基于模拟电路的温度控制系统
- 格式:doc
- 大小:974.00 KB
- 文档页数:22
基于STM32单片机的温度控制系统设计一、本文概述本文旨在探讨基于STM32单片机的温度控制系统的设计。
我们将从系统需求分析、硬件设计、软件编程以及系统测试等多个方面进行全面而详细的介绍。
STM32单片机作为一款高性能、低功耗的微控制器,广泛应用于各类嵌入式系统中。
通过STM32单片机实现温度控制,不仅可以精确控制目标温度,而且能够实现系统的智能化和自动化。
本文将介绍如何通过STM32单片机,结合传感器、执行器等硬件设备,构建一套高效、稳定的温度控制系统,以满足不同应用场景的需求。
在本文中,我们将首先分析温度控制系统的基本需求,包括温度范围、精度、稳定性等关键指标。
随后,我们将详细介绍系统的硬件设计,包括STM32单片机的选型、传感器和执行器的选择、电路设计等。
在软件编程方面,我们将介绍如何使用STM32的开发环境进行程序编写,包括温度数据的采集、处理、显示以及控制策略的实现等。
我们将对系统进行测试,以验证其性能和稳定性。
通过本文的阐述,读者可以深入了解基于STM32单片机的温度控制系统的设计过程,掌握相关硬件和软件技术,为实际应用提供有力支持。
本文也为从事嵌入式系统设计和开发的工程师提供了一定的参考和借鉴。
二、系统总体设计基于STM32单片机的温度控制系统设计,主要围绕实现精确的温度监测与控制展开。
系统的总体设计目标是构建一个稳定、可靠且高效的环境温度控制平台,能够实时采集环境温度,并根据预设的温度阈值进行智能调节,以实现对环境温度的精确控制。
在系统总体设计中,我们采用了模块化设计的思想,将整个系统划分为多个功能模块,包括温度采集模块、控制算法模块、执行机构模块以及人机交互模块等。
这样的设计方式不仅提高了系统的可维护性和可扩展性,同时也便于后续的调试与优化。
温度采集模块是系统的感知层,负责实时采集环境温度数据。
我们选用高精度温度传感器作为采集元件,将其与STM32单片机相连,通过ADC(模数转换器)将模拟信号转换为数字信号,供后续处理使用。
题目二PN结测温与模拟温度控制系统
1、设计要求
1.1 利用1N4148正向压降随温度线性变化的特性,测量温度并显示,精度0.5℃
1.2 通过键盘输入设定值,在温度的可控范围内控制功率电阻发热使之附近温度维持在设定温度
1.3 可以存储达到过的最高温度
2、要解决的关键问题及技术关键
2.1模拟量的采集调理,实现温度的测量。
2.2通过键盘输入设定值,在温度的可控范围内控制功率电阻发热使之附近温度维持在设定温度
2.3显示设定温度值和实际测量温度值。
2.4温控采用采用PID(比例积分微分调节器)+ PWM。
2.5 模拟加热可以采用图1电路,在PCB设计时1N4148贴近发热电阻即可。
3、解决途径
利用1N4148与电阻组成测温电桥,将电桥输出的差分电压送入三运放组成的仪表运放放大调理,再于A/D接口,利用单片机处理数据后显示。
采用PID算法与PWM控制结合的方式实现温度控制。
留出电桥输出端口,放大器输出端口,以便评估设计的模拟电路。
该电路可以用来模拟加热的过程,若IN处为
电平,则8550的e极导通,忽略管压降不计,流
过电阻电流I = 5/(5.1 + 5.1) = 0.5A,对于这样的
测量系统来说,这是很大的一个电流量。
经试验,
电阻发热量很大,在IN输输入PWM波即可实验
调温。
在测试的时候要注意供电电源的带负载能
力。
图1。
控制tec的最佳方法【实用版4篇】《控制tec的最佳方法》篇1TEC(温度控制系统) 是一种用于控制温度的系统,通常用于激光器、光学设备、电子设备等领域。
以下是几种控制TEC 的方法:1. 模拟控制:使用模拟电路或数字电路来控制TEC。
这种方法通常需要对TEC 的特性进行建模,然后使用控制器来调整TEC 的温度。
模拟控制方法的优点是成本低,但需要更多的技术来实现。
2. PID 控制:PID 控制是一种常见的控制方法,它使用比例、积分和微分控制器来调整TEC 的温度。
这种方法可以很快地响应温度变化,但需要更多的计算资源。
3. 模糊控制:模糊控制是一种基于模糊逻辑的控制方法,它使用模糊逻辑来控制TEC 的温度。
这种方法的优点是可以处理非线性系统,但需要更多的技术来实现。
4. 神经网络控制:神经网络控制是一种基于神经网络的控制方法,它使用神经网络来控制TEC 的温度。
这种方法的优点是可以处理复杂的非线性系统,但需要更多的计算资源。
在实际应用中,选择合适的控制方法取决于TEC 的特性、应用场景和成本等因素。
《控制tec的最佳方法》篇2TEC(Thermoelectric Cooler) 是一种半导体制冷器,它可以通过施加电流来调节其温度。
要控制TEC 的温度,最佳的方法是使用一个温度控制器和一些软件算法。
以下是一些控制TEC 的步骤:1. 确定TEC 的热特性:了解TEC 的热特性,包括其热容量、热导率和珀尔帖效应等,可以帮助你更好地控制其温度。
2. 选择一个温度控制器:选择一个可以控制TEC 温度的控制器。
这些控制器通常可以使用PID 控制算法来控制TEC 的温度。
3. 编写软件算法:使用软件算法来控制TEC 的温度。
这些算法可以根据TEC 的热特性和控制器的输出来计算所需的电流和温度。
4. 进行实时控制:将控制器和软件算法连接到TEC 上,并进行实时控制。
根据TEC 的温度和目标温度,控制器可以自动计算所需的电流,并通过软件算法来控制TEC 的温度。
基于单片机的温度控制系统摘要:该实验设计基于飞思卡尔MC9S12DG128开发板平台,根据实验任务要求,完成了水温自动控制系统的设计,该系统的温度给定值可由人工通过键盘进行设定,测量温度经过A/D转换由数码管显示,通过PID控制算法对温度进行调节,使温度输出值在给定值上下波动,控制该系统的静态误差为1℃,用LED灯模拟加热强度,并用串口将输出的水温随时间的变化数值发到PC机上。
关键字:飞思卡尔单片机水温控制MC9S12DG1281、设计题目与设计任务σ≤;3.温度误要求:1温度连续可调范围是30-150摄氏度;2 超调量20%<±;4尝试使用能预估大滞后的方法,如史密斯预估,或大林算法;也可差0.5用PID及改进算法。
内容:1.根据题目的技术要求,画出系统组成的原理框图;2. 给出系统硬件电路图;3.确定温度控制方案;4. 给出控制方法及控制程序;5.整理设计数据资料,课程设计总结,撰写设计计算说明书。
2、前言:随着电子技术和计算机的迅速发展,计算机测量控制技术拥有操作简单、控制灵活、使用便捷以及性价比较高的优点,从而得到了广泛的应用。
单片机是一种集CPU、RAM、ROM、I/O接口和中断系统等部分于一体的器件,只需要外加电源和晶振就可以实现对数字信息的处理和控制,因此,单片机广泛应用于现代工业控制中。
利用单片机对温度测量控制会大大提高系统的可靠性和准确性。
该设计实验是在实验室完成,实验任务是设计制作一个水温自动控制系统,控制对象为1L净水,容器为搪瓷器皿。
水温由人工通过4*4的键盘设定,并能在环境温度改变时实现对水温的自动控制,采用PWM技术控制电阻丝的加热,加热强度由8个LED小灯模拟,以保持设定的温度基本不变,测量温度经过A/D 转换在4位数码管上显示(保留一位小数),并将温度每秒钟向计算机发送一次。
一、系统设计的功能该系统的闭环控制系统框图如图所示。
图水温控制系统结构框图单片机对温度的测量控制是基于传感器、A/D转换器以及扩展接口和执行机构来进行的。
基于FPGA的智能温度控制系统是一种集成了数字逻辑、模拟电路和控制算法的智能化设备,通过对温度传感器采集的数据进行实时处理和分析,实现对温度控制设备的智能控制。
本文将介绍基于FPGA的智能温度控制系统的设计方案,并详细阐述系统的原理、结构和实施步骤。
一、设计原理基于FPGA的智能温度控制系统的设计原理主要包括数据采集、数字信号处理和控制策略实施三个方面。
系统通过温度传感器采集环境中的温度数据,经过FPGA进行数字信号处理和控制算法的运算,最终控制温度调节设备的工作状态,以实现温度的精准控制。
二、系统结构1. 传感器模块:包括温度传感器、模拟信号采集电路等,用于采集环境温度数据并转换为数字信号。
2. FPGA芯片:作为系统的核心处理器,负责接收传感器数据、进行数字信号处理和实施控制算法。
3. 数字模拟转换模块:将采集到的模拟信号转换为FPGA可处理的数字信号。
4. 控制执行模块:通过数字信号输出控制温度调节设备,如加热器或制冷器。
5. 显示模块:用于显示当前温度、设定温度和系统状态等信息。
三、系统功能1. 温度采集:实时采集环境温度数据,并进行数字化处理。
2. 控制策略:根据设定的温度范围和控制算法,实现对温度调节设备的精准控制。
3. 实时监测:实时显示环境温度、设定温度和控制设备状态,并可以通过外部接口进行数据传输。
4. 报警功能:当环境温度超出设定范围时,系统能够发出报警信号。
四、实施步骤1. 传感器接入:将温度传感器连接至FPGA的模拟输入引脚,通过模数转换电路将模拟信号转换为数字信号。
2. FPGA程序设计:编写FPGA程序,包括数字信号处理、控制算法和外部接口的设计。
3. 硬件连接:按照设计需求,将FPGA芯片、传感器模块、控制执行模块和显示模块等连接至一块PCB板上。
4. 系统调试:将控制系统连接至温度调节设备,进行系统调试和测试,验证系统功能和稳定性。
5. 性能优化:根据测试结果对控制算法和硬件电路进行优化,提高系统的响应速度和稳定性。
本科生毕业设计 (论文) 题目:温度控制电路教学单位电气信息工程学院 _姓名 _ ______ ___学号_____年级 ___2005级_________ _专业 ___电子信息工程_____指导教师 ___职称 ___完稿时间温度控制电路设计摘要在电子技术飞速发展的今天,测量控制技术已经涉及到军事和工业的各个环节,并越来越多的受到人们的重视。
传感器的出现,使得人们生产生活方式发生了重大变化,使得科学实验和应用工程的自动化程度发生了巨大改变。
温度是工业生产科学研究等行业中相当重要的参数之一,温度控制在各个行业中都是相当重要的一个环节对人们生活生产起着重大作用。
温度控制的关键在于测温和控制两个方面。
温度测量是温度控制的基础。
论文主要讨论了基于模拟电路的温度控制电路,该电路通过精密摄氏温度传感器LM35测量温度将温度比较转化为电压比较的方法来达到控制的目的。
本文介绍了该控制电路的原理,温度信号的采集电路,去干扰电路,功率放大电路,模数转换及显示电路,LM35的原理、电压比较器的工作原理。
关键词:温度控制温度测量LM35应用电压比较器Design of temperature control circuitAbstractIn electronic technology rapid development today,the electronic observations and control technology research and the project apply by spread the military and industrial production each department and more and more many is valued by people. The electronic observation and control technology appearance, caused traditional the electronic surveying in the principle, the function, the precision and the automaticity has had huge change, caused the scientific experiment and the application project automaticity can obviously enhance.Temperature is one of important parameters in industrial production and scientific experiment course. In metallurgy, machinery, material, chemical engineering, petroleum and the course of heat treatment, the control effect for temperature directly affects service life and the quality of product. Therefore temperature control is the technology of a key in every field.The key of temperature control lies control .Temperature measure is that the more in two aspects of to measure and to technical comparison of this respect and the foundation of temperature control ripen.It presents the designing of the analog circuit on LM35 temperature sensor and the editing and the debugging of the whole temperature control circuit .In this paper, it interview the principle of the temperature control circuit, temperature measure circuit, anti-jamming circuit, frequency power arnplifier and RAMDAC the theory of LM35 chip and voltage comparator.Keyword: Temperature control Temperature measure LM35 application V oltage comparator目录摘要绪论 (6)1温度控制电路 (7)1.1 设计要求 (7)1.2 方案选择与论证 (7)2基于模拟电路的温度控制电路2.1温度信号检测及显示部分2.2温度控制部分2.3所用器件介绍2.3.1 LM35精密集成电路温度传感器2.3.2 三位半LED显示A/D转换器ICL71073 温度信号的检测和信号调整 (11)3.1温度侧量及信号调理电路的设计3.1.1选用合适的传感器3.1.2设计信号调整电路3.3温度测量的误差分析4 温度控制系统的设计 (19)4.1 控制系统4.2 电压比较技术 (21)5 显示电路的设计 (28)5.1 显示电路原理 (28)5.2 显示电路设计 (28)6总结 (29)6.1干扰分析6.2总结与改进参考文献 (29)附录A:系统原理图与pcb版图 (35)致谢绪论在钢铁、机械、石油化工、电力、等工业生产中,温度是极为普遍又极为重要的热工参数之一;随着科学技术和生产发展,需要对各种参数进行测量,温度是工业对象中主要的被控参数之一.在冶金工业,化工生产,电力工程,机械制造和食品加工等许多领域中,人们都需要对各种环境中的温度进行检测和控制,温度控制对于大型工业和日常生活用品等工程都具有广阔的应用前景.例如冶金工业中的炼钢炉温度控制、化工生产中的培养皿温度控制、食品加工车间的温度控制等。
水温控制系统摘要该设计要完成的是水温控制系统的设计,实现满足题目要求的水温实时控制系统的测量。
主要运用了模拟电子技术基础中的比例放大器、电压比较器、二极管等知识。
外界温度通过温度传感器LM35转换为模拟信号,经过放大器放大十倍后用比较器与基准电压比较,从而控制加热电路的通断,实现对水温的控制。
该设计实现了温度的测量和水温的控制,使得当水温高于设定的温度时停止加热,低于给定温度时开始加热,做到了实时控制,具有良好的应用性。
关键词:比例放大器;温度传感器;电压比较器;继电器目录1 前言.................................................................... 12 统设计原理............................................................... 12.1 水温控制的基本思路................................................. 12.2 水温控制原理....................................................... 23 设计方案与认证.......................................................... 23.1 总体设计方案....................................................... 23.2各部分电路方案认证.................................................. 23.2.1温度传感器..................................................... 23.2.2 比例放大器................................................... 43.2.3 电压比较器.................................................... 63.2.4 继电器........................................................ 73.2.5 加热部分...................................................... 94 电路的仿真与调试....................................................... 104.1 电路的仿真....................................................... 104.2电路的调试........................................................ 105 电路的特点及改进....................................................... 106 课程设计总结及心得体会................................................. 11参考文献.................................................................. 12 附录Ⅰ元件清单.......................................................... 13 附录Ⅱ整体电路图......................................................... 14第一章前言在日常生活中通过水温控制来给人们带来舒适的,方便的生活同,例如刚在外工作回家的男人一定会很疲倦了,如果能够洗个热水澡,那真是非常好的事情了,这样能够让一天的疲惫随着温热的流水带走了,家庭言主妇为家人煮一个热喷喷的汤水,煮好以后就这样放着也会变凉的,如何保持温的恒定呢?这就需要水温控制系统了。
[导读]温度控制系统被广泛应用于工业、农业、医疗等行业的仪器设备中,目前应用最多的是单片机或微机系统设计的温度控制系统。
温度控制系统被广泛应用于工业、农业、医疗等行业的仪器设备中,目前应用最多的是单片机或微机系统设计的温度控制系统。
系统硬件部分由输人输出接口、中央处理单元、A/D 转换、定时计数等集成模块组成,系统软件部分需要用运算量大的PID算法编程实现,整套控制系统设计及实现较为复杂和繁琐。
由分立元件组成的模拟型电路信号输入、放大、运算及控制输出都由硬件电路完成,不需要软件设计。
与数字电路相比,其设计及实现过程更为简便,所以采用简易实用的模拟电路实现温控电路的设计。
1 温控总电路组成温控电路主要由电源部分、温度检测元件、信号放大、比例积分、电压比较、移相触发控制继电器、超温保护、加热炉和LED显示几部分组成,其电路结构如图1所示。
图1 温控系统电路组成图由温度检测元件可以检测到温度值信号,该信号经过放大后输送至比例积分电路并与温度设定电压比较,比较结果输送至相触发电路产生可变周期的脉冲以触发固态继电器中可控硅导通角,从而可控制加热装置的加热功率,达到控制温度的目的。
温度补偿电路减少室温对温度测量准确度的影响;超温保护电路可以保证在加热温度超过设定值时,装置停止加热,起到保护设备的作用。
2 各分电路设计2.1 电源电路温控电路中需要直流电压的器件为运算放大器及电子信息显示模块。
该电压由220V交流电压经整流滤波后加。
至三端稳压器输出得到。
其电路如图2所示。
图2 电源电路图2.2 输入温度信号放大及温度补偿电路用感温元件镍硌一镍铬K型热电偶作温度传感器来采集温度信号,温度信号为mV级,实际测量时需经过放大处理。
热电偶测量温度信号受工作端温度和自由端环境温度影响,所以测量中需要加补偿信号消除环境温度变化对温度测量的影响。
具体电路如图3所示。
图3 信号放大及温度补偿电路2.3 超温保护电路以将功率为60 w将加热装置加热至750℃为例,图3中温度信号经过放大100倍后加到比例积分电路并与温度设定电压比较,比较结果输送相触发电路产生可变周期脉冲以触发固态继电器。
温度控制系统设计总结温度控制系统设计总结温度控制系统设计是现代工程中一个非常关键的方面,它对于保持产品质量、降低能源消耗以及提高工作环境的舒适度都起着重要作用。
在本文中,我们将对温度控制系统设计的关键要素进行总结,包括传感器选择、控制器设计、执行器选择以及系统调试。
首先,传感器选择是温度控制系统设计中的第一步。
精确且可靠的温度传感器对于系统的性能至关重要。
在选择传感器时,可以考虑使用热电偶、热敏电阻或红外线传感器等。
同时,传感器的安装位置也需要谨慎选择,以便准确地测量温度,并避免外部干扰。
其次,控制器设计是温度控制系统设计中的关键环节。
控制器可以基于模拟电路、数字电路或者嵌入式系统设计。
在选择控制器时,需要考虑温度范围、精度要求以及控制算法等因素。
控制器还需要能够与其他系统进行通信,如显示器和数据记录设备等。
接下来,选择合适的执行器也是设计中需要考虑的因素之一。
执行器可以是电热器、风扇、空调系统或者冷却液泵等。
在选择执行器时,需要根据实际需求和温度变化速度来确定执行器的能力和反应时间。
最后,进行系统调试是确保温度控制系统正常工作的重要步骤。
调试过程包括温度校准、控制算法参数调整以及系统稳定性测试等。
同时,还需要测试系统的响应速度和控制精度,以确保系统能够在设定的温度范围内稳定运行。
总之,温度控制系统设计需要综合考虑传感器选择、控制器设计、执行器选择以及系统调试等多个因素。
合理选择和设计这些要素,可以确保系统能够稳定、精确地控制温度,提高产品质量和工作环境的舒适度。
通过不断优化和改进设计,温度控制系统的性能将得到进一步提升,为工程项目的成功实施提供有力的支持。
基于AT89C52的温度控制系统设计摘要本课题介绍了基于AT89C52单片机的温度控制系统的硬件电路组成和软件的设计。
分别阐述了单片机模块的组成和主要的器件AT89C52芯片的特性、工作原理,温度传感模块的组成和主要芯片DS18B20的特性和工作原理,键盘及显示电路的工作原理和设计方法及其主要的元器件8279,控制器件-继电器的选用和工作原理。
同时介绍了主程序流程框图和相应的子程序流程框图,并给出了具体的程序。
关键词:AT89C52;DS18B20;单片机;温度控制The Design of Temperature Control System based on AT89C52Liu mei ying(College of Physics Science and Information Engineering, Jishou University, Jishou, Hunan 416000)AbstractThis topic introduced based on at AT89C52 monolithic integrated circuit's temperature control system's hardware circuit composition and software's design. Elaborated separately the monolithic integrated circuit module's composition and the main component AT89C52 chip's characteristic, the principle of work, the temperature sensing module's composition and the main chip DS18B20 characteristic and the principle of work, the keyboard and display circuit's principle of work and the design method and the main primary device 8279, control component air relay's selection with the principle of work. Simultaneously introduced the master routine flow diagram and the corresponding subroutine flow diagram, and has given the concrete procedure.Key words: AT89C52; DS18B20; SCM; Temperature control基于AT89C52的温度控制系统的设计目录目录引言第一章系统原理及结构框图 (1)1.1 系统原理 (1)1.2 系统原理框图 (1)1.3 系统硬件电路设计 (2)第二章系统组成模块 (3)2.1 单片机模块 (3)2.2 温度传感模块 (6)2.3 键盘、显示模块 (8)2.4 继电器控制模块 (12)第三章系统软件部分 (13)3.1 系统主程序框图 (13)3.2 键盘处理子程序框图 (14)3.3 DS18B20子程序框图 (15)总结 (16)参考文献 (17)附录 (18)基于AT89C52的温度控制系统的设计引言引言随着电子技术的迅速发展,特别是超大规模集成电路产生而出现的微型计算机,给人类生活带来了根本性的改变。
目录1前言 (1)2设计方案 (2)2.1方案论证: (2)2.2显示选:23单元模块设计: (4)3.1传感器检测电路: (4)3.2基准电压电路: (5)3.3温度指示电路: (6)3.4电压比较放大电路: (8)3.5电源电路: (9)3.6电压比较放大电路: (10)3.7 555多谐报警电路: (11)4.软件设计 (13)5.系统功能、指标参数 (14)6.系统调试: (15)7.设计总结 (18)7.1设计小结: (18)7.2设计收获体会: (18)7.3设计建议: (18)8.参考文献: (19)附录 (20)1 前言在钢铁、机械、石油化工、电力、等工业生产中,温度是极为普遍又极为重要的热工参数之一; 随着科学技术和生产发展,需要对各种参数进行测量,温度是工业对象中主要的被控参数之一.在冶金工业,化工生产,电力工程,机械制造和食品加工等许多领域中,人们都需要对各种环境中的温度进行检测和控制,温度控制对于大型工业和日常生活用品等工程都具有广阔的应用前景.例如冶金工业中的炼钢炉温度控制、化工生产中的培养皿温度控制、食品加工车间的温度控制等。
温度控制一般指对某一特定空间的温度进行控制调节,使其达到并满足工艺过程的要求。
温度测量与控制系统是自动控制技术、计算机技术、电子技术和通信技术的有机结合,综合发展的产物。
其内容十分的丰富,它包括各种数据的采集和处理系统、自动测量系统、生产过程自动控制系统等,广泛应用于工厂自动化、商业自动化、实验室自动化等人类活动的各个领域。
随着工业的发展,对温度控制提出了更多更高的要求,因而热处理技术也向着优质、高效、节能、无公害方向发展。
温度控制是一种具有纯滞后的系统,加热材料、环境温度以及电网电压等都影响控制过程,目前的温度控制系统大多建立在一定的数学模型基础上,对被控对象中的非线性、时变性及随机干扰无能为力,因此,提高系统的抗干扰能力成为关键性的技术。
首先,控温精度要高。
其次,当环境发生变化而影响到控温精度时,要有合适的手段进行调整以达到精度要求。
而且,为了方便进行工艺的研究,需要能保存温度数据。
最后,由于生产中的实际情况,控制设备要求操作方便,易于维护,成本较低等等。
常用的温度控制方法有:电接点温度表温度控制、位式温度显示调节仪温度控制、PID连续电流输出温度显示调节仪表温度控制、PID连续电压输出温度显示调节仪表温度控制。
这些温度控制方法大都是在工业生产现场安装温度控制仪表,通过提前设定温度控制的上下限值或PID控制参数,然后再将控制仪表投入使用,进行各种预定的控制。
但若被控对象发生变化,难于实时的调整控制参数,不能满足实时控制的要求,而且温度变化曲线的一一记录不易实现。
2.设计方案电路要获得必要的外界温度信息,必须要通过传感器来获得信息。
如何获得被测信号是核心任务,而对测控对象状态的测试和对测控条件的检察也是不可缺少的环节。
温控电路适用于0℃~100℃±2℃。
包含传感器电路,放大电路,温度比较电路,利用三极管的特性控制加热器加热等自动反馈电路。
并用A/D 转换显示数值。
2.1传感器选择方案一:采用热敏电阻温度传感器。
热电阻是利用道题的电阻随温度变化的特性之称的测温元件。
铜电阻的温度系数大,价格低,易于提纯加工;但电阻率小,在腐蚀性介质中实用性稳定性差,用于-50~180℃方案二:MTS-102当温度从-40~+150℃是其精确度为±2摄氏度体积小 成本低。
方案二较方案一温度指标更接近于实验任务目标,且更稳定可靠2.2显示选择方案一:由555时基电路,四个十进制计数器显示所示温度,利用选通门的通断时间与被测温度呈现一定的线性比拟关系得到,进入计数器的脉冲代表温度的高低。
方案二:利用ICL7017型A/D 转换器把模拟电路与数字电路集成在一块芯片上的大规模COMS 电路与LED 组成数字电压。
由于检测温度值(灵敏度为10mV/℃),若显示250则表明当时温度有25℃。
方案二较方案一更简便集成,且无冒险。
所以选择方案二。
图1.设计框图传感器电路,MTS-102 LM324进行电压放大 进行A/D 转换,显示所示电压,转换温度。
利用三极管导通断开特性控制加热器的加热。
LM324温度比较电路基准电压,温度指示电路LM324为价格编译的带有真差动输入的四运算放大器。
与单电源应用场合的标准运算放大器轩昂比,它一显著优点其工作在低压3.0伏活到高到32伏的电源下,静态电流大致为MC1741的静态电流的五分之一,其模输入范围包括负电源,因而消除了再许多应用场合中采用外部偏置元件的必要输出电压范围也保安负电源电压。
通过基准电压的设定控制需要的温度再将实际测量的温度转化为电量与基准电压相比较,若低于基准电压则输出低电平。
加热器加热,一旦高与基准电压输出高电平三极管截止,同时高电平激活555所组成的多谐振荡器促使其产生规律的方波放出报警声。
3单元模块设计3.1、传感器检测电路:传感器检测检测电路有晶体管式温度传感器V1, 电阻器R1、电容C3和运算放大器N1组成。
图2传感器检测电路MTS-102它的温度系数线性度相当高。
Motorola公司的MTS102硅温度传感是经过特殊设计,并为满足传感器的要求进行了优化处理的二极管。
可广泛用于汽车和工业产品的温度检测系统。
因为这些场合强调低成本和高精度。
当温度从-40~+150℃变化时,用TO-92标准封装的这种传感器的温度准确度可达到±2℃。
电路图原理:VI的发射结的电压降(VBE)随着环境温度的变化而变化,温度上升时,VI的导通内阻变小,发射结的电压降也减小.使N1的输出减小。
电压跟随器的AV=1但是它的输入电阻R→∞,输出电阻0Ri→。
该电路几乎不从信号源吸取电流,输出电压不变消除了负载变化对输出电压的影响。
图3晶体管敏感系数3.2基准电压电路:基准电压电路由电阻器R4、R5、R8、电位器RP1、RP2、RP3、稳压二极管VS和IC1内部的N4组成。
图4基准电压电路如图所示:电压源产生9V的电压经R5限流,VS稳压过后产生+6V左右的基准电压,一路经过R4,RP1分压过后卫N2的正向输入端提供基准电压,另一路先经LM324缓冲放大,然后经过RP2,RP3分压过后,再经R8加至N3的正相输入端作为N3的基准电压。
RP3用来设定控制温度值;RP2用来设定RP3的最大输出电压(调试时,调节RP2的阻值,使RP3的最大输出电压为设定值;RP1用来设定N2正相输入端的基准电压(调试时,调节RP1的阻值,使N2的正相输入电压)。
由于稳压二极管存在稳定的4V电压则,由此可知当我们需要50℃时我们可以调节RP2,RP3使N3的3脚输出50mv则确定限定值V=VS*RP3/RP2+RP3电压基准与系统有关。
在要求绝对测量的应用场合,其准确度受使用基准值的准确度的限制。
但是在许多系统中稳定性和重复性比绝对精度更重要;而在有些数据采集系统中电压基准的长期准确度几乎完全不重要,但是如果从有噪声的系统电源中派生基准就会引起误差。
图5电压比拟3.3温度指示电路温度指示电路由电阻器R2、R3、N2以及数字电压表组成图6温度指示电路N2正相53MV后输出的为指示电压,为V1所检测的温度值(灵敏度为10mv/每℃),如电压为250mv则所示电压为25℃。
利用求差电路来计算出基准电压使数字电压原理:ICL7107:是把模拟电路与数字电路集成在一块芯片上的大规模CMOS集成电路,它具有低功耗,输入阻抗高,噪声低,能直接驱动共阳极LED显示器,不需要另加驱动器件,使转换电路简化的特点以下为各管脚功能的特点:ICL7107引脚功能V+和V-分别为电源的正极和负极,au-gu,aT-gT,aH-gH:分别为个位、十位、百位笔画的驱动信号,依次接个位、十位、百位LED显示器的相应笔画电极。
Bck:千位笔画驱动信号。
接千位LEO显示器的相应的笔画电极。
PM:液晶显示器背面公共电极的驱动端,简称背电极。
Oscl-OSc3 :时钟振荡器的引出端,外接阻容或石英晶体组成的振荡器。
第38脚至第40脚电容量的选择是根据下列公式来决定:Fosl = 0.45/RCCOM :模拟信号公共端,简称“模拟地”,使用时一般与输入信号的负端以及基准电压的负极相连。
TEST :测试端,该端经过500欧姆电阻接至逻辑电路的公共地,故也称“逻辑地”或“数字地”。
VREF+VREF- :基准电压正负端。
CREF:外接基准电容端。
INT:27是一个积分电容器,必须选择温度系数小不致使积分器的输入电压产生漂移现象的元件IN+和IN- :模拟量输入端,分别接输入信号的正端和负端。
AZ:积分器和比较器的反向输入端,接自动调零电容CAz 。
如果应用在200mV满刻度的场合是使用0.47μF,而2V满刻度是0.047μF。
BUF:缓冲放大器输出端,接积分电阻Rint。
其输出级的无功电流( idling current )是100μA,而缓冲器与积分器能够供给20μA的驱动电流,从此脚接一个Rint至积分电容器,其值在满刻度200mV时选用47K,而2V满刻度则使用470K。
(3) ICL7107的工作原理双积分型A/D转换器ICL7107是一种间接A/D转换器。
它通过对输入模拟电压和参考电压分别进行两次积分,将输入电压平均值变换成与之成正比的时间间隔,然后利用脉冲时间间隔,进而得出相应的数字性输出。
838电子它的原理性框图如图2所示,它包括积分器、比较器、计数器,控制逻辑和时钟信号源。
积分器是A/D转换器的心脏,在一个测量周期内,积分器先后对输入信号电压和基准电压进行两次积分。
比较器将积分器的输出信号与零电平进行比较,比较的结果作为数字电路的控制信一号。
时钟信号源的标准周期Tc 作为测量时间间隔的标准时间。
它是由内部的两个反向器以及外部的RC组成的。
其振荡周期Tc=2RC In1.5=2.2RC。
由其与LED组成的电路直接显示所测温度。
3.4电压比较放大电路电压比较放大电路有N3和电阻器R6,R7组成,N3选用LM324型四运放集成电路。
较器是由运算放大器发展而来的,比较器电路可以看作是运算放大器的一种应用电路。
由于比较器电路应用较为广泛,所以开发出了专门的比较器集成电路。
图1(a)由运算放大器组成的差分放大器电路,输入电压VA经分压器R2、R3分压后接在同相端,VB通过输入电阻R1接在反相端,RF为反馈电阻,若不考虑输入失调电压,则其输出电压Vout与VA、VB及4个电阻的关系式为:Vout=(1+RF/R1)·R3/(R2+R3)VA-(RF/R1)VB。
若R1=R2,R3=RF,则Vout=RF/R1(VA-VB),RF/R1为放大器的增益。