同步电机变频调速 我
- 格式:ppt
- 大小:1.25 MB
- 文档页数:44
变频调速永磁同步电动机在皮带机上的应用作者:杨庆范万宗帅庄世军白跃俊来源:《卷宗》2019年第20期摘要:近年来,随着煤炭行业的快速发展,井下运输系统也逐渐在更新换代,但由于井下巷道狭窄,运输环境恶劣,从而导致常规运输巷皮带机驱动装置故障较多。
变频调速永磁同步电动机作为一种新型的节能型电动机,因其特有优势被广泛应用于皮带运输系统中,其具有简单的结构、较大的转矩以及较低的能耗等特点,不仅能够提高皮带输送机的运输效率和运载量,而且能够提升运输系统的可靠性和使用寿命,对于保障皮带运输质量有着至关重要的意义。
本文简要介绍了永磁同步电动机的组成及特性,重点分析了皮带运输控制系统的实际应用,仅供相关人员参考。
关键词:变频调速;永磁同步电动机;皮带运输机在煤矿生产中,皮带输送机承担着煤炭运输的艰巨任务,具有较长的运输时间和较大的运输数量等特点,煤矿皮带输送机的运行状态直接关系到生产任务能否顺利完成。
在皮带运输系统中,常规的传统系统具有较大的启动电流和严重的机械磨损,长期使用运行容易不仅会出现张力变化,而且浪费大量的电能。
通过合理应用变频调速永磁电机,能够有效降低设备噪音,减少功率损耗,提高工作效率。
1 永磁同步电动机的组成及特性在煤矿皮带运输系统中,常规的电机设备大部分是异步电动机,需要配合齿轮减速器装置和液力耦合器设备才能够组成一个完整性的动力驱动系统。
这种常规电机设备在井下复杂条件下频繁产生机械故障,具有较低的工作效率,而且在重载状态下具有较大的启动难度。
而变频调速永磁同步电动机主要由变频器、皮带机头和永磁同步电机组成,去掉了常规的减速器装置和液力耦合器,能够实现对矿用皮带机的转速调节,满足井下生产要求。
煤矿井下生产实践中,将变频调速永磁同步电动机应用到皮带运输系统中,不仅能够提高生产运输效率,而且能够具有较高的安全性能,满足各种生产环境下的实际需求。
一是具有高效节能的特点,变频调速永磁同步电动机去掉了常规的减速器装置和液力耦合器以后,大大降低了震动和噪声,启动时消耗电流较小,转速调节作用也减轻了设备磨损;二是具有较小的维护量,在皮带系统运行时,不需要考虑减速器、液力偶合器以及齿轮等零部件的磨损,减少了零部件更换、检修和日常维护的频率,降低了维修成本,避免了不平稳起动造成的皮带拉裂现象,节约了采购大量的采购费用;三是具有较大输出转矩,永磁同步电动机能够使皮带运输系统在额定转速内保持恒转矩,使运行稳定性不断提高。
变频器怎样调频率,变频器怎么调速度调整变频器参数有2种方法,1.通过手动方式,查看手册,调整变频器频率设置参数;2.通过通讯联网远程自动1、手动调整:(1)操作面板按钮或旋钮;(2)外接电位器;2、自动调整:(1)远程通讯(如PLC、DCS等);(2)外部温度、压力等信号作为反馈信号,内部设定目标值,可以通过变频器自身进行闭环控制来调整转速。
变频器六种调速方式1.变极对数调节法该方法是通过改变定子绕组的连接方式来改变笼型电动机的定子极对数,以达到调速的目的。
其特点是:具有机械特性强、稳定性好、无滑移损失、效率高、接线简单、控制方便、价格低廉、速度快、差动大、无法获得的特点。
它可与调压和电磁滑离合器结合使用,以获得高效率和平滑的调速特性。
该方法适用于无机械无级调速的机械,如金属切削机床、电梯、起重设备、风机、泵等。
〔1〕变频调速是一种改变电动机定子功率频率,从而改变其同步速度的调速方法。
变频调速系统的主要设备是变频器,它提供变频电源。
变频器可分为交流-直流-交流变频器和交-交变频器两类。
目前,AC-DC—AC变换器主要应用于中国。
其特点:效率高,调速过程无附加损耗;应用范围广,可用于笼型异步电动机;调速范围宽,特性硬,精度高,工艺复杂,成本高,维修保养困难。
该方法适用于精度高、调速性能好的场合。
变频调速分为基本频率和基本频率。
基本频率以下的调速属于恒转矩调速模式,基本频率为恒功率调速模式。
2.串级调速法通过在绕组电机转子电路中增加可调节的附加电势来改变电机的滑动,达到调速的目的。
传输功率的大部分被附加电势吸收,用于产生额外的装置,以将吸收的功率返回到电网或将能量转换成使用。
根据传输功率吸收和利用方式,串级调速可分为串级调速、机械串联调速和晶闸管串级调速,采用晶闸管串级调速。
其特点是调速过程中的变频损耗可反馈给电网或生产机械,效率高;。
交流电动机变频调速控制方案(1)开环控制(2)无速度传感器的矢量控制(3)带速度传感器矢量控制( 4)永磁同步电动机开环控制6-12、试分析三相SPWM的控制原理。
在PWM型逆变电路中,使用最多的是图6-43a的三相桥式逆变电路,其控制方式一般都采用双极性方式。
U、V和W三相的PWM控制通常公用一个三角波载波uc,三相调制信号U ru , U rv 和, U rw的相位依次相差1200。
U、V和W各相功率开关器件的控制规律相同,现以U 相为例来说明。
当Uru > uc时,给上桥臂晶体管V1以导通信号,给下桥臂晶体管V4以关断信号,则U相相对于直流电源假想中点N’的输出电压UUN’= Ud/2。
当Uru < uc时,给V4以导通信号,给V1以关断信号,则UUN’=Ud/2。
V1和V4的驱动信号始终是互补的。
当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能二极管VD1(VD4)续流导通,这要由感性负载中原来电流的方向和大小来决定,和单相桥式逆变电路双极性SPWM控制时的情况相同。
V相和W相的控制方式和U相相同。
UUN’、 UVN’和Uwn’的波形如图6-43b 所示。
可以看出,这些波形都只有±Ud两种电平。
像这种逆变电路相电压(uUN’、uVN’和uWN’)只能输出两种电平的三相桥式电路无法实现单极性控制。
图中线电压UUV的波形可由UUN’― UVN’得出。
可以看出,当臂1和6导通时,UUV = Ud,当臂3和4导通时,UUV =―Ud,当臂1和3或4和6导通时,Uuv=0,因此逆变器输出线电压由+Ud、-Ud、0三种电平构成。
负载相电压UUN可由下式求得(6-18)从图中可以看出,它由(±2/3)Ud,(±1/3)Ud和0共5种电平组成。
(a) (b)图6-43三相SPWM逆变电路及波形在双极性SPWM控制方式中,同一相上下两个臂的驱动信号都是互补的。
变频器调速的基本工作原理根据电机转速的公式 n=n1(1-s)(1) N1=60f/p(2)式中:n-电机转速;n1-电机的同步转速;s-滑差;f-旋转磁场频率;P-电机极对数可知改变电机转速的方法有改变滑差s、改变旋转磁场频率f、改变电机极对数p三种。
变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。
是由由主电路和控制带电路组成的。
主电路是给异步电动机提供可控电源的电力转换部分,变频器的主电路分为两类,其中电压型是将电压源的直流变换为交流的变频器,直流回路的滤波部分是电容。
电流型是将电流源的直流变换为交流的变频器,其直流回路滤波部分是电感。
它由三部分构成,将工频电源变换为直流功率的整流部分,吸收在转变中产生的电压脉动的平波回路部分,将直流功率变换为交流功率的逆变部分。
控制电路是给主电路提供控制信号的回路,它有决定频率和电压的运算电路,检测主电路数值的电压、电流检测电路,检测电动机速度的的速度检测电路,将运算电路的控制信号放大的驱动电路,以及对逆变器和电动机进行保护的保护电路组成。
现在大多数的变频器基本都采用交直交方式(VVVF变频或矢量控制),将工频交流电源通过整流器转换为直流电源,再把直流电源转换成近似于正弦波可控的交流电以供给电动机。
以图1为例简单说明一下变频器的工作原理。
三相交流电经过VD1~VD6整流后,正极经过RL,RL在这里是防止电流忽然变大。
经过RL电流趋于稳定,晶闸管触点会导通。
之后直流电压加在了滤波电容CF1、CF2上,这两个电容的作用是让直流电波形变得更加平滑。
之所以是两个电容是由于一个电容的耐压有限,所以用两个电容串联起来使用。
均压电阻R1、R2是让CF1和CF2上的电压一样,两个电容的容量不同的话,分压就会不同,所以各并联了一个均压电阻。
而中间的放电回路作用则是释放掉感性负载启动或停止时的反电势,用来保护逆变管V1~V6和整流管VD1~VD6。
变频调速的工作原理变频器的功用是将频率固定的(通常为50Hz的)交流电(三相或单相)变成频率联系可调(多数为O-4OOH0的三相交流电。
由公式:n0=60f/p其中n0为旋转磁场的转速通常称为同步转速f 为电流的频率p 为旋转磁场的磁极对数当频率f连续可调时(一般P为定数),电动机的同步转速也连续可调。
又因为异步电动机的转子转速总是比同步转速略低一些,所以,当同步转速连续可调时,异步电动机转子的转速也是连续可调的。
变频器就是通过改变f (电流的频率)来使电动机调速的在变频器日常维护过程中,经常遇到各种各样的问题,如外围线路问题,参数设定不良或机械故障。
如果是变频器出现故障,如何去判断是哪一部分问题,在这里略作介绍。
一、静态测试1、测试整流电路找到变频器内部直流电源的P端和N端,将万用表调到电阻X10档,红表棒接到P,黑表棒分别依到R S T,应该有大约几十欧的阻值,且基本平衡。
相反将黑表棒接到P端,红表棒依次接到R、S、T,有一个接近于无穷大的阻值。
将红表棒接到N 端,重复以上步骤,都应得到相同结果。
如果有以下结果,可以判定电路已出现异常,A.阻值三相不平衡,可以说明整流桥故障。
B.红表棒接P端时,电阻无穷大,可以断定整流桥故障或起动电阻出现故障。
2、测试逆变电路将红表棒接到P端,黑表棒分别接U V W上,应该有几十欧的阻值,且各相阻值基本相同,反相应该为无穷大。
将黑表棒接到N端,重复以上步骤应得到相同结果,否则可确定逆变模块故障二、动态测试在静态测试结果正常以后,才可进行动态测试,即上电试机。
在上电前后必须注意以下几点:1、上电之前,须确认输入电压是否有误,将380V电源接入220V级变频器之中会出现炸机(炸电容、压敏电阻、模块等)。
2、检查变频器各接播口是否已正确连接,连接是否有松动, 连接异常有时可能导致变频器出现故障, 严重时会出现炸机等情况。
3、上电后检测故障显示内容, 并初步断定故障及原因。