Ra*Tl=0.000212H;整流器平均失控时间:Ts=0.00005s;机电时间常数: Tm=0.00549s;整流器的放大倍数: Ks=17;电流环合并处理: T∑i =Ts+Toi=0.00045s;三、系统框图本仿真实验所涉及的双闭环调速系统的控制系统框图如图1所示。
图1 双闭环调速系统的控制系统框图在控制系统中,转速调节器是调速系统的主导调节器,它使转速n很快地跟随给定电压变化,稳态时可减小转速误差,使用PI调节器,则可实现无静差;对负载变化起抗扰作用;其输出限幅值决定电机允许的最大电流。
六:实验报告
1:列写SPWM控制时,在不同输出频率条件下所测量的各种波形和电机工作情况
SPWM 30HZ 同步调制
CH1=20.0mv CH1/23.2mv CH1=50.0mv CH1/314mv CH1=200mv CH1/1.15v
SPWM 30HZ 异步调制
CH1=20.0mv CH1/124mv CH1=200mv CH1/1.12v CH1=5.00v CH1/31.4v
SPWM 30HZ 混合调制
CH1=10.0mv CH1/62.8mv CH1=100mv CH1/628mv CH1=100mv CH1/31.2v 2:列写电压空间矢量控制时,在不同输出频率条件下所测量的各种波形和电机工作情况
SVPWM 50HZ 同步调制
CH1=10.0mv CH1/62.8mv CH1=10.0mv CH1/31.2v CH1=5v CH1/27.4v
SVPWM 50HZ 异步调制
CH1=10.0mv CH1/62.8mv CH1=100mv CH1/560mv CH1=5.00v CH1/27.2v
SVPWM 50HZ 混合调制
CH1=10.0mv CH1/62.8mv CH1=50.0mv CH1/27.2v CH1=5.00v CH1/27.2v
SVPWM 30HZ 同步调制
CH1=10.0mv CH1/65.2mv CH1=50.0mv CH1=100mv CH1/652mv
SVPWM 30HZ 异步调制
CH1=10.0mv CH1/65.2mv CH1=50.0mv CH1/326mv CH1=5.00v CH1/27.2v
SVPWM 30HZ 混合调制
CH1=20.0mv CH1/130mv CH1=50.0mv CH1/326mv CH1=5.00v CH1/27.2v
3.调节低频补偿度,列出电机能均匀旋转的最低工作频率。
0.2Hz,0.12Hz
4.SPWM控制,电压空间矢量控制,不同调制方式时的电机气隙磁通轨迹,定子电流及电机平稳性与噪声比较。
电压空间矢量控制与SPWM控制相比较,电机气隙磁通轨迹,效果更加的明显,电机更加的平稳,噪声更小。
同步调制,异步调制,混合调制定子电流越来越小,电机越来越平稳,噪声越来越小。
七.思考题
1.低频时定子压降的补偿度是否越大越好?过大了会造成何种不良结果?应该如何调节才算恰到好处?
不是越大越好。
端电压提高过大,会使转矩过大,使得磁通太强,使铁芯饱和,导致励磁电流过大,严重时因绕组过热会孙桓电机。
2.SPWM控制主要着眼于使逆变器输出电压尽量接近正弦波,那么电压空间矢量控制的目标是什么?它与SPWM控制相比,有哪些特点?
SVPWM的目标是电动机空间形成圆形旋转磁场,能产生恒定的电磁转矩。
在每个小区间虽然有多次开关切换,但但是每次开关切换仅涉及一个器件,所以开关损耗小;利用SVPWM直接生成三相PWM波,计算简单;逆变器输出电压基波最大值比PWM的输出电压高15%。
3.设单相输入的交-直-交变频调速系统的直流母线电压为310V,按SPWM控制时电机线电压的最大值为几伏?如要达到电机线电压为220V有否可能?如何实现?
电机线电压最大值=0.612*310=189.72V
母线电压为220/0.612=360V
通过调节SVPWM的载波比来实现,就是对电路的开关器件进行通断时间控制。