2017年河北省唐山市中考数学模拟试卷3附答案解析
- 格式:pdf
- 大小:625.50 KB
- 文档页数:23
唐山市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017七下·江都期中) 下列运算正确的是()A . 2a3÷a2=aB . a2+a2=a4C . (2a+b)2=4a2+b2+4abD . (2a+1)(2a﹣1)=2a2﹣12. (2分) (2017七下·乌海期末) 下列各式中,正确的是()A . =±5B . ± =4C . =﹣4D . =﹣33. (2分)若(a-1):7=4:5,则10a+8之值为()A . 54B . 66C . 74D . 804. (2分)(2017·百色) 计算(π﹣)0﹣sin30°=()A .B . π﹣1C .D . 1﹣5. (2分)(2019·怀化模拟) 下列运算不正确的是()A . (m2)3=m6B . a10÷a9=aC . x3•x5=x8D . a4+a3=a76. (2分)(2018·沈阳) 如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A . 60°B . 100°C . 110°D . 120°7. (2分)(2018·沈阳) 下列事件中,是必然事件的是()A . 任意买一张电影票,座位号是2的倍数B . 13个人中至少有两个人生肖相同C . 车辆随机到达一个路口,遇到红灯D . 明天一定会下雨8. (2分)(2018·沈阳) 在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A . k>0,b>0B . k>0,b<0C . k<0,b>0D . k<0,b<09. (2分)(2018·沈阳) 点A(﹣3,2)在反比例函数y= (k≠0)的图象上,则k的值是()A . ﹣6B . ﹣C . ﹣1D . 610. (2分)如图,正方形ABCD内接于⊙O,AB=2 ,则的长是()A . πB . πC . 2πD . π二、填空题 (共6题;共8分)11. (1分)(2020·岳阳) 在,,1,2,3五个数中随机选取一个数作为二次函数中a的值,则该二次函数图象开口向上的概率是________.12. (1分) (2019九上·巴南期末) 在数-1,0,1,2中任取两个数作为点的坐标,那么该点刚好在一次函数图像上的概率是________.13. (1分)(2019·怀化模拟) 如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于________.14. (1分)(2019·怀化模拟) 如图,在每个小正方形的边长为1的网格中,A,E为格点,B,F为小正方形边的中点,C为AE,BF的延长线的交点.(Ⅰ)AE的长等于________;(Ⅱ)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图所示的网格中,用无刻度的直尺,画出线段PQ,并简要说明点P,Q的位置是如何找到的(不要求证明)________.15. (2分)(2016·青海) 如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为________ cm2(结果保留π).16. (2分)(2016·青海) 如图,在⊙O中,AB为直径,CD为弦,已知∠CAB=50°,则∠ADC=________.三、综合题 (共8题;共27分)17. (5分)(2018八上·黑龙江期末) 计算题(1)计算:(x+y)2-y(2x+y)(2)先计算,再把计算所得的多项式分解因式:(12a3-12a2+3a)÷3a.18. (2分)(2018·沈阳) 如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是________.19. (2分)(2018·盘锦) 某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次随机抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整统计图.请你根据图中信息,回答下列问题:(1)本次共调查了________名学生.(2)在扇形统计图中,“歌曲”所在扇形的圆心角等于________度.(3)补全条形统计图(标注频数).(4)根据以上统计分析,估计该校2000名学生中最喜爱小品的人数为________人.(5)九年一班和九年二班各有2名学生擅长舞蹈,学校准备从这4名学生中随机抽取2名学生参加舞蹈节目的编排,那么抽取的2名学生恰好来自同一个班级的概率是多少?20. (10分)(2018·葫芦岛) 某爱心企业在政府的支持下投入资金,准备修建一批室外简易的足球场和篮球场,供市民免费使用,修建1个足球场和1个篮球场共需8.5万元,修建2个足球场和4个篮球场共需27万元.(1)求修建一个足球场和一个篮球场各需多少万元?(2)该企业预计修建这样的足球场和篮球场共20个,投入资金不超过90万元,求至少可以修建多少个足球场?21. (2分)(2018·盘锦) 两栋居民楼之间的距离CD=30米,楼AC和BD均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.22. (2分)(2018·沈阳) 如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.23. (2分)(2018·葫芦岛) 在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,EF=2 ,当△POF为等腰三角形时,请直接写出线段OP的长.24. (2分)(2018·盘锦) 如图,已知A(﹣2,0),B(4,0),抛物线y=ax2+bx﹣1过A、B两点,并与过A 点的直线y=﹣ x﹣1交于点C.(1)求抛物线解析式及对称轴;(2)在抛物线的对称轴上是否存在一点P,使四边形ACPO的周长最小?若存在,求出点P的坐标,若不存在,请说明理由;(3)点M为y轴右侧抛物线上一点,过点M作直线AC的垂线,垂足为N.问:是否存在这样的点N,使以点M、N、C为顶点的三角形与△AOC相似,若存在,求出点N的坐标,若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、综合题 (共8题;共27分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、19-4、19-5、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
2017年河北省唐山市路南区中考数学三模试卷一、选择题(本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分)1.(3分)已知a、b为两个连续的整数,且a<<b,则a+b=()A.1B.2C.3D.42.(3分)如图是一个正方体,则它的表面展开图可以是()A.B.C.D.3.(3分)下列运算正确的是()A.a2•a3=a6B.a8÷a2=a4C.(a3)2=a5D.(ab)2=a2b2 4.(3分)下列事件中,属于必然事件的是()A.三条线段围成一个三角形B.1小时等于60分钟C.度量三角形的内角和结果为360°D.数轴上一点表示有理数5.(3分)某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去6.(3分)某商店售出一件商品的利润为a元,利润率为20%,则此商品的进价为()A.(1+20%)a B.C.20%a D.7.(3分)如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC的()A.垂心B.重心C.内心D.外心8.(3分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是()A.B.C.D.9.(3分)图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P10.(3分)下列运算中正确的是()A.B.C.D.11.(2分)如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC =3CD,若A、D两点表示的数分别为﹣5和6,且AC的中点为E,BD的中点为M,BC 之间距点B的距离为BC的点N,则该数轴的原点为()A.点E B.点F C.点M D.点N12.(2分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H 分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.1113.(2分)如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°14.(2分)函数y=x2+bx+c与y=x的图象如图所示,则下列结论中正确的是()A.当1<x<3时,x2+(b﹣1)x+c<0B.b+c=1C.3b+c=6D.b2﹣4c>015.(2分)根据图中所给的边长长度及角度,判断下列选项中的四边形是平行四边形的为()A.B.C.D.16.(2分)已知,如图,△ABC是等边三角形,四边形BDEF是菱形,其中线段DF的长与DB相等,将菱形BDEF绕点B按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论.甲:线段AF与线段CD的长度总相等;乙:直线AF和直线CD所夹的锐角的度数不变;那么,你认为()A.甲、乙都对B.乙对甲不对C.甲对乙不对D.甲、乙都不对二、填空题(本大题共3个小题,共10分,17-18小题各3分,19小题每空2分)17.(3分)计算:(﹣1)2017﹣(π﹣2017)0=.18.(3分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落在点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则△EB′C的周长为.19.(4分)如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移4个单位后与反比例函数y=在第一象限内的图象交于点P,则k=;△POA的面积为.三、解答题(本大题共7个小题,共68分)20.(9分)已知代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2(1)当x=1,y=3时,求代数式的值;(2)当4x=3y,求代数式的值.21.(9分)阅读下列内容,并答题:我们知道,计算n边形的对角线条数公式为:n(n ﹣3).如果一个n边形共有20条对角线,那么可以得到方程.整理得n2﹣3n﹣40=0;解得n=8或n=﹣5∵n为大于等于3的整数,∴n=﹣5不合题意,舍去.∴n=8,即多边形是八边形.根据以上内容,问:(1)若一个多边形共有14条对角线,求这个多边形的边数;(2)A同学说:“我求得一个多边形共有10条对角线”,你认为A同学说法正确吗?为什么?22.(9分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将这四类的人数绘制成扇形图(如图1)和条形图(如图2).经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误为;(2)写出这20名学生每人植树量的众数为;中位数为;(3)经计算这20名学生每人植树量的平均数为5.3,则估算这260名学生共植树棵.(4)在这次活动中,九(1)班学生平均每人植6棵树,如果单独由男同学完成,每人应植树15棵,求如果单独由女同学完成,每人应植树多少棵?23.(9分)如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°(1)求tan∠OAB的值;(2)求图中阴影部分的面积S;(3)在⊙O上一点P从A点出发,沿逆时针方向运动一周,回到点A,在点P的运动过程中,满足S△POA=S△AOB时,直接写出P点所经过的弧长(不考虑点P与点B重合的情形).24.(10分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△P AC为等腰三角形时,直接写出t的值.25.(10分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.26.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,过点B做射线BB1∥AC,动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 出发沿射线AC方向以每秒3个单位的速度运动,过点D作DH⊥AB于H,过点E作EF ⊥AC交射线BB1于F,连接DF,设运动的时间为t秒(t>0).(1)当t为时,AD=AB,此时DE的长度为;(2)当△DEF与△ACB全等时,求t的值;(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.①当t>时,设△ADA′的面积为S,直接写出S关于t的函数关系式;③当线段A′C′与射线BB1有公共点时,求t的取值范围.2017年河北省唐山市路南区中考数学三模试卷参考答案与试题解析一、选择题(本大题共16个小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分)1.(3分)已知a、b为两个连续的整数,且a<<b,则a+b=()A.1B.2C.3D.4【解答】解:∵1<2<4,∴1<<2.又∵a、b为两个连续的整数,且a<<b,∴a=1,b=2.∴a+b=3.故选:C.2.(3分)如图是一个正方体,则它的表面展开图可以是()A.B.C.D.【解答】解:A、含有田字形,不能折成正方体,故A错误;B、能折成正方体,故B正确;C、凹字形,不能折成正方体,故C错误;D、含有田字形,不能折成正方体,故D错误.故选:B.3.(3分)下列运算正确的是()A.a2•a3=a6B.a8÷a2=a4C.(a3)2=a5D.(ab)2=a2b2【解答】解:A、a2•a3=a2+3=a5,故本选项错误;B、a8÷a2=a8﹣2=a6,故本选项错误;C、(a3)2=a3×2=a6,故本选项错误;D、(ab)2=a2b2,故本选项正确.故选:D.4.(3分)下列事件中,属于必然事件的是()A.三条线段围成一个三角形B.1小时等于60分钟C.度量三角形的内角和结果为360°D.数轴上一点表示有理数【解答】解:A、三条线段围成一个三角形是随机事件,故A不符合题意;B、1小时等于60分钟是必然事件,故B符合题意;C、度量三角形的内角和结果为180°,C为不可能事件,故C不符合题意;D、数轴上的点表示实数,故D不符合题意;故选:B.5.(3分)某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是()A.带①去B.带②去C.带③去D.①②③都带去【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.6.(3分)某商店售出一件商品的利润为a元,利润率为20%,则此商品的进价为()A.(1+20%)a B.C.20%a D.【解答】解:依题意得:.故选:D.7.(3分)如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC的()A.垂心B.重心C.内心D.外心【解答】解:如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F∵MN∥AB,OD=OE=OF(夹在平行线间的距离处处相等)如图2,过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F',由裁剪知,OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点,∴点O是△ABC的内心,故选:C.8.(3分)一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字不小于3的概率是()A.B.C.D.【解答】解:∵一枚质地均匀的正方体骰子,其六个面分别刻有1、2、3、4、5、6六个数字,即共有6种等可能的结果,投掷这个骰子一次,则向上一面的数字不小于3的有4种情况,∴向上一面的数字不小于3的概率是:=.故选:C.9.(3分)图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P【解答】解:点P在对应点M和点N所在直线上,再利用连接另两个对应点,得出相交于P点,即可得出P为两图形位似中心,故选:D.10.(3分)下列运算中正确的是()A.B.C.D.【解答】解:A、,故选项错误;B、,故选项错误;C、,故选项正确;D、,故选项错误.故选:C.11.(2分)如图,在数轴上有A、B、C、D四个整数点(即各点均表示整数),且2AB=BC =3CD,若A、D两点表示的数分别为﹣5和6,且AC的中点为E,BD的中点为M,BC之间距点B的距离为BC的点N,则该数轴的原点为()A.点E B.点F C.点M D.点N【解答】解:如图所示:∵2AB=BC=3CD,∴设CD=x,则BC=3x,AB=1.5x,∵A、D两点表示的数分别为﹣5和6,∴x+3x+1.5x=11,解得:x=2,故CD=2,BC=6,AB=3,∵AC的中点为E,BD的中点为M,∴AE=EC=4.5,BM=MD=4,则E点对应的数字是﹣0.5,M对应的数字为:2,∵BC之间距点B的距离为BC的点N,∴BN=BC=2,故AN=5,则N正好是原点.故选:D.12.(2分)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H 分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()A.7B.9C.10D.11【解答】解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC==5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=BC=EF,EH=FG=AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选:D.13.(2分)如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A.∠CAD=40°B.∠ACD=70°C.点D为△ABC的外心D.∠ACB=90°【解答】解:∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20°,∴∠B=∠BCD=20°,∴∠CDA=20°+20°=40°.∵CD=AD,∴∠ACD=∠CAD==70°,∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70°,∠BCD=20°,∴∠ACB=70°+20°=90°,故D正确.故选:A.14.(2分)函数y=x2+bx+c与y=x的图象如图所示,则下列结论中正确的是()A.当1<x<3时,x2+(b﹣1)x+c<0B.b+c=1C.3b+c=6D.b2﹣4c>0【解答】解:∵抛物线与直线y=x相交于点(1,1),(3,3),∴当1<x<3时,x2+bx+c<x,即x2+(b﹣1)x+c<0,所以A选项正确;把(1,1)代入y=x2+bx+c得1+b+c=1,∴b+c=0,所以B选项错误;把(3,3)代入y=x2+bx+c得9+3b+c=3,∴3b+c=6,所以C选项错误;∵抛物线与x轴没有交点,∴△=b2﹣4ac<0,所以D错误.故选:A.15.(2分)根据图中所给的边长长度及角度,判断下列选项中的四边形是平行四边形的为()A.B.C.D.【解答】解:A、上、下这一组对边平行,可能为等腰梯形;B、上、下这一组对边平行,左右一组对边相等,可能为等腰梯形,也可能为平行四边形,但等腰梯形的底角不可能是90°,所以为平行四边形,C、上、下这一组对边平行,可能为梯形;D、上、下这一组对边平行,可能为梯形.故选:B.16.(2分)已知,如图,△ABC是等边三角形,四边形BDEF是菱形,其中线段DF的长与DB相等,将菱形BDEF绕点B按顺时针方向旋转,甲、乙两位同学发现在此旋转过程中,有如下结论.甲:线段AF与线段CD的长度总相等;乙:直线AF和直线CD所夹的锐角的度数不变;那么,你认为()A.甲、乙都对B.乙对甲不对C.甲对乙不对D.甲、乙都不对【解答】解:连接DF、AF、CD,如图,∵四边形BDEF为菱形,∴BD=BF,而DF=BD,∴△BDF为等边三角形,∴∠DBF=60°,∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∴∠ABF=∠CBD,∴△ABF绕点B顺时针旋转60°可得到△CBD,∴AF=CD,∠FBA=∠DBC,∴∠AFC=∠ABC=60°,即直线AF和直线CD所夹的锐角的度数为60°.故选:A.二、填空题(本大题共3个小题,共10分,17-18小题各3分,19小题每空2分)17.(3分)计算:(﹣1)2017﹣(π﹣2017)0=﹣2.【解答】解:原式=﹣1﹣1=﹣2.故答案是:﹣2.18.(3分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落在点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则△EB′C的周长为11.【解答】解:∵四边形ABCD为矩形,∴B′C=BC=AD,∠B′=∠B=∠D=90°∵∠B′EC=∠DEA,在△AED和△CEB′中,,∴△AED≌△CEB′(AAS),∴DE=B′E,∴△EB′C的周长=CE+B′E+B′C=CE+DE+AD=11,故答案为:11.19.(4分)如图,在平面直角坐标系中,直线y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),将直线y=2x向下平移4个单位后与反比例函数y=在第一象限内的图象交于点P,则k=2;△POA的面积为2.【解答】解:∵y=2x与反比例函数y=在第一象限内的图象交于点A(m,2),∴2=2x,得x=1,∴m=1,∴2=,得k=2,直线y=2x向下平移4个单位后的函数解析式为y=2x﹣4,,得或(舍去),∴点P的坐标为(,),设OP对应的函数解析式为y=ax,,得a=6﹣4,∴OP对应的函数解析式为y=(6﹣4)x,当x=1时,y=(6﹣4)×1=6﹣4,∴△POA的面积是:=2,故答案为:2,2.三、解答题(本大题共7个小题,共68分)20.(9分)已知代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2(1)当x=1,y=3时,求代数式的值;(2)当4x=3y,求代数式的值.【解答】解:原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2(1)当x=1,y=3时,原式=﹣12+3×9=﹣12+27=15(2)当4x=3y时,原式=﹣y(4x﹣3y)=021.(9分)阅读下列内容,并答题:我们知道,计算n边形的对角线条数公式为:n(n ﹣3).如果一个n边形共有20条对角线,那么可以得到方程.整理得n2﹣3n﹣40=0;解得n=8或n=﹣5∵n为大于等于3的整数,∴n=﹣5不合题意,舍去.∴n=8,即多边形是八边形.根据以上内容,问:(1)若一个多边形共有14条对角线,求这个多边形的边数;(2)A同学说:“我求得一个多边形共有10条对角线”,你认为A同学说法正确吗?为什么?【解答】解:(1)根据题意得:n(n﹣3)=14,整理得:n2﹣3n﹣28=0,解得:n=7或n=﹣4.∵n为大于等于3的整数,∴n=﹣4不合题意,舍去.∴n=7,即多边形是七边形.(2)A同学说法是不正确的,理由如下:当n(n﹣3)=10时,整理得:n2﹣3n﹣20=0,解得:n=,∴符合方程n2﹣3n﹣20=0的正整数n不存在,∴多边形的对角线不可能有10条.22.(9分)某校260名学生参加植树活动,要求每人植4﹣7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵,将这四类的人数绘制成扇形图(如图1)和条形图(如图2).经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误为D;(2)写出这20名学生每人植树量的众数为5棵;中位数为5棵;(3)经计算这20名学生每人植树量的平均数为5.3,则估算这260名学生共植树1378棵.(4)在这次活动中,九(1)班学生平均每人植6棵树,如果单独由男同学完成,每人应植树15棵,求如果单独由女同学完成,每人应植树多少棵?【解答】解(1)D错误,理由为:20×10%=2(人),如图所示:(2)众数为5棵,中位数为5棵;(3)估计260名学生共植树5.3×260=1378(棵);(4)设单独由女生完成,每人应植树x棵.那么根据题意可得出方程:+=,解得:x=10.检验得x=10是方程的解.故单独由女生完成,每人应植树10棵.故答案为:D;5棵,5棵;1378.23.(9分)如图,已知AB是⊙O的弦,半径OA=2cm,∠AOB=120°(1)求tan∠OAB的值;(2)求图中阴影部分的面积S;(3)在⊙O上一点P从A点出发,沿逆时针方向运动一周,回到点A,在点P的运动过程中,满足S△POA=S△AOB时,直接写出P点所经过的弧长(不考虑点P与点B重合的情形).【解答】解:(1)∵OA=OB,∴∠OAB=∠OBA,∵∠OAB=(180°﹣120°)=30°,∴tan∠OAB=tan30°=;(2)作OC⊥AB于C,如图,则AC=BC,在Rt△OAC中,OC=OA=1,AC=OC=,∴AB=2AC=2,∴S弓形AB=S扇形AOB﹣S△AOB=﹣•2•1=(π﹣)cm2;(3)延长BO交⊙O于P,∵OP=OB,∴此时S△AOP=S△AOB,∵∠AOP=∠OAB+∠OBA=60°,∴此时P点所经过的弧长==π(cm);当点P在上,且∠AOP=60°时,时S△AOP=S△AOB,此时P点所经过的弧长=2π•2﹣π=π(cm);当∠AOP=120时,S△AOP=S△AOB,∴此时P点所经过的弧长==π(cm);综上所述,P点所经过的弧长为πcm或πcm或πcm.24.(10分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)(1)求a、b的值;(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△P AC为等腰三角形时,直接写出t的值.【解答】解:(1)∵点C是直线l1:y=x+1与轴的交点,∴C(0,1),∵点C在直线l2上,∴b=1,∴直线l2的解析式为y=ax+1,∵点B在直线l2上,∴2a+1=0,∴a=﹣;(2)由(1)知,l1的解析式为y=x+1,令y=0,∴x=﹣1,由图象知,点Q在点A,B之间,∴﹣1<n<2(3)如图,∵△P AC是等腰三角形,∴①点x轴正半轴上时,当AC=P1C时,∵CO⊥x轴,∴OP1=OA=1,∴BP1=OB﹣OP1=2﹣1=1,∴1÷1=1s,②当P2A=P2C时,易知点P2与O重合,∴BP2=OB=2,∴2÷1=2s,③点P在x轴负半轴时,AP3=AC,∵A(﹣1,0),C(0,1),∴AC=,∴AP3=,∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣)s,即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.25.(10分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查.其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示.而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示.(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值.【解答】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t﹣0)(t﹣30)再代入t=5,y1=25可得:a=﹣∴y1=﹣t(t﹣30)(0≤t≤30);(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:0≤t<20时,y2=2t,当20≤t≤30时,y2=﹣4t+120,∴y2=;(3)当0≤t<20时,y=y1+y2=﹣t(t﹣30)+2t=80﹣(t﹣20)2,可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,当20≤t≤30时,y=y1+y2=﹣t(t﹣30)﹣4t+120=125﹣(t﹣5)2,可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t =20时的值80,故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件.26.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,过点B做射线BB1∥AC,动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 出发沿射线AC方向以每秒3个单位的速度运动,过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,连接DF,设运动的时间为t秒(t>0).(1)当t为2时,AD=AB,此时DE的长度为2;(2)当△DEF与△ACB全等时,求t的值;(3)以DH所在直线为对称轴,线段AC经轴对称变换后的图形为A′C′.①当t>时,设△ADA′的面积为S,直接写出S关于t的函数关系式;③当线段A′C′与射线BB1有公共点时,求t的取值范围.【解答】解:(1)在Rt△ABC中,AC=6,BC=8,根据勾股定理得,AB==10,由运动知,AD=5t,∵AD=AB,∴5t=10,∴t=2,∴CD=AD﹣AC=10﹣6=4,CE=3t=6,∴DE=CE﹣CD=2,故答案为2,2;(2)∵∠ACB=90°,BB1∥AC,EF⊥AC,∴四边形BCEF是矩形,EF=BC=8,当AD<AE时,5t<6+3t,∴0<t<3,若DE=AC,△ACB≌△DEF,DE=AE﹣AD=6+3t﹣5t=6﹣2t,∴6﹣2t=6,∴t=0,∵t>0(不合题意,舍),当AD>AE时,5t>6+3t,∴t>3,若DE=AC,△ACB≌△DEF,DE=AD﹣AE=5t﹣6﹣3t=2t﹣6,∴2t﹣6=6,∴t=6,∴当t=6时,△DEF与△ACB全等.(3)①如图,∵∠ACB=∠AHD,∠BAC=∠DAH,∴△ABC∽△ADH,∴,∴,∴AH=3t,DH=4t,∴S△ADA'=2S△ADH=2×AH×DH=AH×DH=12t2,②当点A'落在射线BB1上的点B时,AA'=AB=10,∵DH⊥AB,∴AA'=2AH=2×5t×cos∠A=6t=10,∴t=,当点C'落在射线BB1上时,CC'∥AB,∵BB1∥AC,∴四边形ACC'B为平行四边形,∴CC'=AB=10,∵CC'=2CD×cos∠A=2×(5t﹣6)×=(5t﹣6),∴t=,∴≤t≤,线段A'C'与射线BB1有公共点.。
2017年河北省唐山市丰南区中考数学一模试卷一、选择题(本大题共16小题,共42分)1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0 B.a+b<0 C.|a|<|b| D.a﹣b>02.已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为()A.﹣4 B.4 C.﹣2 D.23.要使式子有意义,则x的取值范围是()A.x≠2 B.x>﹣2 C.x<﹣2 D.x≠﹣24.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15° C.10° D.5°5.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个7.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C.4 D.﹣48.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.89.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里 C.2co s55°海里 D.2tan55°海里10.如图是一个几何体的三视图,则这个几何体的展开图可以是()A.B.C.D.11.如果点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.12.现定义运算“★”,对于任意实数a,b,都有a★b=a2﹣a×b+b,如:3★5=32﹣3×5+5,若x★2=10,则实数x的值为()A.﹣4或﹣l B.4或﹣l C.4或﹣2 D.﹣4或213.二次函数y=x2﹣(12﹣k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y 随着x的增大而减小,则k的值应取()A.12 B.11 C.10 D.914.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.15.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:216.求1+2+22+23+…+22014的值,可令S=1+2+22+23+…+22014,则2S=2+22+23+24+…+22015,因此2S﹣S=22015﹣1,S=22015﹣1,我们把这种求和的方法叫错位相加减,仿照上述的思路方法,计算出1+5+52+53+…+52014的值为()A.52014﹣1 B.52015﹣1 C.D.二、填空题(本大题共3小题,每小题3分,共9分)17.的立方根是.18.已知a2+b2=5,ab=﹣1,则a+b= .19.如图,将顶点为P(1,﹣2),且过原点的抛物线y的一部分沿x轴翻折并向右平移2个单位长度,得到抛物线y1,其顶点为P1,然后将抛物线y1沿x轴翻折并向右平移2个单位长度,得到抛物线y2,其顶点为P2;…,如此进行下去,直至得到抛物线y2016,则点P2016坐标为.三、解答题(本大题共7小题,共69分)20.(1)计算(﹣π)0﹣6tan30°+()﹣2+|1﹣|(2)先化简,再求值.+(其中m是绝对值最小的实数)21.已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.22.理解:(1)若直线l上有四个点A、B、C、D,则共有线段条;(2)若直线l上有五个点A、B、C、D、E,则共有线段条;(3)若直线l上有n个点A、B、C…,则红柚线段条.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手次.(5)从A 火车站到B 火车站,中途有5站,若各车厢收费标准一样,则票价共有 种.(6)某n 边形共有54条对角线,求n .23.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比为 ,该班学生的总人数为 ;(2)训练后篮球定时定点投篮人均进球数为 ;(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?24.如图所示,在平面直角坐标系中,过点A (﹣,0)的两条直线分别交y 轴于B 、C两点,∠ABO=30°,OB=3OC .(1)试说明直线AC 与直线AB 垂直; (2)若点D 在直线AC 上,且DB=DC ,求点D 的坐标;(3)在(2)的条件下,直线BD 上是否存在点P ,使以A 、B 、P 三点为顶点的三角形是等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由.25.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.26.如图,在平面直角坐标系xOy中,抛物线y=x2+与y轴相交于点A,点B与点O关于点A对称(1)填空:点B的坐标是;(2)过点B的直线y=kx+b(其中k<0)与x轴相交于点C,过点C作直线l平行于y轴,P是直线l上一点,且PB=PC,求线段PB的长(用含k的式子表示),并判断点P是否在抛物线上,说明理由;(3)在(2)的条件下,若点C关于直线BP的对称点C′恰好落在该抛物线的对称轴上,求此时点P的坐标.2017年河北省唐山市丰南区中考数学一模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分)1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.ab>0 B.a+b<0 C.|a|<|b| D.a﹣b>0【考点】29:实数与数轴.【分析】根据数轴上点的位置关系,可得a,b的大小,根据有理数的运算,可得答案.【解答】解:b<0<a,|b|<|a|.A、ab<0,故A不符合题意;B、a+b>0,故B不符合题意;C、|b|<|a|,故C不符合题意;D、a﹣b>0,故D符合题意;故选:D.2.已知关于x的方程x2﹣mx+3=0的解为﹣1,则m的值为()A.﹣4 B.4 C.﹣2 D.2【考点】A3:一元二次方程的解.【分析】把x=﹣1代入方程计算即可求出m的值.【解答】解:把x=﹣1代入方程得:1+m+3=0,解得:m=﹣4,故选A3.要使式子有意义,则x的取值范围是()A.x≠2 B.x>﹣2 C.x<﹣2 D.x≠﹣2【考点】72:二次根式有意义的条件.【分析】二次根式的被开方数是非负数,且分式的分母不等于零.【解答】解:依题意得:x+2>0,解得x>﹣2.故选:B.4.如图,等腰直角三角板的顶点A,C分别在直线a,b上.若a∥b,∠1=35°,则∠2的度数为()A.35° B.15° C.10° D.5°【考点】JA:平行线的性质.【分析】由等腰直角三角形的性质和平行线的性质求出∠ACD=55°,即可得出∠2的度数.【解答】解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=35°+90°=125°,∵a∥b,∴∠ACD=180°﹣125°=55°,∴∠2=∠ACD﹣∠ACB=55°﹣45°=10°;故选:C.5.下列计算正确的是()A.x4•x4=x16B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a【考点】47:幂的乘方与积的乘方;35:合并同类项;46:同底数幂的乘法.【分析】根据同底数幂相乘,底数不变指数相加,幂的乘方,底数不变指数相乘,积的乘方,先把积的每一个因式分别乘方,再把所得到幂相乘,合并同类项,即把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.对各小题计算后利用排除法求解.【解答】解;A、x4•x4=x8,故A错误;B、(a3)2=a6,故B错误;C、(ab2)3=a2b6,故C错误;D、a+2a=3a,故D正确.故选:D.6.如图.从下列四个条件:①BC=B′C,②AC=A′C,③∠A′CA=∠B′CB,④AB=A′B′中,任取三个为条件,余下的一个为结论,则最多可以构成正确的结论的个数是()A.1个B.2个C.3个D.4个【考点】KD:全等三角形的判定与性质.【分析】根据全等三角形的判定定理,可以推出①②③为条件,④为结论,依据是“SAS”;①②④为条件,③为结论,依据是“SSS”.【解答】解:当①②③为条件,④为结论时:∵∠A′CA=∠B′CB,∴∠A′CB′=∠ACB,∵BC=B′C,AC=A′C,∴△A′CB′≌△ACB,∴AB=A′B′,当①②④为条件,③为结论时:∵BC=B′C,AC=A′C,AB=A′B′∴△A′CB′≌△ACB,∴∠A′CB′=∠ACB,∴∠A′CA=∠B′CB.故选B.7.如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2 B.﹣2 C.4 D.﹣4【考点】G5:反比例函数系数k的几何意义.【分析】根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.【解答】解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选D.8.如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2 B.4 C.6 D.8【考点】S4:平行线分线段成比例;LA:菱形的判定与性质;N2:作图—基本作图.【分析】根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF ∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.【解答】解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.9.如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是()A.2海里B.2sin55°海里 C.2cos55°海里 D.2tan55°海里【考点】TB:解直角三角形的应用﹣方向角问题.【分析】首先由方向角的定义及已知条件得出∠NPA=55°,AP=2海里,∠ABP=90°,再由AB∥NP,根据平行线的性质得出∠A=∠NPA=55°.然后解Rt△ABP,得出AB=AP•cos∠A=2cos55°海里.【解答】解:如图,由题意可知∠NPA=55°,AP=2海里,∠ABP=90°.∵AB∥NP,∴∠A=∠NPA=55°.在Rt△ABP中,∵∠ABP=90°,∠A=55°,AP=2海里,∴AB=AP•cos∠A=2cos55°海里.故选C.10.如图是一个几何体的三视图,则这个几何体的展开图可以是()A.B.C.D.【考点】U3:由三视图判断几何体;I6:几何体的展开图.【分析】由三视图的特征,可得这个几何体应该是圆柱;【解答】解:根据题意,这个几何体是圆柱;其展开图为:故选A.11.如果点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,那么x的取值范围在数轴上可表示为()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集;D1:点的坐标.【分析】根据第二象限内点的坐标特点列出关于x的不等式组,解之可得.【解答】解:∵点P(x﹣4,2x+6)在平面直角坐标系的第二象限内,∴,解得:﹣3<x<4,故选:C12.现定义运算“★”,对于任意实数a,b,都有a★b=a2﹣a×b+b,如:3★5=32﹣3×5+5,若x★2=10,则实数x的值为()A.﹣4或﹣l B.4或﹣l C.4或﹣2 D.﹣4或2【考点】2C:实数的运算.【分析】已知等式利用已知的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义化简x★2=10得:x2﹣2x+2=10,整理得:x2﹣2x﹣8=0,即(x﹣4)(x+2)=0,解得:x=4或x=﹣2,故选C13.二次函数y=x2﹣(12﹣k)x+12,当x>1时,y随着x的增大而增大,当x<1时,y 随着x的增大而减小,则k的值应取()A.12 B.11 C.10 D.9【考点】H3:二次函数的性质.【分析】据题意可知此函数的对称轴为x=1,把x=1代入对称轴公式x=,得=1,解方程可求k.【解答】解:∵当x>1时,y随着x的增大而增大,当x<1时,y随着x的增大而减小,∴函数的对称轴为x=1,根据对称轴公式x=,即=1,解得k=10.故选C.14.如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=,CE=1.则的长是()A.B.C.D.【考点】M2:垂径定理;KQ:勾股定理;KS:勾股定理的逆定理;MN:弧长的计算.【分析】连接OC,先根据勾股定理判断出△ACE的形状,再由垂径定理得出CE=DE,故=,由锐角三角函数的定义求出∠A的度数,故可得出∠BOC的度数,求出OC的长,再根据弧长公式即可得出结论.【解答】解:连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2,∴△ACE是直角三角形,即AE⊥CD,∵sinA==,∴∠A=30°,∴∠COE=60°,∴=sin∠COE,即=,解得OC=,∵AE⊥CD,∴=,∴===.故选:B.15.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5 B.2:3 C.3:5 D.3:2【考点】S9:相似三角形的判定与性质;L5:平行四边形的性质.【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出 DE:AB的值,由AB=CD即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选B.16.求1+2+22+23+…+22014的值,可令S=1+2+22+23+…+22014,则2S=2+22+23+24+…+22015,因此2S﹣S=22015﹣1,S=22015﹣1,我们把这种求和的方法叫错位相加减,仿照上述的思路方法,计算出1+5+52+53+…+52014的值为()A.52014﹣1 B.52015﹣1 C.D.【考点】4I:整式的混合运算.【分析】根据题目信息,设S=1+5+52+53+…+52014,表示出5S=5+52+53+…+52015,然后相减求出S即可..【解答】解:设S=1+5+52+53+ (52014)则5S=5+52+53+ (52015)5S﹣S=(5+52+53+…+52015)﹣(1+5+52+53+…+52014)=52015﹣1,所以,S=.故选:C.二、填空题(本大题共3小题,每小题3分,共9分)17.的立方根是 2 .【考点】24:立方根.【分析】根据算术平方根的定义先求出,再根据立方根的定义即可得出答案.【解答】解:∵=8,∴的立方根是2;故答案为:2.18.已知a2+b2=5,ab=﹣1,则a+b= .【考点】4C:完全平方公式.【分析】根据完全平方公式得到(a+b)2=a2+2ab+b2,再把ab=﹣1,a2+b2=5整体代入即可.【解答】解:∵(a+b)2=a2+2ab+b2,∴a+b=,故答案为19.如图,将顶点为P(1,﹣2),且过原点的抛物线y的一部分沿x轴翻折并向右平移2个单位长度,得到抛物线y1,其顶点为P1,然后将抛物线y1沿x轴翻折并向右平移2个单位长度,得到抛物线y2,其顶点为P2;…,如此进行下去,直至得到抛物线y2016,则点P2016坐标为.【考点】H6:二次函数图象与几何变换.【分析】根据图形的变换,可得规律:第n 次平移变换点的横坐标是2n+1,偶数次变换平移点的纵坐标是﹣2,奇数次变换平移点的坐标是2,可得答案.【解答】解:第一次变换平移点的坐标是(3,2),第二次变换平移点的坐标是(5,﹣2),第三次变换平移点的坐标是(7,2,)第n 次平移变换点的横坐标是2n+1,偶数次变换平移点的纵坐标是﹣2,奇数次变换平移点的坐标是2,点P 2016坐标为,故答案为:.三、解答题(本大题共7小题,共69分)20.(1)计算(﹣π)0﹣6tan30°+()﹣2+|1﹣|(2)先化简,再求值.+(其中m 是绝对值最小的实数)【考点】6D :分式的化简求值;2C :实数的运算;6E :零指数幂;T5:特殊角的三角函数值.【分析】(1)原式利用零指数幂法则,特殊角的三角函数值,负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果;(2)原式通分并利用同分母分式的减法法则计算,得到最简结果,求出m 的值代入计算即可求出值.【解答】解:(1)原式=1﹣2+4+﹣1=4﹣;(2)原式=﹣==﹣,由题意得到m=0,则原式=﹣.21.已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.【考点】L9:菱形的判定;KC:直角三角形全等的判定;L5:平行四边形的性质;Q2:平移的性质.【分析】(1)根据平移的性质,可得:BE=FC,再证明Rt△ABE≌Rt△CDG可得:BE=DG;(2)要使四边形ABFG是菱形,须使AB=BF;根据条件找到满足AB=BF的AB与BC满足的数量关系即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD.∵AE是BC边上的高,且CG是由AE沿BC方向平移而成.∴CG⊥AD.∴∠AEB=∠CGD=90°.∵AE=CG,∴Rt△ABE≌Rt△CDG(HL).∴BE=DG;(2)解:当BC=AB时,四边形ABFG是菱形.证明:∵AB∥GF,AG∥BF,∴四边形ABFG是平行四边形.∵Rt△ABE中,∠B=60°,∴∠BAE=30°,∵BC=AB∴BE=CF∴EF=AB∴AB=BF∴四边形ABFG是菱形,22.理解:(1)若直线l上有四个点A、B、C、D,则共有线段 6 条;(2)若直线l上有五个点A、B、C、D、E,则共有线段10 条;(3)若直线l上有n个点A、B、C…,则红柚线段条.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手45 次.(5)从A火车站到B火车站,中途有5站,若各车厢收费标准一样,则票价共有21 种.(6)某n边形共有54条对角线,求n.【考点】AD:一元二次方程的应用;L2:多边形的对角线.【分析】理解:直接利用线段的定义分别列举得出即可.应用:根据“理解”的(3)题得到的结论进行解答.【解答】解:理解:(1)直线l上有A、B、C、D四点,线段总条数是:3+2+1=6,故答案是:6;(2)若直线l上有五个点A、B、C、D、E,线段总条数是:4+3+2+1=10,故答案是:10;(3)若直线上有n个点时,线段总条数(n﹣1)+…+3+2+1=.应用:(4)在一次有10人的聚会上,每两个人握一次手,共握手的次数是: =45(次).故答案是:45;(5)从A火车站到B火车站,中途有5站,若各车厢收费标准一样,则票价共有: =21(种).故答案是:21;(6)依题意得: =54,解得:n 1=12,n 2=﹣9(舍去).所以n=12.23.某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试.现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表.训练后篮球定时定点投篮测试进球数统计表请你根据图表中的信息回答下列问题:(1)选择长跑训练的人数占全班人数的百分比为 10% ,该班学生的总人数为 40 ;(2)训练后篮球定时定点投篮人均进球数为5 ;(3)若将选择篮球的同学的进球数写在外观、大小一样的枝条上,放在不透明的盒子中,搅拌均匀后,从中抽取一张,则抽到4的概率是多少?【考点】X4:概率公式;VA :统计表;VB :扇形统计图;W2:加权平均数.【分析】(1)根据选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,进而得出训练篮球的人数和全班人数;(2)利用进球总数除以总人数即可得出平均数;(3)根据进球数为4的人数为8,运用公式进行计算,即可得到抽到4的概率.【解答】解:(1)选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%; 训练篮球的人数=2+1+4+7+8+2=24人,∴全班人数=24÷60%=40;故答案为:10%,40;(2)人均进球数==5;故答案为:5;(3)P(抽到4)==.24.如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C 两点,∠ABO=30°,OB=3OC.(1)试说明直线AC与直线AB垂直;(2)若点D在直线AC上,且DB=DC,求点D的坐标;(3)在(2)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)根据三角函数求出OB,即可求得OC,再由三角函数求得∠ACO,即可解决问题;(2)如图1中,过D作DE⊥x轴于E.由△ADE≌△ACO,推出DE=OC=1,AE=OA=,求出点D坐标;(3)A、B、P三点为顶点的三角形是等腰三角形,可分为以下三种情况:①AB=AP;②AB=BP;③AP=BP;然后分别求出P的坐标即可.【解答】解:(1)结论:AC⊥AB.理由如下:∵A(,0),∴OA=,∵∠ABO=30°,tan∠ABO==,∴BO=3,∵OB=3OC,∴OC=1,∴tan∠ACO==,∠ACO=60°,∴∠BAC=90°,∴AC⊥AB;(2)如图1中,过D作DE⊥x轴于E,∴∠DEA=∠AOC=90°,∵tan∠ACO==,∵∠DCB=60°∵DB=DC,∴△DBC是等边三角形,∵BA⊥DC,∴DA=AC,∵∠DAE=∠OAC,在△ADE和△ACO中,,∴△ADE≌△ACO,∴DE=OC=1,AE=OA=∴OE=2,∴D的坐标为(﹣2,1);(3)设直线BD的解析式为:y=mx+n,直线BD与x轴交于点E,把B(0,3)和D(﹣2,1)代入y=mx+n,∴,解得,∴直线BD的解析式为:y=x+3,令y=0代入y=x+3,∴x=﹣3,∴E(﹣3,0),∴OE=3,∴tan∠BEC===,∴∠BEO=30°,同理可求得:∠ABO=30°,∴∠ABE=30°,当PA=AB时,如图2,此时,∠BEA=∠ABE=30°,∴EA=AB,∴P与E重合,∴P的坐标为(﹣3,0),当PA=PB时,如图3,此时,∠PAB=∠PBA=30°,∵∠ABE=∠ABO=30°,∴∠PAB=∠ABO,∴PA∥BC,∴∠PAO=90°,∴点P的横坐标为﹣,令x=﹣代入y=x+3,∴y=2,∴P(﹣,2),当PB=AB时,如图4,∴由勾股定理可求得:AB=2,EB=6,若点P在y轴左侧时,记此时点P为P1,过点P1作P1F⊥x轴于点F,∴P1B=AB=2,∴EP1=6﹣2,∴sin∠BEO=,∴FP1=3﹣,令y=3﹣代入y=x+3,∴x=﹣3,∴P1(﹣3,3﹣),若点P在y轴的右侧时,记此时点P为P2,过点P2作P2G⊥x轴于点G,∴P2B=AB=2,∴EP2=6+2,∴sin∠BEO=,∴GP2=3+,令y=3+代入y=x+3,∴x=3,∴P2(3,3+),综上所述,当A、B、P三点为顶点的三角形是等腰三角形时,点P的坐标为(﹣3,0),(﹣,2),(﹣3,3﹣),(3,3+).25.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE= 90 度;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.【考点】KB:全等三角形的判定;KH:等腰三角形的性质.【分析】(1)问要求∠BCE的度数,可将它转化成与已知角有关的联系,根据已知条件和全等三角形的判定定理,得出△ABD≌△ACE,再根据全等三角形中对应角相等,最后根据直角三角形的性质可得出结论;(2)问在第(1)问的基础上,将α+β转化成三角形的内角和;(3)问是第(1)问和第(2)问的拓展和延伸,要注意分析两种情况.【解答】解:(1)90°.理由:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB,∴∠BCE=∠B+∠ACB,又∵∠BAC=90°∴∠BCE=90°;(2)①α+β=180°,理由:∵∠BAC=∠DAE,∴∠BAD+∠DAC=∠EAC+∠DAC.即∠BAD=∠CAE.在△ABD与△ACE中,∴△ABD≌△ACE(SAS),∴∠B=∠ACE.∴∠B+∠ACB=∠ACE+∠ACB.∴∠B+∠ACB=β,∵α+∠B+∠ACB=180°,∴α+β=180°;②当点D在射线BC上时,α+β=180°;理由:∵∠BAC=∠DAE,∴∠BAD=∠CAE,∵在△ABD和△ACE中∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠BCA=180°,∴∠BAC+∠BCE=∠BAC+∠BCA+∠ACE=∠BAC+∠BCA+∠B=180°,∴α+β=180°;当点D在射线BC的反向延长线上时,α=β.理由:∵∠DAE=∠BAC,∴∠DAB=∠EAC,∵在△ADB和△AEC中,∴△ADB≌△AEC(SAS),∴∠ABD=∠ACE,∵∠ABD=∠BAC+∠ACB,∠ACE=∠BCE+∠ACB,∴∠BAC=∠BCE,即α=β.26.如图,在平面直角坐标系xOy 中,抛物线y=x 2+与y 轴相交于点A ,点B 与点O 关于点A 对称(1)填空:点B 的坐标是 (0,) ; (2)过点B 的直线y=kx+b (其中k <0)与x 轴相交于点C ,过点C 作直线l 平行于y 轴,P 是直线l 上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由;(3)在(2)的条件下,若点C 关于直线BP 的对称点C′恰好落在该抛物线的对称轴上,求此时点P 的坐标.【考点】HF :二次函数综合题.【分析】(1)由抛物线解析式可求得A 点坐标,再利用对称可求得B 点坐标;(2)可先用k 表示出C 点坐标,过B 作BD ⊥l 于点D ,条件可知P 点在x 轴上方,设P 点纵坐标为y ,可表示出PD 、PB 的长,在Rt △PBD 中,利用勾股定理可求得y ,则可求出PB 的长,此时可得出P 点坐标,代入抛物线解析式可判断P 点在抛物线上;(3)利用平行线和轴对称的性质可得到∠OBC=∠CBP=∠C′BP=60°,则可求得OC 的长,代入抛物线解析式可求得P 点坐标.【解答】解:(1)∵抛物线y=x 2+与y 轴相交于点A ,∴A (0,),∵点B 与点O 关于点A 对称,∴BA=OA=,∴OB=,即B 点坐标为(0,),故答案为:(0,);(2)∵B 点坐标为(0,),∴直线解析式为y=kx+,令y=0可得kx+=0,解得x=﹣,∴OC=﹣,∵PB=PC,∴点P只能在x轴上方,如图1,过B作BD⊥l于点D,设PB=PC=m,则BD=OC=﹣,CD=OB=,∴PD=PC﹣CD=m﹣,在Rt△PBD中,由勾股定理可得PB2=PD2+BD2,即m2=(m﹣)2+(﹣)2,解得m=+,∴PC=+,∴P点坐标为(﹣, +),当x=﹣时,代入抛物线解析式可得y=+,∴点P在抛物线上;(3)如图2,连接CC′,∵l∥y轴,∴∠OBC=∠PCB,又PB=PC,∴∠PCB=∠PBC,∴∠PBC=∠OBC,又C、C′关于BP对称,且C′在抛物线的对称轴上,即在y轴上,∴∠PBC=∠PBC′,∴∠OBC=∠CBP=∠C′BP=60°,在Rt△OBC中,OB=,则BC=1∴OC=,即P点的横坐标为,代入抛物线解析式可得y=()2+=1,∴P点坐标为(,1).。
2017年河北省唐山市路北区中考数学三模试卷一、选择题(本大题共16小题.)1. (3分)下面的数中,与﹣2的和为0的是()A. 2B. ﹣2C.D. -【答案】A【解析】∵-2+2=0,故选A.视频2. (3分)把x3﹣9x分解因式,结果正确的是()A. x(x2﹣9)B. x(x﹣3)2C. x(x+3)2D. x(x+3)(x﹣3)【答案】D【解析】试题分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.3. (3分)下列说法正确的是()A. 为了审核书稿中的错别字,选择抽样调查B. 为了了解春节联欢晚会的收视率,选择全面调查C. “射击运动员射击一次,命中靶心”是随机事件D. “经过有交通信号灯的路口,遇到红灯”是必然事件【答案】C【解析】试题分析:为了审核书稿中的错别字,应选择全面调查,A错误;为了了解春节联欢晚会的收视率,选择抽样调查,B错误;“射击运动员射击一次,命中靶心”是随机事件,C正确;“经过由交通信号灯的路口,遇到红灯”是随机事件,D错误.故选C.考点:随机事件;全面调查与抽样调查.4. (3分)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是()A. 0.69×10﹣6B. 6.9×10﹣7C. 69×10﹣8D. 6.9×107【答案】B【解析】试题解析:0.00 000 069=6.9×10-7,故选B.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.5. (3分)一个正多边形的内角和是外角和的2倍,则这个正多边形的每个外角为()A. 50°B. 60°C. 45°D. 120°【答案】B(n-2)²·180°=360°×2解得n=6360°÷6=60°故答案为:B.6. (3分)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A. B. C. D.【答案】D【解析】根据左视图的规则,易选A.视频7. (3分)下列说法正确的是()A. 若a<0,则<0B. x实数,且x2=a,则a>0C. 有意义时,x≤0D. 0.1的平方根是±0.01【答案】C【解析】试题分析:根据算术平方根的意义,可知=|a|>0,故A不正确;根据一个数的平方为非负数,可知a≥0,故不正确;根据二次根式的有意义的条件可知-x≥0,求得x≤0,故正确;根据一个数的平方等于a,那么这个数就是a的平方根,故不正确.故选:C8. (3分)化简的结果是()A. B. C. D. 2(x+1)【答案】A【解析】原式=,故选A.9. (3分)当0<x<1时,x2、x、的大小顺序是()A. x2<x<B. <x<x2C. <x2<xD. x<x2<【答案】A【解析】∵0<x<1,∴令x=,则x2=,,∴x2<x<.故选A.【点睛】此题主要考查了实数的大小的比较,当给出未知的字母较小的范围时,可选用取特殊值的方法进行比较,以简化计算.10. (3分)如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:﹣的相反数是()A.﹣ B. C.﹣3 D.3试题2:实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d试题3:甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A. B. C.D.试题4:评卷人得分下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A. B. C.D.试题5:如图,直线a∥b,∠1=75°,∠2=35°,则∠3的度数是()A.75° B.55° C.40° D.35°试题6:在(﹣1)2017,(﹣3)0,,()﹣2,这四个数中,最大的数是()A.(﹣1)2017 B.(﹣3)0 C. D.()﹣2试题7:小华班上比赛投篮,每人5次,如图是班上所有学生的投篮进球数的扇形统计图,则下列关于班上所有学生投进球数的统计量正确的是()A.中位数是3个 B.中位数是2.5个C.众数是2个 D.众数是5个如图,∠A是⊙O的圆周角,∠OBC=55°,则∠A=()A.35° B.45° C.55° D.70°试题9:如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE试题10:定义新运算:对于任意实数m、n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程:2x2﹣bx+a=0的根的情况()A.有两个相等的实数根 B.有两个不相等的实数根C.无实数根 D.有一根为0试题11:如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB (阴影部分)的面积为()A.6π B.18 C.18π D.20一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:会员年卡类型办卡费用(元)每次游泳收费(元)A 类50 25B 类200 20C 类400 15例如,购买A类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于45~55次之间,则最省钱的方式为()A.购买A类会员年卡 B.购买B类会员年卡C.购买C类会员年卡 D.不购买会员年卡试题13:一个寻宝游戏的寻宝通道如图1所示,通道由在同一平面内的AB,BC,CA,OA,OB,OC组成.为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器.设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图象大致如图2所示,则寻宝者的行进路线可能为()A.A→O→B B.B→A→C C.B→O→C D.C→B→O试题14:如图,在x轴上方,∠BOA=90°且其两边分别与反比例函数y=﹣、y=的图象交于B、A两点,则∠OAB的正切值为()A. B. C. D.试题15:如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为()A. B.2﹣2 C.2﹣2 D.4试题16:如图,已知抛物线y1=﹣x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有()A.1个 B.2个 C.3个 D.4个试题17:64的立方根为.试题18:如图,小军、小珠之间的距离为2.7m,他们在同一盏路灯下的影长分别为1.8m,1.5m,已知小军、小珠的身高分别为1.8m,1.5m,则路灯的高为m.试题19:如图,在平面直角坐标系中,∠AOB=30°,点A坐标为(2,0),过A作AA1⊥OB,垂足为点A1;过点A1作A1A2⊥x轴,垂足为点A2;再过点A2作A2A3⊥OB,垂足为点A3;则A2A3= ;再过点A3作A3A4⊥x轴,垂足为点A4…;这样一直作下去,则A2017的纵坐标为.试题20:先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.试题21:在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示的正整数后,背面向上,洗匀放好.(1)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,嘉嘉从中随机抽取一张,求抽到的卡片上的数是勾股数的概率P1;(2)琪琪从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张(卡片用A,B,C,D表示).请用列表或画树形图的方法求抽到的两张卡片上的数都是勾股数的概率P2,并指出她与嘉嘉抽到勾股数的可能性一样吗?试题22:P n表示n边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么P n与n的关系式是:P n=•(n2﹣an+b)(其中a,b是常数,n≥4)(1)通过画图,可得:四边形时,P4= ;五边形时,P5=(2)请根据四边形和五边形对角线交点的个数,结合关系式,求a,b的值.试题23:如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?试题24:两块等腰直角三角板△ABC和△DEC如图摆放,其中∠ACB=∠DCE=90°,F是DE的中点,H是AE的中点,G是BD的中点.(1)如图1,若点D、E分别在AC、BC的延长线上,通过观察和测量,猜想FH和FG的数量关系为和位置关系为;(2)如图2,若将三角板△DEC绕着点C顺时针旋转至ACE在一条直线上时,其余条件均不变,则(1)中的猜想是否还成立,若成立,请证明,不成立请说明理由;(3)如图3,将图1中的△DEC绕点C顺时针旋转一个锐角,得到图3,(1)中的猜想还成立吗?直接写出结论,不用证明.试题25:在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?试题26:如图,抛物线y=x2﹣2x﹣3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.(1)求A、B两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,(不与A、C重合),过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值,并直接写出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,请说明理由.试题1答案:B【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是.故选:B.试题2答案:A【考点】实数大小比较.【分析】首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.试题3答案:D【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.试题4答案:C【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,可得答案.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.试题5答案:C【考点】平行线的性质;三角形的外角性质.【分析】根据平行线的性质得出∠4=∠1=75°,然后根据三角形外角的性质即可求得∠3的度数.【解答】解:∵直线a∥b,∠1=75°,∴∠4=∠1=75°,∵∠2+∠3=∠4,∴∠3=∠4﹣∠2=75°﹣35°=40°.故选C.试题6答案:D【考点】实数大小比较;算术平方根;零指数幂;负整数指数幂.【分析】任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数.【解答】解:∵(﹣1)2017=﹣1,(﹣3)0=1,=3,()﹣2=4,∴四个数中,最大的数是()﹣2,故选:D.试题7答案:C【考点】扇形统计图;中位数;众数.【分析】根据中位数和众数的定义,结合扇形统计图,选出正确选项即可.【解答】解:由图可知:班内同学投进2球的人数最多,故众数为2;因为不知道每部分的具体人数,所以无法判断中位数.故选C.试题8答案:A【考点】圆周角定理.【分析】根据等腰三角形的性质和三角形内角和定理求出∠BOC的度数,根据圆周角定理计算即可.【解答】解:∵OB=OC,∠OBC=55°,∴∠OCB=55°,∴∠BOC=180°﹣55°﹣55°=70°,由圆周角定理得,∠A=∠BOC=35°,故选:A.试题9答案:D【考点】翻折变换(折叠问题).【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选D.试题10答案:B【考点】根的判别式;实数的运算.【分析】先利用新定义得到22•a+a<0,解得a<0,再计算判别式,利用a的范围可判断△>0,从而可判断方程根的情况.【解答】解:∵2☆a的值小于0,∴22•a+a<0,解得a<0,∴△=b2﹣4×2×a>0,∴方程有两个不相等的两个实数根.故选B.B【考点】正多边形和圆;扇形面积的计算.【分析】由正六边形的性质得出的长=12,由扇形的面积=弧长×半径,即可得出结果.【解答】解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=18.故选:B.试题12答案:C【考点】一次函数的应用.【分析】设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤55时,确定y的范围,进行比较即可解答.【解答】解:设一年内在该游泳馆游泳的次数为x次,消费的钱数为y元,根据题意得:y A=50+25x,y B=200+20x,y C=400+15x,当45≤x≤55时,1175≤y A≤1425;1100≤y B≤1300;1075≤y C≤1225;由此可见,C类会员年卡消费最低,所以最省钱的方式为购买C类会员年卡.故选:C.C【考点】动点问题的函数图象.【分析】根据函数的增减性:不同的观察点获得的函数图象的增减性不同,可得答案.【解答】解:A、从A点到O点y随x增大一直减小,从O到B先减小后增发,故A不符合题意;B、从B到A点y随x的增大先减小再增大,从A到C点y随x的增大先减小再增大,但在A点距离最大,故B不符合题意;www-2-1-cnjy-comC、从B到O点y随x的增大先减小再增大,从O到C点y随x的增大先减小再增大,在B、C点距离最大,故C符合题意;D、从C到M点y随x的增大而减小,一直到y为0,从M点到B点y随x的增大而增大,明显与图象不符,故D不符合题意;故选:C.试题14答案:B【考点】反比例函数图象上点的坐标特征;解直角三角形.【分析】作辅助线;首先证明△BOM∽△OAN,得到=,设B(﹣m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,运用三角函数的定义证明知tan∠OAB=.【解答】解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴=;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=,故选B.试题15答案:B【考点】点与圆的位置关系;矩形的性质;圆周角定理.【分析】由AE⊥BE知点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,当点E位于点E′位置时,线段CE取得最小值,利用勾股定理可得答案.【解答】解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接CO交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故选:B.试题16答案:B【考点】二次函数的性质.【分析】若y1=y2,记M=y1=y2.首先求得抛物线与直线的交点坐标,利用图象可得当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;然后根据当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;即可求得答案.【解答】解:∵当y1=y2时,即﹣x2+4x=2x时,解得:x=0或x=2,∴当x>2时,利用函数图象可以得出y2>y1;当0<x<2时,y1>y2;当x<0时,利用函数图象可以得出y2>y1;∴①错误;∵抛物线y1=﹣x2+4x,直线y2=2x,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;∴当x<0时,根据函数图象可以得出x值越大,M值越大;∴②正确;∵抛物线y1=﹣x2+4x的最大值为4,故M大于4的x值不存在,∴③正确;∵如图:当0<x<2时,y1>y2;当M=2,2x=2,x=1;x>2时,y2>y1;当M=2,﹣x2+4x=2,x1=2+,x2=2﹣(舍去),∴使得M=2的x值是1或2+,∴④错误;∴正确的有②③两个.故选:B.试题17答案:4 .【考点】立方根.【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故答案为:4.试题18答案:3 m.【考点】中心投影.【分析】根据CD∥AB∥MN,得到△ABE∽△CDE,△ABF∽△MNF,根据相似三角形的性质可知,,即可得到结论.【解答】解:如图,∵CD∥AB∥MN,∴△ABE∽△CDE,△ABF∽△MNF,∴,,即,,解得:AB=3m,答:路灯的高为3m.试题19答案:.【考点】规律型:点的坐标;含30度角的直角三角形.【分析】根据含30°的直角三角形的性质结合图形即可得到规律“OA n=OA=2”,依此规律即可解决问题.【解答】解:∵∠AOB=30°,点A坐标为(2,0),∴OA=2,∴OA1=OA=,OA2=OA1═,OA3=OA2═,OA4=OA3═,…,∴OA n=OA=2.∵∠AOB=30°,∴A2A3=OA2=,∴A2017A2018=OA2017=.故答案为:;.试题20答案:【考点】分式的化简求值;一元一次不等式组的整数解.【分析】先算括号里面的,再算除法,求出x的取值范围,选出合适的x的值代入求值即可.【解答】解:原式=•=﹣•=,解不等式组得,﹣1≤x<,当x=2时,原式==﹣2.试题21答案:【考点】列表法与树状图法;勾股数.【分析】(1)根据概率公式求解可得;(2)利用树状图展示12种等可能的结果数,根据勾股数可判定只有A卡片上的三个数不是勾股数,则可从12种等可能的结果数中找出抽到的两张卡片上的数都是勾股数的结果数,然后根据概率公式求解.【解答】解:(1)嘉嘉随机抽取一张卡片共出现4种等可能结果,其中抽到的卡片上的数是勾股数的结果有3种,所以嘉嘉抽取一张卡片上的数是勾股数的概率P1=;(2)列表法:A B C DA (A,B)(A,C)(A,D)B (B,A)(B,C)(B,D)C (C,A)(C,B)(C,D)D (D,A)(D,B)(D,C)由列表可知,两次抽取卡片的所有可能出现的结果有12种,其中抽到的两张卡片上的数都是勾股数的有6种,∴P2==,∵P1=,P2=,P1≠P2∴淇淇与嘉嘉抽到勾股数的可能性不一样.试题22答案:【考点】作图—应用与设计作图;二元一次方程的应用;多边形的对角线.【分析】(1)依题意画出图形,数出图形中对角线交点的个数即可得出结论;(2)将(1)中的数值代入公式可得出关于a、b的二元一次方程组,解方程组即可得出结论.【解答】解:(1)画出图形如下.由画形,可得:当n=4时,P4=1;当n=5时,P5=5.故答案为:1;5.(2)将(1)中的数值代入公式,得:,解得:.试题23答案:【考点】切线的判定与性质;勾股定理;解直角三角形.【分析】(1)过点O作OM⊥AB,垂足是M,证明OM等于圆的半径OD即可;(2)过点O作ON⊥BE,垂足是N,连接OF,则四边形OMBN是矩形,在直角△OBM利用三角函数求得OM和BM的长,则BN和ON即可求得,在直角△ONF中利用勾股定理求得NF,则BF即可求解.【解答】解:(1)过点O作OM⊥AB,垂足是M.∵⊙O与AC相切于点D.∴OD⊥AC,∴∠ADO=∠AMO=90°.∵△ABC是等边三角形,∴∠DAO=∠MAO,∴OM=OD.∴AB与⊙O相切;(2)过点O作ON⊥BE,垂足是N,连接OF.∵AB=AC,AO⊥BC,∴O是BC的中点,∴OB=2.在直角△OBM中,∠MBO=60°,∴OM=OB•sin60°=,BM=OB•cos60°=1.∵BE⊥AB,∴四边形OMBN是矩形.∴ON=BM=1,BN=OM=.∵OF=OM=,由勾股定理得NF=.∴BF=BN+NF=+.试题24答案:【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;三角形中位线定理.【分析】(1)证AD=BE,根据三角形的中位线推出FH=AD,FH∥AD,FG=BE,FG∥BE,即可推出答案;(2)证△ACD≌△BCE,推出AD=BE,根据三角形的中位线定理即可推出答案;(3)连接BE、AD,根据全等推出AD=BE,根据三角形的中位线定理即可推出答案.【解答】(1)解:∵CE=CD,AC=BC,∠ECA=∠DCB=90°,∴BE=AD,∵F是DE的中点,H是AE的中点,G是BD的中点,∴FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,∵AD⊥BE,∴FH⊥FG,故答案为:相等,垂直.(2)答:成立,证明:∵CE=CD,∠ECD=∠ACD=90°,AC=BC,∴△ACD≌△BCE∴AD=BE,由(1)知:FH=AD,FH∥AD,FG=BE,FG∥BE,∴FH=FG,FH⊥FG,∴(1)中的猜想还成立.(3)答:成立,结论是FH=FG,FH⊥FG.连接AD,BE,两线交于Z,AD交BC于X,同(1)可证∴FH=AD,FH∥AD,FG=BE,FG∥BE,∵三角形ECD、ACB是等腰直角三角形,∴CE=CD,AC=BC,∠ECD=∠ACB=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,∴△ACD≌△BCE,∴AD=BE,∠EBC=∠DAC,∵∠DAC+∠CXA=90°,∠CXA=∠DXB,∴∠DXB+∠EBC=90°,∴∠EZA=180°﹣90°=90°,即AD⊥BE,∵FH∥AD,FG∥BE,∴FH⊥FG,即FH=FG,FH⊥FG,结论是FH=FG,FH⊥FG试题25答案:【考点】解直角三角形的应用﹣方向角问题.【分析】(1)求出OC,由题意r≥OC,由此即可解决问题.(2)作AM⊥BC于M,求出AM即可解决问题.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,先列出方程求出x,再求出BN、AN利用不等式解决问题.【解答】解:(1)在RT△OBC中,∵BO=80,BC=60,∠OBC=90°,∴OC===100,∵OC=×100=50∴雷达的有效探测半径r至少为50海里.(2)作AM⊥BC于M,∵∠ACB=30°,∠CBA=60°,∴∠CAB=90°,∴AB=BC=30,在RT△ABM中,∵∠AMB=90°,AB=30,∠BAM=30°,∴BM=AB=15,AM=BM=15,∴此时敌舰A离△OBC海域的最短距离为15海里.(3)假设B军舰在点N处拦截到敌舰.在BM上取一点H,使得HB=HN,设MN=x,∵∠HBN=∠HNB=15°,∴∠MHN=∠HBN+∠HNB=30°,∴HN=HB=2x,MH=x,∵BM=15,∴15=x+2x,x=30﹣15,∴AN=30﹣30,BN==15(﹣),设B军舰速度为a海里/小时,由题意≤,∴a≥20.∴B军舰速度至少为20海里/小时.试题26答案:【考点】二次函数综合题.【分析】(1)令y=0得到关于x的方程,解方程可求得点A和点B的横坐标,将x=2代入抛物线的解析式求得对应的y 值可求得点C的纵坐标,设直线AC的解析式为y=kx+b,将点A和点C的坐标代入求得k和b的值即可;(2)设P点的横坐标为x(﹣1≤x≤2)则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3),然后得到PE与x 的函数关系式,利用二次函数的性质可求得PE的最大值,最后依据S△ACE=×PE×(x C﹣x A)求解即可;(3)设点F的坐标为(a,0),点G的坐标为(x,y),依据中点坐标公式求得点G的坐标,然后将点G的坐标代入抛物线的解析式求得对应的a的值即可.【解答】解(1)当y=0时,解得x1=﹣1或x2=3,∴A(﹣1,0)B(3,0).将C点的横坐标x=2代入y=x2﹣2x﹣3得y=﹣3,∴C(2,﹣3).设直线AC的解析式为y=kx+b,将点A和点C的坐标代入得:,解得:k=﹣1,b=﹣1.∴直线AC的函数解析式是y=﹣x﹣1.(2)设P点的横坐标为x(﹣1≤x≤2)则P、E的坐标分别为:P(x,﹣x﹣1),E(x,x2﹣2x﹣3)∵P点在E点的上方,∴PE=(﹣x﹣1)﹣(x2﹣2x﹣3)=﹣x2+x+2=﹣(x﹣)2+.∴当x=时,PE的最大值为.∴S△ACE=×PE×(x C﹣x A)=××3=.(3)当AC为平行四边形的对角线时.设点F的坐标为(a,0),点G的坐标为(x,y).∵平行四边形的对角线互相平分,∴依据中点坐标公式可知:,.∴y=﹣3,x=1﹣a.∵点G在抛物线上,∴﹣3=(1﹣a)2﹣2(1﹣a)﹣3,整理得:a2﹣1=0,解得a=﹣1或a=﹣1(舍去).∴点F的坐标为(1,0).当AC为平行四边形的边,CF为对角线时.设点F的坐标为(a,0),点G的坐标为(x,y).∵平行四边形的对角线互相平分,∴依据中点坐标公式可知:,=.∴y=﹣3,x=a+3∵点G在抛物线上,∴﹣3=(a+3)2﹣2(a+3)﹣3,整理得:a2+4a+3=0,将a=﹣3或a=﹣1(舍去)∴点F的坐标为(﹣3,0).当AC为平行四边形的边,CG为对角线时.设点F的坐标为(a,0),点G的坐标为(x,y).∵平行四边形的对角线互相平分,∴依据中点坐标公式可知:,=.∴y=3,x=a﹣3∵点G在抛物线上,∴3=(a﹣3)2﹣2(a﹣3)﹣3,整理得:a2﹣8a+9=0,解得a=4+或a=4.∴点F的坐标为(4+,0)或(4﹣).综上所述,点F的坐标为(1,0)或(﹣3,0)或(4+,0)或(4﹣).。
2017河北数学中考模拟试卷解析中考数学试卷一直受到社会的广泛关注和重视,考生想要提升自己的中考模拟试题需要多做模拟练习,以下是小编精心整理的2017河北数学中考模拟试题解析,希望能帮到大家!2017河北数学中考模拟试题一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 的值等于( )A.4B.﹣4C.±4D.2.函数y= 中,自变量x的取值范围为( )A.x>B.x≠C.x≠ 且x≠0D.x<3.下列图案中,是轴对称图形但不是中心对称图形的是( )A. B. C. D.4.下列运算正确的是( )A.x4+x2=x6B.x2•x3=x6C.(x2)3=x6D.x2﹣y2=(x﹣y)25.若一组数据3,x,4,5,6的众数是3,则这组数据的中位数为( )A.3B.4C.5D.66.若y=kx﹣4的函数值y随x的增大而减小,则k的值可能是下列的( )A.﹣4B.0C.1D.37.已知等腰△ABC的两条边的长度是一元二次方程x2﹣6x+8=0的两根,则△ABC的周长是 ( )A.10B.8C.6D.8或108.如图,A、D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=()A.64°B.58°C.72°D.55°9.如图,圆锥底面半径为rcm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为( )A.3B.6C.3πD.6π10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )A. B. C. D.二、填空题(本大题共6小题,每小题4分,共24分)11.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为.12.因式分解:m2n﹣6mn+9n= .13.如图,△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边BC上A1处,折痕为CD,则∠A1DB= 度.14.如图,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为m(结果保留根号).15.不等式组的解集是.16.如图,△ABC和△DEF有一部分重叠在一起(图中阴影部分),重叠部分的面积是△ABC面积的,是△DEF面积的,且△ABC与△DEF面积之和为26,则重叠部分面积是.三、解答题(本大题共3小题,每题6分共18分)17.解方程: =5.18.先化简,再求值:2a(a+2b)+(a﹣2b)2,其中a=﹣1, .19.如图,在△ABC中,∠C=90°,∠B=30°.(1)作∠A的平分线AD,交BC于点D(用尺规作图,不写作法,但保留作图痕迹,然后用墨水笔加黑);(2)计算S△DAC:S△ABC的值.四、解答题(本大题共3小题,每题7分共21分)20.为了解某市初三学生的体育测试成绩和课外体育锻炼时间的情况,现从全市初三学生体育测试成绩中随机抽取200名学生的体育测试成绩作为样本.体育成绩分为四个等次:优秀、良好、及格、不及格.体育锻炼时间人数4≤x≤62≤x<4 430≤x<2 15(1)试求样本扇形图中体育成绩“良好”所对扇形圆心角的度数;(2)统计样本中体育成绩“优秀”和“良好”学生课外体育锻炼时间表(如图表所示),请将图表填写完整(记学生课外体育锻炼时间为x小时);(3)全市初三学生中有14400人的体育测试成绩为“优秀”和“良好”,请估计这些学生中课外体育锻炼时间不少于4小时的学生人数.21.某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?22.如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.五、解答题(本大题共3小题,每题9分共27分)23.如图,直线y=mx与双曲线y= 相交于A、B两点,A点的坐标为(1,2),AC⊥x轴于C,连结BC.(1)求反比例函数的表达式;(2)根据图象直接写出当mx> 时,x的取值范围;(3)在平面内是否存在一点D,使四边形ABDC为平行四边形?若存在,请求出点D坐标;若不存在,请说明理由.24.如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.25.如图,已知抛物线y=﹣ x2﹣ x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.。
2017年河北省唐山市路北区中考数学一模试卷一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分,共42分)1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.22.(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.63.下列四个立体图形中,主视图为圆的是()A.B.C.D.4.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.把分式方程转化为一元一次方程时,方程两边需同乘以()A.x B.2x C.x+4 D.x(x+4)6. +的运算结果正确的是()A. B. C. D.a+b7.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°8.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=09.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是()A.B.C.D.10.自来水公司为了解居民某月用水请款个,随机抽取了20户居民的月用水量x(单位:立方米),绘制出表格,则月用水量x<3的频率是()A.0.15 B.0.3 C.0.8 D.0.911.如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠412.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.213.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确14.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)点,其中a>0,若∠BAC=100°,则△ABC的外心在()A.第一象限 B.第二象限 C.第三象限 D.第四象限15.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.16.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B. C. D.二、填空题(本大题共3个小题;17-18每小题3分,19题每空2分,共10分)17.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为.18.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小明打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小明抽出的两颗求颜色相同的概率为.19.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右做平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在左侧作等边△APQ,连接PB、BA.(1)当AB∥PQ时,点P的横坐标是;(2)当BP∥QA时,点P的横坐标是.三、解答题(本大题共7个小题,共68分)20.先化简,再求值:,其中x满足方程:x2+x﹣6=0.21.国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为°;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)22.如图,已知边长为6的等边△ABC内接于⊙O.(1)求⊙O半径;(2)求的长和弓形BC的面积.23.如图,已知一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x 轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由.25.某高新企业员工的工资由基础工资、绩效工资和工龄工资三部分组成,其中工龄工资的制定充分了考虑员工对企业发展的贡献,同时提高员工的积极性,控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案.Ⅰ.工龄工资分为社会工龄工资和企业工龄工资;Ⅱ.社会工龄=参加本企业工作时年龄﹣18,企业工龄=现年年龄﹣参加本企业工作时年龄.Ⅲ.当年工作时间计入当年工龄Ⅳ.社会工龄工资y1(元/月)与社会工龄x(年)之间的函数关系式如①图所示,企业工龄工资y2(元/月)与企业工龄x(年)之间的函数关系如图②所示.请解决以下问题(1)求出y1、y2与工龄x之间的函数关系式;(2)现年28岁的高级技工小张从18岁起一直实行同样工龄工资制度的外地某企业工作,为了方便照顾老人与小孩,今年小张回乡应聘到该企业,试计算第一年工龄工资每月下降多少元?(3)已经在该企业工作超过3年的李工程师今年48岁,试求出他的工资最高每月多少元?26.如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为;用含t的式子表示点P的坐标为;(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6),并求当t为何值时,S有最大值?(3)试探究:在上述运动过程中,是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC的?若存在,求出点T的坐标;若不存在,请说明理由.2017年河北省唐山市路北区中考数学一模试卷参考答案与试题解析一、选择题(本大题共16个小题;1-10小题,每题3分;11-16小题,每题2分,共42分)1.(﹣2)0的值为()A.﹣2 B.0 C.1 D.2【考点】6E:零指数幂.【分析】根据零指数幂的运算法则求出(﹣2)0的值【解答】解:(﹣2)0=1.故选C.2.(﹣2)×3的结果是()A.﹣5 B.1 C.﹣6 D.6【考点】1C:有理数的乘法.【分析】根据两数相乘同号得正,异号得负,再把绝对值相乘,可得答案.【解答】解:原式=﹣2×3=﹣6.故选:C.3.下列四个立体图形中,主视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是正方形,故此选项错误;B、主视图是圆,故此选项正确;C、主视图是三角形,故此选项错误;D、主视图是长方形,故此选项错误;故选:B.4.一个正方形的面积是15,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间D.5与6之间【考点】2B:估算无理数的大小;22:算术平方根.【分析】先根据正方形的面积是15计算出其边长,在估算出该数的大小即可.【解答】解:∵一个正方形的面积是15,∴该正方形的边长为,∵9<15<16,∴3<<4.故选B.5.把分式方程转化为一元一次方程时,方程两边需同乘以()A.x B.2x C.x+4 D.x(x+4)【考点】B3:解分式方程.【分析】根据各分母寻找公分母x(x+4),方程两边乘最简公分母,可以把分式方程转化为整式方程.【解答】解:由两个分母(x+4)和x可得最简公分母为x(x+4),所以方程两边应同时乘以x(x+4).故选D.6. +的运算结果正确的是()A. B. C. D.a+b【考点】6B:分式的加减法.【分析】首先通分,把、都化成以ab为分母的分式,然后根据同分母分式加减法法则,求出+的运算结果正确的是哪个即可.【解答】解: +=+=故+的运算结果正确的是.故选:C.7.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【考点】JB:平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.8.下列一元二次方程没有实数根的是()A.x2+2x+1=0 B.x2+x+2=0 C.x2﹣1=0 D.x2﹣2x﹣1=0【考点】AA:根的判别式.【分析】求出每个方程的根的判别式,然后根据判别式的正负情况即可作出判断.【解答】解:A、△=22﹣4×1×1=0,方程有两个相等实数根,此选项错误;B、△=12﹣4×1×2=﹣7<0,方程没有实数根,此选项正确;C、△=0﹣4×1×(﹣1)=4>0,方程有两个不等的实数根,此选项错误;D、△=(﹣2)2﹣4×1×(﹣1)=8>0,方程有两个不等的实数根,此选项错误;故选:B.9.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【分析】首先根据数轴求得不等式组的解集,再分别求A,B,C,D各不等式组的解集,即可求得答案.【解答】解:∵,∴这个不等式组的解集为:﹣1<x≤2,A、解不等式组得:x>1,故本选项错误;B、解不等式组得:﹣2<x≤1,故本选项错误;C、解不等式组得:﹣1≤x<2,故本选项错误;D、解不等式组得:﹣1<x≤2,故本选项正确.故选D.10.自来水公司为了解居民某月用水请款个,随机抽取了20户居民的月用水量x(单位:立方米),绘制出表格,则月用水量x<3的频率是()A.0.15 B.0.3 C.0.8 D.0.9【考点】V6:频数与频率.【分析】先根据表格找出月用水量x<3的总户数,然后根据频率=求解即可.【解答】解:由图可得,月用水量x<3的总户数为:1+2+3+4+3+3=16,则频率==0.8.故选C.11.如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?()A.∠1<∠2 B.∠1>∠2 C.∠3<∠4 D.∠3>∠4【考点】LE:正方形的性质.【分析】根据正方形的每一个角都是直角求出∠BAD=∠EAG=90°,然后根据同角的余角相等可得∠1=∠2,根据直角三角形斜边大于直角边可得AE>AB,从而得到AG>AB,再根据三角形中长边所对的角大于短边所对的角求出∠3>∠4.【解答】解:∵四边形ABCD、AEFG均为正方形,∴∠BAD=∠EAG=90°,∵∠BAD=∠1+∠DAE=90°,∠EAG=∠2+∠DAE=90°,∴∠1=∠2,在Rt△ABE中,AE>AB,∵四边形AEFG是正方形,∴AE=AG,∴AG>AB,∴∠3>∠4.故选D.12.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【考点】KF:角平分线的性质.【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故选C.13.如图,△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求对于两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确【考点】KG:线段垂直平分线的性质;M1:圆的认识;N2:作图—基本作图.【分析】根据甲乙两人作图的作法即可证出结论.【解答】解:甲:如图1,∵MN是AB的垂直平分线,∴AP=BP,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠ABC,∴甲正确;乙:如图2,∵AB=BP,∴∠BAP=∠APB,∵∠APC=∠BAP+∠B,∴∠APC≠2∠ABC,∴乙错误;故选C.14.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)点,其中a>0,若∠BAC=100°,则△ABC的外心在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】MA:三角形的外接圆与外心;D5:坐标与图形性质.【分析】根据钝角三角形的外心在三角形的外部即可得出结论.【解答】解:∵B(﹣9,0)、C(10,0),∴△ABC的外心在直线x=上.∵∠BAC=100°,∴△ABC的外心在三角形的外部,∴△ABC的外心在第四象限.故选D.15.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.【考点】S9:相似三角形的判定与性质;LB:矩形的性质;LE:正方形的性质.【分析】由四边形ABCD,BEFG是正方形,得到BC=CD=AB=5,GF=BG=3,∠C=∠BGF=∠GFE=∠CGF=∠GFH=90°,根据四边形DGHI是矩形,得到∠DGH=90°,于是得到∠DGC=∠FGH,推出△DGC∽△HGF,得到比例式,求得FH的长度,代入三角形的面积公式即可求出结果.【解答】解:∵四边形ABCD,BEFG是正方形,∴BC=CD=AB=5,GF=BG=3,∠C=∠BGF=∠GFE=∠CGF=∠GFH=90°,∵四边形DGHI是矩形,∴∠DGH=90°,∴∠DGC+∠CGH=∠FGH+∠HGC=90°,∴∠DGC=∠FGH,∴△DGC∽△HGF,∴=,∴FH===,∴S△FHG=GF•FH=,故选D.16.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B. C. D.【考点】E7:动点问题的函数图象.【分析】运用动点函数进行分段分析,当P在BC上与CD上时,分别求出函数解析式,再结合图象得出符合要求的解析式.【解答】解:∵AB=2,BC=1,动点P从点B出发,P点在BC上时,BP=x,AB=2,∴△ABP的面积S=×AB×BP=×2x=x;动点P从点B出发,P点在CD上时,△ABP的高是1,底边是2,所以面积是1,即s=1;∴s=x时是正比例函数,且y随x的增大而增大,s=1时,是一个常数函数,是一条平行于x轴的直线.所以只有C符合要求.故选C.二、填空题(本大题共3个小题;17-18每小题3分,19题每空2分,共10分)17.据报道,2015年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为 6.05×104.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于60500有5位,所以可以确定n=5﹣1=4.【解答】解:60500=6.05×104.故答案为:6.05×104.18.甲箱内有4颗球,颜色分别为红、黄、绿、蓝;乙箱内有3颗球,颜色分别为红、黄、黑.小明打算同时从甲、乙两个箱子中各抽出一颗球,若同一箱中每球被抽出的机会相等,则小明抽出的两颗求颜色相同的概率为.【考点】X6:列表法与树状图法.【分析】画树状图展示所有共有12可等可能的结果数,再找出抽出的两颗求颜色相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12可等可能的结果数,其中抽出的两颗求颜色相同的结果数为2,所以小明抽出的两颗求颜色相同的概率==.故答案为.19.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右做平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在左侧作等边△APQ,连接PB、BA.(1)当AB∥PQ时,点P的横坐标是;(2)当BP∥QA时,点P的横坐标是0或2.【考点】KK:等边三角形的性质;D5:坐标与图形性质.【分析】(1)首先根据题意画出符合题意的图形,当AB为梯形的底时,PQ∥AB,可得Q在CP上,由△APQ是等边三角形,CP∥x轴,即可求得答案;(2)当AB为梯形的腰时,AQ∥BP,易得四边形ABPC是平行四边形,即可求得CP的长,继而可求得点P的横坐标.【解答】解:(1)如图1:当AB为梯形的底时,PQ∥AB,∴Q在CP上,∵△APQ是等边三角形,CP∥x轴,∴AC垂直平分PQ,∵A(0,2),C(0,4),∴AC=2,∴PC=AC•tan30°=2×=,∴当AB为梯形的底时,点P的横坐标是:;(2)如图2,当AB为梯形的腰时,AQ∥BP,∴Q在y轴上,∴BP∥y轴,∵CP∥x轴,∴四边形ABPC是平行四边形,∴CP=AB=2,如图3,当C与P重合时,∵A(0,2)、B(2,2),∴tan∠APB==,∴∠APB=60°,∵△APQ是等边三角形,∴∠PAQ=60°,∴∠ACB=∠PAQ,∴AQ∥BP,∴当C与P重合时,四边形ABPQ以AB为腰的梯形,此时点P的横坐标为0;∴当AB为梯形的腰时,点P的横坐标是:0或2.故答案为:(1);(2)0或2.三、解答题(本大题共7个小题,共68分)20.先化简,再求值:,其中x满足方程:x2+x﹣6=0.【考点】6D:分式的化简求值;A3:一元二次方程的解.【分析】将原式括号中通分并利用同分母分式的减法法则计算,分子合并后利用平方差公式分解因式,然后将除式的分子利用完全平方公式分解因式,并利用除以一个数等于乘以这个数的倒数化为乘法运算,约分后得到最简结果,然后求出x满足方程的解,将满足题意的x 的值代入化简后的式子中计算,即可得到原式的值.【解答】解:(x+1﹣)÷=÷=•=,∵x满足方程x2+x﹣6=0,∴(x﹣2)(x+3)=0,解得:x1=2,x2=﹣3,当x=2时,原式的分母为0,故舍去;当x=﹣3时,原式==.21.国家环保局统一规定,空气质量分为5级:1级质量为优;2级质量为良;3级质量为轻度污染;4级质量为中度污染;5级质量为重度污染.某城市随机抽取了一年中某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:(1)本次调查共抽取了200 天的空气质量检测结果进行统计;(2)补全条形统计图;(3)扇形统计图中3级空气质量所对应的圆心角为72 °;(4)如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计该年该城市只有多少天适宜户外活动.(一年天数按365天计)【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据4级的天数是24天,所占的百分比是48%,据此求得调查的总天数;(2)利用总天数减去其它组的天数即可求得5级的天数,从而补全直方图;(3)用360°乘以对应的百分比即可求得对应的圆心角的度数;(4)利用365乘以对应的比例即可求得.【解答】解:(1)抽查的总天数是24÷48%=50(天),故答案是:50;(2)是5级的天数是50﹣3﹣7﹣10﹣24=6(天),;(3)扇形统计图中3级空气质量所对应的圆心角为×360=72°,故答案是:72;(4)估计该年该城市适宜户外活动的天数是×365=146(天).答:估计该年该城市适宜户外活动的天数是146天.22.如图,已知边长为6的等边△ABC 内接于⊙O .(1)求⊙O 半径;(2)求的长和弓形BC 的面积.【考点】MA :三角形的外接圆与外心;MN :弧长的计算;MO :扇形面积的计算.【分析】(1)连结OB ,OC ,作OM ⊥BC 于M ,根据圆周角定理求出∠BOC 的度数,再由锐角三角函数的定义即可得出结论;(2)直接根据弧长公式可得出弧BC 的长,再由弓形BC 的面积=S 扇形BOC ﹣S △BOC 可得出结论.【解答】解:(1)连结OB ,OC ,作OM ⊥BC 于M ,∵△ABC 是等边三角形,∴∠A=60°,∴∠BOC=120°.又∵OM ⊥BC ,∴BM=CM=3.又∵OB=OC ,∴∠OBC=∠OCB=30°.∴⊙O 半径==2;(2)∵由(1)知∠BOC=120°,OB=2,∴弧BC 的长==弓形BC 的面积=S 扇形BOC ﹣S △BOC =﹣×6×3=4π﹣3.23.如图,已知一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2=的图象上,且以点C为圆心的圆与x 轴,y轴分别相切于点D,B(1)求m的值;(2)求一次函数的表达式;(3)根据图象,当y1<y2<0时,写出x的取值范围.【考点】G8:反比例函数与一次函数的交点问题;MC:切线的性质.【分析】(1)直接将A点代入反比例函数解析式求出答案;(2)直接利用切线的性质结合正方形的判定与性质得出C,B点坐标,进而利用待定系数法求出一次函数解析式;(3)利用A点坐标结合函数图象得出x的取值范围.【解答】解:(1)把点A(﹣4,m)的坐标代入y2=,则m==﹣1,得m=﹣1;(2)连接CB,CD,∵⊙C与x轴,y轴相切于点D,B,∴∠CBO=∠CDO=90°=∠BOD,BC=CD,∴四边形BODC是正方形,∴BO=OD=DC=CB,∴设C(a,a)代入y2=得:a2=4,∵a>0,∴a=2,∴C(2,2),B(0,2),把A(﹣4,﹣1)和(0,2)的坐标代入y1=kx+b中,得:,解得:,∴一次函数的表达式为:y1=x+2;(3)∵A(﹣4,﹣1),∴当y1<y2<0时,x的取值范围是:x<﹣4.24.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)延长MP交CN于点E(如图2).①求证:△BPM≌△CPE;②求证:PM=PN;(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN 的形状及此时PM=PN还成立吗?不必说明理由.【考点】R2:旋转的性质;KB:全等三角形的判定;LC:矩形的判定.【分析】(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到;②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN.(2)证明方法与②相同.(3)四边形MBCN是矩形,则PM=PN成立.【解答】(1)证明:①如图2:∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE,②∵△BPM≌△CPE,∴PM=PE∴PM=ME,∴在Rt△MNE中,PN=ME,∴PM=PN.(2)解:成立,如图3.证明:延长MP与NC的延长线相交于点E,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,在△BPM和△CPE中,,∴△BPM≌△CPE,∴PM=PE,∴PM=ME,则Rt△MNE中,PN=ME,∴PM=PN.(3)解:如图4,四边形M′BCN′是矩形,根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP,得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”.25.某高新企业员工的工资由基础工资、绩效工资和工龄工资三部分组成,其中工龄工资的制定充分了考虑员工对企业发展的贡献,同时提高员工的积极性,控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案.Ⅰ.工龄工资分为社会工龄工资和企业工龄工资;Ⅱ.社会工龄=参加本企业工作时年龄﹣18,企业工龄=现年年龄﹣参加本企业工作时年龄.Ⅲ.当年工作时间计入当年工龄Ⅳ.社会工龄工资y1(元/月)与社会工龄x(年)之间的函数关系式如①图所示,企业工龄工资y2(元/月)与企业工龄x(年)之间的函数关系如图②所示.请解决以下问题(1)求出y1、y2与工龄x之间的函数关系式;(2)现年28岁的高级技工小张从18岁起一直实行同样工龄工资制度的外地某企业工作,为了方便照顾老人与小孩,今年小张回乡应聘到该企业,试计算第一年工龄工资每月下降多少元?(3)已经在该企业工作超过3年的李工程师今年48岁,试求出他的工资最高每月多少元?【考点】HE:二次函数的应用.【分析】(1)结合函数图象根据待定系数法就可以得出y1、y2与工龄x之间的函数关系式,注意y2与x的函数关系式需要分段讨论;(2)根据(1)的解析式分别求出小张在原厂的工龄工资和回乡后的工龄工资,求出其差就可以了;(3)设李工程师的工龄工资为y,在本企业工作x年,根据工龄工资=社会工龄工资+企业工龄工资求出y与x之间的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)设y1与x之间的函数关系式为y1=kx,由题意,得100=10k,解得:k=10∴y1=10x(x≥0,x为整数);当0≤x≤3时,y2与x之间的函数关系式为y2=k2x,由题意,得60=3k2.∴k2=20,∴y2=20x,当3<x≤32时,设y2=a(x﹣23)2+860,由题意,得698=a(32﹣23)2+860,解得:a=﹣2,∴y2=﹣2(x﹣23)2+860,当32<x≤42时,由图象,得y2=698.∴y2=;(2)小张在原厂的社会工龄为:18﹣18=0年,企业工龄为:28﹣28=10年y1=0,y2=522,∴在小张在原厂的工龄工资为:0+522=522元,当小张回家乡到后进该企业,小张的社会工龄为:28﹣18=10年,企业工龄为:28﹣28=0年∴小张的工龄工资为;y1+y2=10×10+20×0=100∴小张的第一年工龄工资每月下降了:522﹣100=422元,答:第一年每月工龄工资下降422元;(3)依题知要李程师的总工龄为:48﹣18=30,设李工程师的工龄工资为y,在本企业工作x年,由题意,得3<x≤30∴y=y1+y2=10(30﹣x)+[﹣2(x﹣23)2+860]=﹣2(x﹣20.5)2+942.5,∵a=﹣2<0,∴抛物线开口向下,对称轴是x=20.5,∵x为整数,∴当x=20或21时,y最大,且最大值为942,∴李工程师的工龄工资最高为942元/月.26.如图,将OA=6,AB=4的矩形OABC放置在平面直角坐标系中,动点M、N以每秒1个单位的速度分别从点A、C同时出发,其中点M沿AO向终点O运动,点N沿CB向终点B运动,当两个动点运动了t秒时,过点N作NP⊥BC,交OB于点P,连接MP.(1)点B的坐标为(6,4);用含t的式子表示点P的坐标为(t, t);(2)记△OMP的面积为S,求S与t的函数关系式(0<t<6),并求当t为何值时,S有最大值?(3)试探究:在上述运动过程中,是否存在点T,使直线MT把△ONC分割成三角形和四边形两部分,且三角形的面积是△ONC的?若存在,求出点T的坐标;若不存在,请说明理由.【考点】LO:四边形综合题.【分析】(1)由OA=6,AB=4,易得点B的坐标为(6,4);由图可得,点P的横坐标=CN=t,纵坐标=4﹣NP,NP的值可根据相似比求得;(2)由(1)的结论易得△OMP的高为t,而OM=6﹣AM=6﹣t,再根据三角形的面积公式即可求得S与t的函数关系式,再由二次函数的最值求法,求得t为何值时,S有最大值;(3)由(2)求得点M、N的坐标,从而求得直线ON的函数关系式;设点T的坐标为(0,b),可得直线MT的函数关系式,解由两个关系式组成的方程组,可得点直线ON与MT的交点R的坐标;由已知易得S△OCN=×4×3=6,S△ORT=S△OCN=2;然后分两种情况考虑:①当点T在点O、C之间时,②当点T在点OC的延长线上,从而求得符合条件的点T的坐标.【解答】解:(1)延长NP交OA于H,如图1所示:∵矩形OABC,∴BC∥OA,∠OCB=90°,∵PN⊥BC,∴NH∥OC,∴四边形CNHO是平行四边形,∴OH=CN,∵OA=6,AB=4,∴点B的坐标为(6,4);由图可得,点P的横坐标=0H=CN=t,纵坐标=4﹣NP,∵NP⊥BC,∴NP∥OC,∴NP:OC=BN:CB,即NP:4=(6﹣t):6,∴NP=4﹣t,∴点P的纵坐标=4﹣NP=t,则点P的坐标为(t, t);故答案为:(6,4);(t, t);(2)∵S△OMP=×OM×t,∴S=×(6﹣t)×t=﹣t2+2t=﹣(t﹣3)2+3(0<t<6).∴当t=3时,S有最大值.(3)存在.理由如下:由(2)得,当S有最大值时,点M、N的坐标分别为:M(3,0),N(3,4),则直线ON的函数关系式为:y=x.设点T的坐标为(0,b),则直线MT的函数关系式为:y=﹣x+b,解方程组得,∴直线ON与MT的交点R的坐标为(,),∵S△OCN=×4×3=6,∴S△ORT= S△OCN=2,①当点T在点O、C之间时,分割出的三角形是△OR1T1,如图2所示,作R1D1⊥y轴,D1为垂足,则S△OR1T1=RD1•OT=••b=2.∴3b2﹣4b﹣16=0,解得:b=(负值舍去).∴b=,此时点T1的坐标为(0,).②当点T在OC的延长线上时,分割出的三角形是△R2NE,如图,设MT交CN于点E,由①得点E的横坐标为,作R2D2⊥CN交CN于点D2,则S△R2NE=•EN•R2D2=•(3﹣)•(4﹣==2.∴b2+4b﹣48=0,解得:b=±2﹣2(负值舍去).∴b=2﹣2.∴此时点T2的坐标为(0,2).综上所述,在y轴上存在点T1(0,),T2(0,2﹣2)符合条件.。
河北省唐山市中考数学三模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·衡阳模拟) 由5个相同的正方体搭成的几何体如图所示,则它的左视图是()A .B .C .D .2. (2分)(2018·南京) 下列无理数中,与最接近的是()A .B .C .D .3. (2分)如图所示的四个图案中,轴对称图形的个数是()A . 1B . 2C . 3D . 44. (2分)(2017·信阳模拟) 从1、2、3、4中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是6的倍数的概率是()A .B .C .D .5. (2分) (2018八下·永康期末) 二次根式中,字母a的取值范围是A .B .C .D .6. (2分) (2019七上·福田期末) 下列事件是确定事件的是()A . 我校同学中间出现一位数学家B . 从一副扑克牌中抽出一张,恰好是大王C . 从装着九个红球、一个白球共十个球的袋中任意摸出两个,其中一定有红球D . 未来十年内,印度洋地区不会发生海啸7. (2分)如图,把一块含45°角的三角板的直角顶点靠在长尺(两边a∥b)的一边b上,若∠1=30°,则三角板的斜边与长尺的另一边a的夹角∠2的度数为()A . 10°B . 15°C . 30°D . 35°8. (2分) (2019九上·滦南期中) 如图,在Rt△ABC中,CD⊥AB于点D,表示sinB错误的是()A .B .C .D .9. (2分)已知一个直角三角形的两边长分别为3和4,则第三边长是()A . 5B . 25C .D . 5或10. (2分)如图,已知直线与轴交于点,与轴交于点,以点为圆心,为半径画弧,交轴正半轴于点,则点的坐标为()A .B .C .D .二、填空题 (共4题;共4分)11. (1分)(2018·大连) 因式分解:x2﹣x=________.12. (1分)(2019·白云模拟) 把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数________的图象.13. (1分) (2018八上·东城期末) 如图,在△ABC中,∠ACB=90°,AD平分∠BAC , BC=10cm,BD:DC=3:2,则点D到AB的距离________cm.14. (1分)如图,已知点A(0,1),B(0,﹣1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于________ 度.三、计算题 (共2题;共15分)15. (10分)(2018·台州) 计算: .16. (5分) (2018七下·于田期中) 解方程组(1)解方程组:.(2)解方程组.四、综合题 (共12题;共53分)17. (10分) (2019八下·哈尔滨期中) 如图,已知射线MN表示一艘轮船的航行路线,从M到N的走向为南偏东30°,在M 的南偏东60°方向上有一灯塔A,灯塔A到M处的距离为200海里.(1)求灯塔A到航线MN的距离;(2)在航线MN上有一点B,且∠MAB=15°,若轮船的航速为50海里/时,求轮船从M到B处所用的时间为多少小时?(结果保留根号)18. (2分)(2017·合肥模拟) 某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了________名学生,其中最喜爱戏曲的有________人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是________.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.19. (2分)(2017·老河口模拟) 如图,已知一次函数y1= x﹣4与反比例函数y2= 的图象在第一象限相交于点A(6,n),与x轴相交于点B.(1)填空:n的值为________,k的值为________;当y2≥﹣4时,x的取值范围是________;(2)以AB为边作菱形ABCD,使点C在点B右侧的x轴上,求点D的坐标.20. (2分)(2017·广东) 如图,在平面直角坐标系中,抛物线y=﹣x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=﹣x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.21. (1分) (2017九上·抚宁期末) 某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为________.22. (1分)有5张写有数字的卡片(如图所示),它们的背面都相同,现将它们背面朝上,从中翻开任意一张是数字3的概率是________23. (1分) (2017九下·江阴期中) 如图,△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣3,0),C(2,0),将△ABC绕点B顺时针旋转一定角度后使A落在y轴上,与此同时顶点C恰好落在y= 的图象上,则k的值为________.24. (1分)(2018·阜宁模拟) 如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BE=4,CD=6,则DE的长为________.25. (1分)(2017·海曙模拟) 如图,已知∠MON=30°,B为OM上一点,BA⊥ON于A,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为________.26. (2分)(2017·鄂托克旗模拟) 如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.27. (15分)(2017·东河模拟) 如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D.(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值.28. (15分)(2018·浦东模拟) 已知抛物线y=ax2+bx+5与x轴交于点A(1,0)和点B(5,0),顶点为M.点C在x轴的负半轴上,且AC=AB,点D的坐标为(0,3),直线l经过点C、D.(1)求抛物线的表达式;(2)点P是直线l在第三象限上的点,联结AP,且线段CP是线段CA、CB的比例中项,求tan∠CPA的值;(3)在(2)的条件下,联结AM、BM,在直线PM上是否存在点E,使得∠AEM=∠AMB.若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3、答案:略4、答案:略5-1、6-1、7、答案:略8-1、9-1、10-1、二、填空题 (共4题;共4分)11、答案:略12-1、13-1、14-1、三、计算题 (共2题;共15分)15、答案:略16-1、16-2、四、综合题 (共12题;共53分) 17-1、17-2、18-1、18-2、19、答案:略20-1、20-2、20-3、21-1、22-1、23-1、24-1、25-1、26-1、26-2、27-1、27-2、28、答案:略。
河北省唐山市丰润区2017年中考数学一模试卷(解析版)一.选择题1.计算:=()A. 5B. 2C. 4D. 32.小明从正面观察如图所示的两个物体,看到的大致图形是()A. B. C. D.3.下列计算错误的是()A. 3 =2B. ﹣2+|﹣2|=0C. x2•x3=x6D. (﹣3)2=94.把多项式x2﹣6x+9分解因式,结果正确的是()A. (x﹣3)2B. (x﹣9)2C. (x+3)(x﹣3)D. (x+9)(x﹣9)5.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=()A. 40°B. 110°C. 70°D. 140°6.一种病毒的直径约为0.000043m,0.000043m用科学记数法表示为()A. 4.3×10﹣4mB. 4.3×10﹣5mC. 43×10﹣5mD. 0.43×10﹣4m7.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A. AB=ADB. AC⊥BDC. AC=BDD. ∠BAC=∠DAC8.若关于x的方程x2﹣2 x﹣k=0有两个相等的实数根,则k的值为()A. ﹣1B. 0C. ﹣3D. ﹣9.如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(﹣3,2),(b,m),(c,m),则点E的坐标是()A. (2,﹣3)B. (2,3)C. (3,2)D. (3,﹣2)10.如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A. 2B. 3C. 4D. 511.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A. 60海里B. 45海里C. 20 海里D. 30 海里12.如图.⊙O的直径AB垂直弦CD于E点,∠A=22.5°,OC=4,CD的长为()A. 4B. 8C. 2D. 413.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是()A. 1B.C.D.14.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A. ﹣6B. 6C. 18D. 3015.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A. 86B. 64C. 54D. 4816.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y= (x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y= (x>0);②E点的坐标是(5,8);③sin∠COA= ;④AC+OB=12 .其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二.填空题17.计算:﹣2×3=________.18.如图,⊙O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是________.19.如图,将一张等边三角形纸片沿中位线剪成4个小三角形,称为第一次操作:然后,将其中的一个三角形按同样方式再剪成4个小三角形,共得到7个小三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得到10个小三角形,称为第三次操作;…根据以上操作,①第七次操作共得到________个三角形;②若要得到220个小三角形,则需要操作的次数是________.三.解答题20.计算题(1)计算:(﹣)﹣2﹣| ﹣1|+(﹣+1)0+3tan30°(2)解方程:+ =4.21.已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.①画出△ABC向上平移6个单位得到的△A1B1C1;②以点C为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标.22.某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:各年级学生成绩统计表优秀良好合格不合格七年级 a 20 24 8八年级 29 13 13 5九年级 24 b 14 7根据以上信息解决下列问题:(1)在统计表中,a的值为________,b的值为________;(2)在扇形统计图中,八年级所对应的扇形圆心角为________度;(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.23.如图,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连结BF.(1)求证:①△EAF≌△EDC;②D是BC的中点;(2)若AB=AC,求证:四边形AFBD是矩形.24.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地,设甲、乙两车距A地的路程为y(千米),甲车行驶的时间为x(时),y与x之间的函数图象如图所示.(1)求甲车从A地到达B地的行驶时间;(2)求甲车返回时y与x之间的函数关系式,并写出自变量x的取值范围;(3)求乙车到达A地时甲车距A地的路程.25.如图1,△ABC中,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B,C分别在AD,AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交AF,CF于点N,H.①求证:BD⊥CF;②当AB=2,AD=3 时,求线段AN的长.26.如图,抛物线y=﹣x2+bx+c交x轴于点A(﹣3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4S△BOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.答案解析部分一.<b >选择题</b>1.【答案】D【考点】算术平方根【解析】【解答】解:,故答案为:D【分析】9的算术平方根是3.2.【答案】B【考点】简单组合体的三视图【解析】【解答】解:从正面看左边是一个长方形,右边是一个正方形,故B符合题意;故答案为:B.【分析】从正面看左边是一个长方形,右边是一个正方形。
2017年河北省唐山市路南区中考数学一模试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16各2分)1.在﹣3,0,﹣2,1四个数中,最小的数是()A.﹣3 B.0 C.﹣2 D.12.下面四个图形分别是节水、绿色食品、低碳和节能标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.截至2016年底,某市人口总数已达到7250000人,将7250000用科学记数法表示为()A.0.725×107B.7.25×107C.72.5×105D.7.25×1064.下列运算中,正确的是()A. =±2 B. =﹣3 C.(﹣1)0=1 D.﹣|﹣3|=35.化简+的结果是()A.n﹣m B.m﹣n C.m+n D.﹣m﹣n6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查7.下列计算正确的是()A.(3xy2)3=9x3y6 B.B、(x+y)2=x2+y2C.x6÷x2=x3D.2x2y﹣yx2=x2y8.如图为某几何体的三视图,则组成该几何体的小正方体的个数是()A.5 B.6 C.7 D.89.已知关于x的方程x2+mx﹣1=0的根的判别式的值为5,则m的值为()A.±3 B.3 C.1 D.±110.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),则b﹣a的值为()A.5 B.6 C.7 D.811.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF 的周长为()A.8 B.10 C.12 D.1612.如图,正比例函数y=kx与反比例函数y=的图象不可能是()A.B.C.D.13.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180°C.210°D.270°14.如图所示的格点纸中每个小正方形的边长均为1,以小正方形的顶点为圆心,2为半径做了一个扇形,用该扇形围成一个圆锥的侧面,针对此做法,小明和小亮通过计算得出以下结论:小明说此圆锥的侧面积为π;小亮说此圆锥的弧长为π,则下列结论正确的是()A.只有小明对B.只有小亮对C.两人都对 D.两人都不对15.如图,直线l:y=﹣x+3与直线x=a(a为常数)的交点在第四象限,则关于a的取值范围在数轴上表示正确的是()A.B.C.D.16.已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A.内心 B.重心 C.外心 D.无法确定二、填空题(本小题共3小题,共10分,17-18小题各3分,19小题有2个空,每空2分)17.计算:()﹣1= .18.阅读下面材料:在数学课上,老师提出如下问题:小敏的作法如下:老师说:“小敏的作法正确.”依其作法,先得出▱ABCD,再得出矩形ABCD,请回答:以上两条结论的依据是.19.在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是(填序号),你的理由是.三、解答题(本题共有7个小题,共68分)20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”(1)若小明同学心里想的是数9,请帮他计算出最后结果:[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0),请你帮小明完成这个验证过程.21.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.22.从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出=83分, =82分,绘制成如下尚不完整的统计图表.甲、乙两人模拟成绩统计表根据以上信息,回答下列问题:(1)a=(2)请完成图中表示甲成绩变化情况的折线.(3)经计算S甲2=6,S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.23.某生态示范村种植基地计划用90亩~120亩(含90亩与120亩)的土地种植一批葡萄,原计划总产量要达到36万斤.设原计划种植亩数y(亩)、平均亩产量x(万斤)(1)列出y(亩)与x(万斤)之间的函数关系式,并求自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?24.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=20°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)25.抛物线C1:y=a(x+1)(x﹣3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y 轴交于点C(0,﹣3)(1)求抛物线C1的解析式及A,B点坐标;(2)求抛物线C1的顶点坐标;(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2,若抛物线C2的顶点在△ABC内,求n的取值范围.(在所给坐标系中画出草图C1)26.如图,一个Rt△DEF直角边DE落在AB上,过A点作射线AC与斜边EF平行,已知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)(1)若点D与点B重合,当t=5时,连接QE,PF,此时△AQE为三角形、四边形QEFP为形;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止.①如图①,若M为EF中点,当D、M、Q三点在同一直线上时,求t的值;②在运动过程中,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切时,求运动时间t.2017年河北省唐山市路南区中考数学一模试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16各2分)1.在﹣3,0,﹣2,1四个数中,最小的数是()A.﹣3 B.0 C.﹣2 D.1【考点】18:有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出在﹣3,0,﹣2,1四个数中,最小的数是多少即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣2<0<1,∴最小的数是﹣3.故选:A.2.下面四个图形分别是节水、绿色食品、低碳和节能标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【考点】P3:轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.3.截至2016年底,某市人口总数已达到7250000人,将7250000用科学记数法表示为()A.0.725×107B.7.25×107C.72.5×105D.7.25×106【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7250000用科学记数法表示为7.25×106,故选:D.4.下列运算中,正确的是()A. =±2 B. =﹣3 C.(﹣1)0=1 D.﹣|﹣3|=3【考点】24:立方根;22:算术平方根;6E:零指数幂.【分析】依据算术平方根的性质、立方根的性质、零指数幂的性质、绝对值的性质进行化简即可.【解答】解:A. =2,故A错误;B.不能够再化简,故B错误;C.(﹣1)0=1,故C正确;D.﹣|﹣3|=﹣3,故D错误.故选:C.5.化简+的结果是()A.n﹣m B.m﹣n C.m+n D.﹣m﹣n【考点】6B:分式的加减法.【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣==m+n,故选C6.当前,“低头族”已成为热门话题之一,小颖为了解路边行人步行边低头看手机的情况,她应采用的收集数据的方式是()A.对学校的同学发放问卷进行调查B.对在路边行走的学生随机发放问卷进行调查C.对在路边行走的行人随机发放问卷进行调查D.对在图书馆里看书的人发放问卷进行调查【考点】V1:调查收集数据的过程与方法.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对学校的同学发放问卷进行调查不具代表性、广泛性,故A错误;B、对在路边行走的学生随机发放问卷进行调查不具代表性、广泛性,故B错误;C、对在路边行走的行人随机发放问卷进行调查具代表性、广泛性,故C正确;D、对在图书馆里看书的人发放问卷进行调查不具代表性、广泛性,故D错误;故选:C.7.下列计算正确的是()A.(3xy2)3=9x3y6 B.B、(x+y)2=x2+y2C.x6÷x2=x3D.2x2y﹣yx2=x2y【考点】4I:整式的混合运算.【分析】各项利用幂的乘方与积的乘方,完全平方公式,同底数幂的除法法则,以及合并同类项法则计算得到结果,即可作出判断.【解答】解:A、原式=27x3y6,不符合题意;B、原式=x2+2xy+y2,不符合题意;C、原式=x4,不符合题意;D、原式=x2y,符合题意,故选D8.如图为某几何体的三视图,则组成该几何体的小正方体的个数是()A.5 B.6 C.7 D.8【考点】U3:由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行3列,故可得出该几何体的小正方体的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为4+1=5个;故选A.9.已知关于x的方程x2+mx﹣1=0的根的判别式的值为5,则m的值为()A.±3 B.3 C.1 D.±1【考点】AA:根的判别式.【分析】先根据关于x的方程x2+mx﹣1=0的根的判别式的值为5即可得出关于m的一元二次方程,求出m的值即可.【解答】解:∵关于x的方程x2+mx﹣1=0的根的判别式的值为5,∴△=m2﹣4×1×(﹣1)=5,解得m=±1.故选D.10.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),则b﹣a的值为()A.5 B.6 C.7 D.8【考点】44:整式的加减.【分析】直接利用已知图形得出b﹣a=b+空白面积﹣(a+空白面积)=大正六边形﹣小正六边形,进而得出答案.【解答】解:∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),∴b﹣a=b+空白面积﹣(a+空白面积)=大正六边形﹣小正六边形=16﹣9=7.故选:C.11.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF 的周长为()A.8 B.10 C.12 D.16【考点】KX:三角形中位线定理.【分析】根据三角形的中位线定理,判断出四边形ADEF平行四边形,根据平行四边形的性质求出ADEF的周长即可.【解答】解:∵点D,E,F分别是AB,BC,AC的中点,∴DE∥AC,EF∥AB,DE=AC=5,EF=AB=3,∴四边形ADEF平行四边形,∴AD=EF,DE=AF,∴四边形ADEF的周长为2(DE+EF)=16,故选:D.12.如图,正比例函数y=kx与反比例函数y=的图象不可能是()A.B.C.D.【考点】G2:反比例函数的图象;F4:正比例函数的图象.【分析】根据反比例函数的性质即可求出答案.【解答】解:若k>0时,此时k﹣1>﹣1,正比例函数图象必定过一、三象限,当﹣1<k﹣1<0时,∴反比例函数y=必定经过二、四象限,故C的图象有可能,当k﹣1>0时,∴反比例函数y=必定经过一、三象限,故B的图象有可能,若k<0时,此时k﹣1<﹣1,正比例函数图象必定过二、四象限,∴反比例函数y=必定经过二、四象限,故A的图象有可能,故选(D)13.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90° B.180°C.210°D.270°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠B+∠C=180°,从而得到以点B、点C为顶点的五边形的两个外角的度数之和等于180°,再根据多边形的外角和定理列式计算即可得解.【解答】解:∵AB∥CD,∴∠B+∠C=180°,∴∠4+∠5=180°,根据多边形的外角和定理,∠1+∠2+∠3+∠4+∠5=360°,∴∠1+∠2+∠3=360°﹣180°=180°.故选B.14.如图所示的格点纸中每个小正方形的边长均为1,以小正方形的顶点为圆心,2为半径做了一个扇形,用该扇形围成一个圆锥的侧面,针对此做法,小明和小亮通过计算得出以下结论:小明说此圆锥的侧面积为π;小亮说此圆锥的弧长为π,则下列结论正确的是()A.只有小明对B.只有小亮对C.两人都对 D.两人都不对【考点】MP:圆锥的计算;MN:弧长的计算.【分析】分别计算此扇形的弧长和侧面积后即可确定谁的说法正确,从而确定正确的选项.【解答】解:观察扇形发现:扇形的半径为2,圆心角为150°,∴扇形的弧长为=π;侧面积为: =π;∴两人的说法都正确,故选C.15.如图,直线l:y=﹣x+3与直线x=a(a为常数)的交点在第四象限,则关于a的取值范围在数轴上表示正确的是()A.B.C.D.【考点】FF:两条直线相交或平行问题;C4:在数轴上表示不等式的解集.【分析】首先把x=a和y=﹣x+3组成方程组,求解,根据题意交点坐标在第四象限表明x 大于0,y小于0,即可求得a的取值范围.【解答】解:解方程组,得:,∵y=﹣x+3与直线x=a(a为常数)的交点在第四象限,∴,解得:a>5;故选D.16.已知△ABC在正方形网格中的位置如图所示,点A、B、C、P均在格点上,则点P叫做△ABC的()A.内心 B.重心 C.外心 D.无法确定【考点】K5:三角形的重心.【分析】根据正方形网格图、三角形的重心的概念解答.【解答】解:由正方形网格图可以看出,点E、F、D分别是AC、AB、BC的中点,∴点P叫做△ABC的重心,故选:B.二、填空题(本小题共3小题,共10分,17-18小题各3分,19小题有2个空,每空2分)17.计算:()﹣1= 3 .【考点】6F:负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:()﹣1==3.故答案为:3.18.阅读下面材料:在数学课上,老师提出如下问题:小敏的作法如下:老师说:“小敏的作法正确.”依其作法,先得出▱ABCD,再得出矩形ABCD,请回答:以上两条结论的依据是对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.【考点】N3:作图—复杂作图;KP:直角三角形斜边上的中线;L6:平行四边形的判定;LC:矩形的判定.【分析】先根据作图得出BD与AC互相平分,进而得到四边形ABCD是平行四边形,再根据∠ABC=90°,即可得到四边形ABCD是矩形.【解答】解:∵O是AC的中点,∴BO=AC=AO=CO,又∵DO=BO,∴BD与AC互相平分,∴四边形ABCD是平行四边形,(对角线互相平分的四边形是平行四边形)又∵∠ABC=90°,∴四边形ABCD是矩形.(有一个角是直角的平行四边形是矩形)故答案为:对角线互相平分的四边形是平行四边形,有一个角是直角的平行四边形是矩形.19.在下列函数①y=2x+1;②y=x2+2x;③y=;④y=﹣3x中,与众不同的一个是③(填序号),你的理由是只有③的自变量取值范围不是全体实数.【考点】E4:函数自变量的取值范围.【分析】根据分式的分母不为0,二次根式的被开方数大于等于0进行计算即可.【解答】解:①y=2x+1中自变量的取值范围是全体实数;②y=x2+2x中自变量的取值范围是全体实数;③y=中自变量的取值范围是x≠0;④y=﹣3x中自变量的取值范围是全体实数;理由是:只有③的自变量取值范围不是全体实数故答案为:③,只有③的自变量取值范围不是全体实数.三、解答题(本题共有7个小题,共68分)20.在一次数学课上,李老师对大家说:“你任意想一个非零数,然后按下列步骤操作,我会直接说出你运算的最后结果.”(1)若小明同学心里想的是数9,请帮他计算出最后结果:[(9+1)2﹣(9﹣1)2]×25÷9(2)老师说:“同学们,无论你们心里想的是什么非零数,按照以上步骤进行操作,得到的最后结果都相等.”小明同学想验证这个结论,于是,设心里想的数是a(a≠0),请你帮小明完成这个验证过程.【考点】4I:整式的混合运算;1G:有理数的混合运算.【分析】(1)原式先计算乘方运算,再计算乘除运算即可得到结果;(2)根据题意列出关系式,整理验证即可.【解答】解:(1)原式=×25÷9=36×25÷9=100;(2)根据题意得:[(a+1)2﹣(a﹣1)2]×25÷a=(a+1+a﹣1)(a+1﹣a+1)×25÷a=4a ×25÷a=100.21.如图①,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图①中的△BCD绕点B顺时针旋转得到△BC′D′.当点D′恰好落在BC边上时,如图②所示,连接C′C并延长交AB于点E.①求∠C′CB的度数;②求证:△C′BD'≌△CAE.【考点】R2:旋转的性质;KB:全等三角形的判定;KH:等腰三角形的性质;KO:含30度角的直角三角形.【分析】(1)根据三角形外角性质,即可得到∠BCD=∠ADC﹣∠CBA=15°;(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,再根据等腰三角形的性质,即可得到∠CC'B=∠C'CB=75°;②先根据AC=C'B,∠C'BD'=∠A,得出∠CEB=∠C'CB﹣∠CBA=45°,进而得到∠ACE=∠CEB ﹣∠A=15°,据此可得∠BC'D'=∠BCD=∠ACE,运用ASA即可判定△C'BD'≌△CAE.【解答】解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°,∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';(2)①由旋转可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;②证明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE,在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).22.从甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,对两人进行了五次模拟,并对成绩(单位:分)进行了整理,计算出=83分, =82分,绘制成如下尚不完整的统计图表.甲、乙两人模拟成绩统计表根据以上信息,回答下列问题:(1)a= 85(2)请完成图中表示甲成绩变化情况的折线.(3)经计算S甲2=6,S乙2=42,综合分析,你认为选拔谁参加比赛更合适,说明理由.(4)如果分别从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于82分的概率.【考点】X6:列表法与树状图法;VA:统计表;W2:加权平均数;W7:方差.【分析】(1)理由平均数的定义列方程得79+86+82+a+83=5×83,然后解方程即可;(2)利用表中数据和a的值画出甲成绩变化情况的折线;(3)通过平均数和方差的意义进行判断;(4)画树状图展示所有25可等可能的结果数,再找出抽到的两个人的成绩都大于82分的结果数,然后根据概率公式求解.【解答】解:(1)根据题意得79+86+82+a+83=5×83,解得a=85;故答案为85;(2)如图,(3)选拔甲参加比赛更合适,理由如下:∵>,且S甲2<S乙2,∴甲的平均成绩比乙的平均成绩高,且甲的成就比较稳定,∴选拔甲参加比赛更合适;(4)画树状图为:共有25可等可能的结果数,其中抽到的两个人的成绩都大于82分的结果数为6,所以抽到的两个人的成绩都大于82分的概率=.23.某生态示范村种植基地计划用90亩~120亩(含90亩与120亩)的土地种植一批葡萄,原计划总产量要达到36万斤.设原计划种植亩数y(亩)、平均亩产量x(万斤)(1)列出y(亩)与x(万斤)之间的函数关系式,并求自变量x的取值范围;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?【考点】GA:反比例函数的应用;B7:分式方程的应用.【分析】(1)直接利用总产量与种植亩数和平均亩产量的关系进而得出y与x之间的关系式;(2)利用种植亩数减少了20亩,得出等式进而求出答案.【解答】解:(1)由题意可得:y=,∵90≤y≤120,∴当y=90时,x==,当y=120时,x==,∵y与x成反比,∴≤x≤;(2)根据题意可得:﹣=20,解得:x=0.3,经检验得:x=0.3是原方程的根,1.5x=0.45,答:改良前亩产0.3万斤,改良后亩产0.45万斤.24.如图1是一副创意卡通圆规,图2是其平面示意图,OA是支撑臂,OB是旋转臂,使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.(1)当∠AOB=20°时,求所作圆的半径;(结果精确到0.01cm)(2)保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度.(结果精确到0.01cm)(参考数据:sin10°≈0.174,cos10°≈0.985,sin20°≈0.342,cos20°≈0.940)【考点】T8:解直角三角形的应用.【分析】(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;(2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.【解答】解:(1)作OC⊥AB于点C,如图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=20°,∴∠BOC=10°∴AB=2BC=2OB•sin10°≈2×10×0.174≈3.5cm,即所作圆的半径约为3.5cm;(2)作AD⊥OB于点D,作AE=AB,如图3所示,∵保持∠AOB=20°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=20°,OA=OB,∠ODA=90°,∴∠OAB=80°,∠OAD=70°,∴∠BAD=10°,∴BE=2BD=2AB•sin10°≈2×3.5×0.174≈1.2cm,即铅笔芯折断部分的长度是1.2cm.25.抛物线C1:y=a(x+1)(x﹣3a)(a>0)与x轴交于A,B两点(A在B的左侧),与y 轴交于点C(0,﹣3)(1)求抛物线C1的解析式及A,B点坐标;(2)求抛物线C1的顶点坐标;(3)将抛物线C1向上平移3个单位长度,再向左平移n(n>0)个单位长度,得到抛物线C2,若抛物线C2的顶点在△ABC内,求n的取值范围.(在所给坐标系中画出草图C1)【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)根据已知点的坐标代入已知的函数的解析式即可利用待定系数法确定二次函数的解析式;(2)由(1)中的函数解析式即可求出抛物线C1的顶点坐标;(3)首先根据平移确定平移后的函数的解析式,然后确定抛物线C2的顶点坐标;结合图形确定n的取值范围即可.【解答】解:(1)∵抛物线C1:y=a(x+1)(x﹣3a)y轴交于点C(0,﹣3),∴﹣3=a(0+1)(0﹣3a),解得a=1(舍去负值).∴抛物线C1的解析式为:y=(x+1)(x﹣3).∴A(﹣1,0),B(3,0);(2)∵y=(x+1)(x﹣3)=(x﹣1)2﹣4,∴该抛物线的解析式为y=(x﹣1)2﹣4,则该抛物线的顶点坐标为(1,﹣4).(3)将(1)中求得的抛物线向上平移3个单位长度,再向左平移n(n>0)个单位长度得到新抛物线y=(x﹣1+n)2﹣1,∴平移后抛物线的顶点坐标是(1﹣n,﹣1),∴﹣<1﹣n<2,解得﹣1<n<,∵n>0,∴0<n<.26.如图,一个Rt△DEF直角边DE落在AB上,过A点作射线AC与斜边EF平行,已知AB=12,DE=4,DF=3,点P从A点出发,沿射线AC方向以每秒2个单位的速度运动,Q为AP中点,设运动时间为t秒(t>0)(1)若点D与点B重合,当t=5时,连接QE,PF,此时△AQE为等腰三角形、四边形QEFP为菱形;(2)如图②,若在点P运动时,Rt△DEF同时沿着BA方向以每秒1个单位的速度运动,当D点到A点时,两个运动都停止.①如图①,若M为EF中点,当D、M、Q三点在同一直线上时,求t的值;②在运动过程中,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切时,求运动时间t.【考点】MR:圆的综合题.【分析】(1)过点Q作QH⊥AB于H,如图①,易得PQ=EF=5,由AC∥EF可得四边形EFPQ 是平行四边形,易证△AHQ∽△EDF,从而可得AH=ED=4,进而可得AH=HE=4,根据垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12﹣t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.【解答】解:(1)四边形EFPQ是菱形.理由:过点Q作QH⊥AB于H,如图①,∵t=5,∴AP=2×5=10.∵点Q是AP的中点,∴AQ=PQ=5.∵∠EDF=90°,DE=4,DF=3,∴EF==5,∴PQ=EF=5.∵AC∥EF,∴四边形EFPQ是平行四边形,且∠A=∠FEB.又∵∠QHA=∠FDE=90°,∴△AHQ∽△EDF,∴==.∵AQ=EF=5,∴AH=ED=4.∵AE=12﹣4=8,∴HE=8﹣4=4,∴AH=EH,∴AQ=EQ,∴PQ=EQ,∴△AQE是等腰三角形,平行四边形EFPQ是菱形;故答案为:等腰,菱形.(2)①当D、M、Q三点在同一直线上时,如图②,此时AQ=t,EM=EF=,AD=12﹣t,DE=4.∵EF∥AC,∴△DEM∽△DAQ,∴=,∴=,解得t=;②存在以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,此时点Q在∠ADF的角平分线上或在∠FDB的角平分线上.Ⅰ.当点Q在∠ADF的角平分线上时,过点Q作QH⊥AB于H,如图③,则有∠HQD=∠HDQ=45°,∴QH=DH.∵△AHQ∽△EDF(已证),∴==,∴==,∴QH=,AH=,∴DH=QH=.∵AB=AH+HD+BD=12,DB=t,∴++t=12,∴t=5;Ⅱ.当点Q在∠FDB的角平分线上时,过点Q作QH⊥AB于H,如图④,同理可得DH=QH=,AH=.∵AB=AD+DB=AH﹣DH+DB=12,DB=t,∴﹣+t=12,∴t=10.综上所述:当t为5秒或10秒时,以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切.。
河北省唐山市中考数学三模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·衢州) -2的倒数是()A .B .C . -2D . 22. (2分) (2017八下·顺义期末) 下列交通标志中是中心对称图形的是()A .B .C .D .3. (2分)(2017·黄石模拟) 下列运算正确的是()A . a6÷a2=a3B . 5a2﹣3a2=2aC . (﹣a)2•a3=a5D . 5a+2b=7ab4. (2分)下列说法中,正确的是()A . 近似数117.08精确到十分位B . 按科学记数法表示的数5.04×105 ,其原数是50400C . 将数60340保留2个有效数字是6.0×104D . 用四舍五入法得到的近似数8.1750精确到千分位5. (2分)(2017·营口模拟) 如图,点A是反比例函数y= 的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是()A . 4B . ﹣4C . 8D . ﹣86. (2分)下列命题中,不正确的是()A . 有一个角是60°的等腰三角形是等边三角形B . 对角线互相垂直且相等的四边形是矩形C . 一组对边平行且一组对角相等的四边形是平行四边形D . 对角线相等的菱形是正方形7. (2分)(2019·上城模拟) 将一把直尺与一块含30°和60°角的三角板ABC按如图所示的位置放置,直尺的一边恰好经过点A,如果∠CDE=50°,那么∠BAF的度数为()A . 15°B . 20°C . 30°D . 40°8. (2分)某班有x人,分y组活动,若每组7人,则余下3人;若每组8人,则最后一组只有3人.求全班人数,下列方程组中正确的是()A .B .C .D .9. (2分) (2017九上·曹县期末) 如图,用一个半径为5 cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了()A . π cmB . 2π cmC . 3π cmD . 5π cm10. (2分)(2016·济南) 如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为()A .B .C .D .二、填空题 (共8题;共8分)11. (1分)(2017·禹州模拟) 分解因式:a3﹣4a2b+4ab2=________.12. (1分)已知|x|=4,|y|=,且xy<0,则的值等于________.13. (1分) (2016九上·盐城开学考) 一次函数y=ax+b图象过一、三、四象限,则反比例函数y= (x >0),在每一个象限内,函数值随x的增大而________.14. (1分)(2014·盐城) 如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=________°.15. (1分)已知△ABC是等腰三角形,其边长为3和7,△DEF≌△ABC,则△DEF的周长是________.16. (1分)圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40°,∠F=60°,求∠A=________°.17. (1分)右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
2017年河北省初中毕业生中考数学模拟试卷(3)一、选择题(本大题共16小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分)1.与﹣3的差为0的数是()A.3 B.﹣3 C.﹣ D.2.下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x23.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B.C.D.4.下列等式成立的是()A. +=B. =C. =D. =﹣5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<06.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形7.设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④8.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑9.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m10.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.11.(2分)实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a12.(2分)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D. +=3013.(2分)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.14.(2分)已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=015.(2分)如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A.B.C.D.16.(2分)如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.二、填空题(本大题共3小题,共10分17-18小题各3分,19小题有2个空,每空2分)17.计算:﹣|﹣3|﹣(﹣π)0+2016= .18.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于.19.(4分)如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为,A2n+1的坐标为.三、解答题(本大题共7小题,共68分)20.已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.(2)计算:π0+2﹣1﹣﹣|﹣|.21.(9分)准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.22.(9分)△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O 为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.23.(9分)某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.25.(10分)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).26.(12分)如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.①满足此条件的函数解析式有个.②写出向下平移且经点A的解析式.(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.2017年河北省初中毕业生中考数学模拟试卷(3)参考答案与试题解析一、选择题(本大题共16小题,1-10小题,每小题3分,11-16小题,每小题3分,共42分)1.(2017•河北模拟)与﹣3的差为0的数是()A.3 B.﹣3 C.﹣ D.【考点】有理数的减法.【分析】根据差与减数之和确定出被减数即可.【解答】解:根据题意得:0+(﹣3)=﹣3,则与﹣3的差为0的数是﹣3,故选B.【点评】此题考查了有理数的减法,熟练掌握有理数减法法则是解本题的关键.2.(2012•聊城)下列计算正确的是()A.x2+x3=x5B.x2•x3=x6C.(x2)3=x5D.x5÷x3=x2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;幂的乘方法则:底数不变,指数相乘;同底数幂的除法法则:底数不变,指数相减,分别进行计算,即可选出答案.【解答】解:A、x2与x3不是同类项,不能合并,故此选项错误;B、x2•x3=x2+3=x5,故此选项错误;C、(x2)3=x6,故此选项错误;D、x5÷x3=x2,故此选项正确;故选:D.【点评】此题主要考查了同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方,很容易混淆,一定要记准法则才能做题.3.(2015•长沙)下列图形中,是轴对称图形,但不是中心对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形和中心对称图形的定义可直接得到答案.【解答】解:A、既是轴对称图形也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、既是轴对称图形也是中心对称图形,故此选项错误;D、既是轴对称图形也是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(2015•益阳)下列等式成立的是()A. +=B. =C. =D. =﹣【考点】分式的混合运算.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.5.(2016•呼和浩特)已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<0【考点】一次函数图象与系数的关系.【分析】先将函数解析式整理为y=(k﹣1)x+b,再根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:一次函数y=kx+b﹣x即为y=(k﹣1)x+b,∵函数值y随x的增大而增大,∴k﹣1>0,解得k>1;∵图象与x轴的正半轴相交,∴图象与y轴的负半轴相交,∴b<0.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.熟知一次函数的增减性是解答此题的关键.6.(2016•益阳)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选D.【点评】本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.7.(2013•南京)设边长为3的正方形的对角线长为a.下列关于a的四种说法:①a是无理数;②a可以用数轴上的一个点来表示;③3<a<4;④a是18的算术平方根.其中,所有正确说法的序号是()A.①④ B.②③ C.①②④D.①③④【考点】估算无理数的大小;算术平方根;无理数;实数与数轴;正方形的性质.【分析】先利用勾股定理求出a=3,再根据无理数的定义判断①;根据实数与数轴的关系判断②;利用估算无理数大小的方法判断③;利用算术平方根的定义判断④.【解答】解:∵边长为3的正方形的对角线长为a,∴a===3.①a=3是无理数,说法正确;②a可以用数轴上的一个点来表示,说法正确;③∵16<18<25,4<<5,即4<a<5,说法错误;④a是18的算术平方根,说法正确.所以说法正确的有①②④.故选C.【点评】本题主要考查了勾股定理,实数中无理数的概念,算术平方根的概念,实数与数轴的关系,估算无理数大小,有一定的综合性.8.(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【考点】专题:正方体相对两个面上的文字.【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,故选C.【点评】本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.9.(2013•绍兴)绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB为()A.4m B.5m C.6m D.8m【考点】垂径定理的应用;勾股定理.【分析】连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.【解答】解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8(m);故选;D.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.10.(2016•丽水)用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是()A.B.C.D.【考点】作图—复杂作图.【分析】根据过直线外一点作已知直线的垂线作图即可求解.【解答】解:A、根据垂径定理作图的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;B、根据直径所对的圆周角是直角的方法可知,CD是Rt△ABC斜边AB上的高线,不符合题意;C、根据相交两圆的公共弦的性质可知,CD是Rt△ABC斜边AB上的高线,不符合题意;D、无法证明CD是Rt△ABC斜边AB上的高线,符合题意.故选:D.【点评】考查了作图﹣复杂作图,关键是熟练掌握作过直线外一点作已知直线的垂线的方法.11.实数a,b在数轴上的对应点的位置如图所示,把﹣a,﹣b,0按照从小到大的顺序排列,正确的是()A.﹣a<0<﹣b B.0<﹣a<﹣b C.﹣b<0<﹣a D.0<﹣b<﹣a【考点】实数大小比较;实数与数轴.【分析】根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.【解答】解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a,故选C.【点评】本题考查了数轴,有理数的大小比较的应用,能根据数轴得出﹣b<0<﹣a,是解此题的关键.12.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D. +=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据题意得,﹣=.故选B.【点评】本题考查由实际问题抽象出分式方程,关键是设出速度,以时间做为等量关系列方程.13.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.【解答】解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故A选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故B选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m >0,相矛盾,故C选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m <0,相矛盾,故D选项错误;故选:A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.14.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是()A.b=﹣1 B.b=2 C.b=﹣2 D.b=0【考点】命题与定理;根的判别式.【分析】先根据判别式得到△=b2﹣4,在满足b<0的前提下,取b=﹣1得到△<0,根据判别式的意义得到方程没有实数解,于是b=﹣1可作为说明这个命题是假命题的一个反例.【解答】解:△=b2﹣4,由于当b=﹣1时,满足b<0,而△<0,方程没有实数解,所以当b=﹣1时,可说明这个命题是假命题.故选:A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式;有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了根的判别式.15.如图的△ABC中有一正方形DEFG,其中D在AC上,E、F在AB上,直线AG分别交DE、BC于M、N两点.若∠B=90°,AB=4,BC=3,EF=1,则BN的长度为何?()A.B.C.D.【考点】相似三角形的判定与性质;正方形的性质.【分析】由DE∥BC可得求出AE的长,由GF∥BN可得,将AE的长代入可求得BN.【解答】解:∵四边形DEFG是正方形,∴DE∥BC,GF∥BN,且DE=GF=EF=1,∴△ADE∽△ACB,△AGF∽△ANB,∴①,②,由①可得,,解得:AE=,将AE=代入②,得:,解得:BN=,故选:D.【点评】本题主要考查正方形的性质及相似三角形的判定与性质,根据相似三角形的性质得出AE的长是解题的关键.16.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x,两个三角形重叠面积为y,则y关于x的函数图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题目提供的条件可以求出函数的解析式,根据解析式判断函数的图象的形状.【解答】解:①x≤1时,两个三角形重叠面积为小三角形的面积,∴y=×1×=,②当1<x≤2时,重叠三角形的边长为2﹣x,高为,y=(2﹣x)×=x2﹣x+,③当x=2时,两个三角形没有重叠的部分,即重叠面积为0,故选:B.【点评】本题主要考查了本题考查了动点问题的函数图象,此类题目的图象往往是几个函数的组合体.二、填空题(本大题共3小题,共10分17-18小题各3分,19小题有2个空,每空2分)17.(2017•河北模拟)计算:﹣|﹣3|﹣(﹣π)0+2016= 2017 .【考点】实数的运算;零指数幂.【分析】原式利用算术平方根定义,绝对值的代数意义,零指数幂法则计算即可得到结果.【解答】解:原式=5﹣3﹣1+2016=2017,故答案为:2017【点评】此题考查了实数的运算,以及零指数幂,熟练掌握运算法则是解本题的关键.18.(2014•泰州)已知a2+3ab+b2=0(a≠0,b≠0),则代数式+的值等于﹣3 .【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为=,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式===﹣3.故答案为:﹣3.【点评】本题考查了分式的化简求值,通分后整体代入是解题的关键.19.如图,在平面直角坐标系中,函数y=2x和y=﹣x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过点A1作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2017的坐标为(21008,21009),A2n+1的坐标为((﹣2)n,2(﹣2)n).【考点】两条直线相交或平行问题.【分析】写出部分A n点的坐标,根据坐标的变化找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”,依此规律即可得出结论.【解答】解:观察,发现规律:A1(1,2),A2(﹣2,2),A3(﹣2,﹣4),A4(4,﹣4),A5(4,8),…,∴A2n+1((﹣2)n,2(﹣2)n)(n为自然数).∵2017=1008×2+1,∴A2017的坐标为((﹣2)1008,2(﹣2)1008)=(21008,21009).故答案为:(21008,21009);((﹣2)n,2(﹣2)n)(n为自然数).【点评】本题考查了一次函数图象上点的坐标特征以及规律型中坐标的变化,解题的关键是找出变化规律“A2n+1((﹣2)n,2(﹣2)n)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,写出部分A n点的坐标,根据坐标的变化找出变化规律是关键.三、解答题(本大题共7小题,共68分)20.(1)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.(2)计算:π0+2﹣1﹣﹣|﹣|.【考点】整式的混合运算—化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)先算乘法,再合并同类项,变形后代入求出即可;(2)根据零指数幂、负整数指数幂、算术平方根、绝对值分别求出每一部分的值,再代入求出即可.【解答】解:(1)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣x2+y2﹣2y2=﹣4xy+3y2=﹣y(4x﹣3y),∵4x=3y,∴4x﹣3y=0,∴原式=﹣y×0=0;(2)π0+2﹣1﹣﹣|﹣|=1+﹣﹣=.【点评】本题考查了整式的混合运算和求值,也考查了实数的混合运算和零指数幂、负整数指数幂、算术平方根、绝对值等知识点,能熟记零指数幂、负整数指数幂、算术平方根、绝对值等知识点的内容是解(2)的关键,能正确根据整式的运算法则进行化简是解(1)的关键.21.准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.【考点】翻折变换(折叠问题);平行四边形的判定;菱形的性质.【分析】(1)根据四边形ABCD是矩形和折叠的性质可得EB∥DF,DE∥BF,根据平行四边形判定推出即可.(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,再根据菱形的面积计算即可求出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠ABD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)解:∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BF=BE=2AE=,故菱形BFDE的面积为:×2=.【点评】本题考查了平行四边形的判定,菱形的性质,矩形的性质,含30度角的直角三角形性质的应用,主要考查学生运用定理进行推理和计算的能力.22.△ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到△A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.【考点】待定系数法求反比例函数解析式;坐标与图形变化﹣旋转.【分析】(1)据图形旋转方向以及旋转中心和旋转角度得出对应点,根据待定系数法,即可求出解.(2)根据勾股定理求得OC,然后根据旋转的旋转求得OC′,最后根据勾股定理即可求得.【解答】解:(1)如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,点B的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y=,∴k=3×1=3,∴过点B′的反比例函数解析式为y=.(2)∵C(﹣1,2),∴OC==,∵△ABC以坐标原点O为旋转中心,顺时针旋转90°,∴OC′=OC=,∴CC′==.【点评】本题考查了图形的旋转、勾股定理的应用以及待定系数法求反比例函数的解析式,抓住旋转的三要素:旋转中心,旋转方向,旋转角度是解题关键.23.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(2016•滨州)星期天,李玉刚同学随爸爸妈妈回老家探望爷爷奶奶,爸爸8:30骑自行车先走,平均每小时骑行20km;李玉刚同学和妈妈9:30乘公交车后行,公交车平均速度是40km/h.爸爸的骑行路线与李玉刚同学和妈妈的乘车路线相同,路程均为40km.设爸爸骑行时间为x(h).(1)请分别写出爸爸的骑行路程y1(km)、李玉刚同学和妈妈的乘车路程y2(km)与x(h)之间的函数解析式,并注明自变量的取值范围;(2)请在同一个平面直角坐标系中画出(1)中两个函数的图象;(3)请回答谁先到达老家.【考点】一次函数的应用.【分析】(1)根据速度乘以时间等于路程,可得函数关系式,(2)根据描点法,可得函数图象;(3)根据图象,可得答案.【解答】解;(1)由题意,得y1=20x (0≤x≤2)y2=40(x﹣1)(1≤x≤2);(2)由题意得;(3)由图象可得李玉刚和妈妈乘车和爸爸骑行同时到达老家.【点评】本题考查了一次函数图象,利用描点法是画函数图象的关键.25.(10分)(2014•苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105 °;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).【考点】圆的综合题.【分析】(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠DAC=60°,进而得出答案;(2)首先得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣2=t﹣2,求出t的值,进而得出OO1=3t 得出答案即可;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,②当直线AC与⊙O第二次相切时,设移动时间为t2,分别求出即可.【解答】解:(1)∵l1⊥l2,⊙O与l1,l2都相切,∴∠OAD=45°,∵AB=4cm,AD=4cm,∴CD=4cm,∴tan∠DAC===,∴∠DAC=60°,∴∠OAC的度数为:∠OAD+∠DAC=105°,故答案为:105;(2)如图位置二,当O1,A1,C1恰好在同一直线上时,设⊙O1与l1的切点为E,连接O1E,可得O1E=2,O1E⊥l1,在Rt△A1D1C1中,∵A1D1=4,C1D1=4,∴tan∠C1A1D1=,∴∠C1A1D1=60°,在Rt△A1O1E中,∠O1A1E=∠C1A1D1=60°,∴A1E==,∵A1E=AA1﹣OO1﹣2=t﹣2,∴t﹣2=,∴t=+2,∴OO1=3t=2+6;(3)①当直线AC与⊙O第一次相切时,设移动时间为t1,如图位置一,此时⊙O移动到⊙O2的位置,矩形ABCD移动到A2B2C2D2的位置,设⊙O2与直线l1,A2C2分别相切于点F,G,连接O2F,O2G,O2A2,∴O2F⊥l1,O2G⊥A2C2,由(2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠O2A2F=60°,在Rt△A2O2F中,O2F=2,∴A2F=,∵OO2=3t1,AF=AA2+A2F=4t1+,∴4t1+﹣3t1=2,∴t1=2﹣,②当直线AC与⊙O第二次相切时,设移动时间为t2,记第一次相切时为位置一,点O1,A1,C1共线时位置二,第二次相切时为位置三,由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等,∴+2﹣(2﹣)=t2﹣(+2),解得:t2=2+2,综上所述,当d<2时,t的取值范围是:2﹣<t<2+2.【点评】此题主要考查了切线的性质以及锐角三角函数关系等知识,利用分类讨论以及数形结合t的值是解题关键.26.(12分)(2014•凉山州)如图①,在平面直角坐标中,点A的坐标为(1,﹣2),点B的坐标为(3,﹣1),二次函数y=﹣x2的图象为l1.(1)平移抛物线l1,使平移后的抛物线经过点A,但不过点B.①满足此条件的函数解析式有无数个.②写出向下平移且经点A的解析式y=﹣x2﹣1 .(2)平移抛物线l1,使平移后的抛物线经过A,B两点,所得的抛物线l2,如图②,求抛物线l2的函数解析式及顶点C的坐标,并求△ABC的面积.(3)在y轴上是否存在点P,使S△ABC=S△ABP?若存在,求出点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)①根据实际情况可以直接写出结果;②设平移以后的二次函数解析式是:y=﹣x2+c,把(1,﹣2)代入即可求得c的值,得到函数的解析式;(2)利用待定系数法即可求得函数的解析式,过点A、B、C三点分别作x轴的垂线,垂足分别为D、E、F,求得△ABC的面积,;(3)分当点P位于点G的下方和上方两种情况进行讨论求解.【解答】方法一:解:(1)①满足此条件的函数解析式有无数个;②设平移以后的二次函数解析式是:y=﹣x2+c,把A(1,﹣2)代入得:﹣1+c=﹣2,解得:c=﹣1,则函数的解析式是:y=﹣x2﹣1;(2)设l2的解析式是y=﹣x2+bx+c,∵l2经过点A(1,﹣2)和B(3,﹣1),根据题意得:,解得:,则l2的解析式是:y=﹣x2+x﹣,则顶点C的坐标是(,﹣).过点A、B、C三点分别作x轴的垂线,垂足分别为D、E、F,则AD=2,CF=,BE=1,DE=2,DF=,FE=.得:S△ABC=S梯形ABED﹣S梯形BCFE﹣S梯形ACFD=.(3)延长BA交y轴于点G,直线AB的解析式为y=x﹣,则点G的坐标为(0,﹣),设点P的坐标为(0,h)①当点P位于点G的下方时,PG=﹣﹣h,连结AP、BP,则S△APG=S△BPG﹣S△ABP=(﹣﹣h)/2,∴S△ABP=(﹣﹣h)。
2017年河北省唐山市中考数学模拟试卷(3)一、选择题1.的倒数是()A.5 B.﹣5 C.D.﹣2.在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为()A.133×10 B.1.33×103C.133×104D.133×1053.下列运算正确的是()A.5a2+3a2=8a4B.a3•a4=a12C.(a+2b)2=a2+4b2D.﹣=﹣44.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.6.下列说法错误的是()A.“伊利”纯牛奶消费者服务热线是4008169999,该十个数的中位数为7B.服装店老板最关心的是卖出服装的众数C.要了解全市初三近4万名学生2015年中考数学成绩情况,适宜采用全面调查D.条形统计图能够显示每组中的具体数据,易于比较数据之间的差别7.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.y=D.y=8.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或99.某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500 D.y=60﹣0.12x,0≤x≤50010.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣311.到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.450(1+x)2=625 B.450(1+x)=625 C.450(1+2x)=625 D.625(1+x)2=450 12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数).其中正确结论的有()A .①②③B .①③④C .③④⑤D .②③⑤13.从棱长为a 的正方体零件的一角,挖去一个棱长为0.5a 的小正方体,得到一个如图所示的零件,则这个零件的左视图是( )A .B .C .D .14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( )A .60°B .90°C .120°D .180°15.如图,在正方形ABCD 中,AB=3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD ﹣DC ﹣CB 以每秒3cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2),运动时间为x (秒),则下列图象中能大致反映y 与x 之间的函数关系的是( )A .B .C .D .二、填空题16.如果点M (3,x )在第一象限,则x 的取值范围是 .17.不等式组的所有整数解的积为.18.如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.19.如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为.三、解答题20.计算:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°.21.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.22.如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k ≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.23.“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为.(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.24.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.25.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡FC的坡比为i FC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α.已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.2017年河北省唐山市英才国际学校中考数学模拟试卷(3)参考答案与试题解析一、选择题1.的倒数是()A.5 B.﹣5 C.D.﹣【考点】倒数.【分析】根据倒数的意义,乘积是1的两个数互为倒数,求一个数的倒数就是把这个数的分子和分母调换位置.由此解答.【解答】解:的倒数是5.故选A.2.在第三届中小学生运动会上,我市共有1330名学生参赛,创造了比赛组别、人数、项目之最,将1330用科学记数法表示为()A.133×10 B.1.33×103C.133×104D.133×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1330用科学记数法表示为1.33×103.故选B.3.下列运算正确的是()A.5a2+3a2=8a4B.a3•a4=a12C.(a+2b)2=a2+4b2D.﹣=﹣4【考点】完全平方公式;立方根;合并同类项;同底数幂的乘法.【分析】根据同类项、同底数幂的乘法、立方根和完全平方公式计算即可.【解答】解:A、5a2+3a2=8a2,错误;B、a3•a4=a7,错误;C、(a+2b)2=a2+4ab+4b2,错误;D、,正确;故选D.4.在市委、市府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制了一个正方体玩具,其展开图如图所示,原正方体中与“文”字所在的面相对的面上标的字应是()A.全B.明C.城D.国【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:由正方体的展开图特点可得:与“文”字所在的面上标的字应是“城”.故选:C.5.下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据三角形高线的定义进行解答即可.【解答】解:A、B、D中线段BE不符合三角形高线的定义.故选C.6.下列说法错误的是()A.“伊利”纯牛奶消费者服务热线是4008169999,该十个数的中位数为7B.服装店老板最关心的是卖出服装的众数C.要了解全市初三近4万名学生2015年中考数学成绩情况,适宜采用全面调查D.条形统计图能够显示每组中的具体数据,易于比较数据之间的差别【考点】中位数;全面调查与抽样调查;统计图的选择;众数.【分析】根据中位数、众数、全面调查和条形统计图的概念解答即可.【解答】解:A、4008169999的中位数是7,正确;B、服装店老板最关心的是卖出服装的众数,正确;C、要了解全市初三近4万名学生2015年中考数学成绩情况,适宜采用抽样调查,错误;D、条形统计图能够显示每组中的具体数据,易于比较数据之间的差别,正确;由于该题选择错误的,故选C.7.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A.y=x+2 B.y=x2+2 C.y=D.y=【考点】函数自变量的取值范围;在数轴上表示不等式的解集.【分析】分别求出个解析式的取值范围,对应数轴,即可解答.【解答】解:A、y=x+2,x为任意实数,故错误;B、y=x2+2,x为任意实数,故错误;C、,x+2≥0,即x≥﹣2,故正确;D、y=,x+2≠0,即x≠﹣2,故错误;故选:C.8.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是()A.12 B.9 C.13 D.12或9【考点】解一元二次方程﹣因式分解法;三角形三边关系;等腰三角形的性质.【分析】求出方程的解,即可得出三角形的边长,再求出即可.【解答】解:x2﹣7x+10=0,(x﹣2)(x﹣5)=0,x﹣2=0,x﹣5=0,x1=2,x2=5,①等腰三角形的三边是2,2,5∵2+2<5,∴不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;即等腰三角形的周长是12.故选:A.9.某油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,如果加满汽油后汽车行驶的路程为x km,油箱中剩油量为y L,则y与x之间的函数解析式和自变量取值范围分别是()A.y=0.12x,x>0 B.y=60﹣0.12x,x>0C.y=0.12x,0≤x≤500 D.y=60﹣0.12x,0≤x≤500【考点】根据实际问题列一次函数关系式.【分析】根据题意列出一次函数解析式,即可求得答案.【解答】解:因为油箱容量为60 L的汽车,加满汽油后行驶了100 km时,油箱中的汽油大约消耗了,可得: L/km,60÷0.12=500(km),所以y与x之间的函数解析式和自变量取值范围是:y=60﹣0.12x,(0≤x≤500),故选D.10.如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设P=a+b+c,则P的取值范围是()A.﹣3<P<﹣1 B.﹣6<P<0 C.﹣3<P<0 D.﹣6<P<﹣3【考点】二次函数图象与系数的关系.【分析】利用二次函数图象的开口方向和对称轴求出a>0,b<0,把x=﹣1代入求出b=a ﹣3,把x=1代入得出P=a+b+c=2a﹣6,求出2a﹣6的范围即可.【解答】解:∵抛物线y=ax2+bx+c(c≠0)过点(﹣1,0)和点(0,﹣3),∴0=a﹣b+c,﹣3=c,∴b=a﹣3,∵当x=1时,y=ax2+bx+c=a+b+c,∴P=a+b+c=a+a﹣3﹣3=2a﹣6,∵顶点在第四象限,a>0,∴b=a﹣3<0,∴a<3,∴0<a<3,∴﹣6<2a﹣6<0,即﹣6<P<0.故选:B.11.到2013底,我县已建立了比较完善的经济困难学生资助体系.某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元.设每年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.450(1+x)2=625 B.450(1+x)=625 C.450(1+2x)=625 D.625(1+x)2=450 【考点】由实际问题抽象出一元二次方程.【分析】先用含x的代数式表示2012年发放给每个经济困难学生的钱数,再表示出2013年发放的钱数,令其等于438即可列出方程.【解答】解:设每年发放的资助金额的平均增长率为x,则2012年发放给每个经济困难学生450(1+x)元,2013年发放给每个经济困难学生450(1+x)由题意,得:450(1+x)2=625.故选A.12.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b<m (am+b)(m≠1的实数).其中正确结论的有()A.①②③B.①③④C.③④⑤D.②③⑤【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①由图象可知:a<0,c>0,∵﹣>0,∴b>0,∴abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,故a﹣b+c>0,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.13.从棱长为a的正方体零件的一角,挖去一个棱长为0.5a的小正方体,得到一个如图所示的零件,则这个零件的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是一个正方形,正方形的左上角是一个小正方形,故选:B.14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于()A.60° B.90° C.120°D.180°【考点】圆锥的计算.【分析】要求其圆心角,就要根据弧长公式计算,首先明确侧面展开图是个扇形,即圆的周长就是弧长.【解答】解:∵左视图是等边三角形,∴底面直径=圆锥的母线.故设底面圆的半径为r,则圆锥的母线长为2r,底面周长=2πr,侧面展开图是个扇形,弧长=2πr=,所以n=180°.故选D.15.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B 点运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y 与x之间的函数关系的是()A. B. C.D.【考点】动点问题的函数图象.【分析】当点N在AD上时,易得S△AMN的关系式;当点N在CD上时,高不变,但底边在增大,所以S△AMN的面积关系式为一个一次函数;当N在BC上时,表示出S△AMN的关系式,根据开口方向判断出相应的图象即可.【解答】解:当点N在AD上时,即0≤x≤1,S△AMN=×x×3x=x2,点N在CD上时,即1≤x≤2,S△AMN=×x×3=x,y随x的增大而增大,所以排除A、D;当N在BC上时,即2≤x≤3,S△AMN=×x×(9﹣3x)=﹣x2+x,开口方向向下.故选:B二、填空题16.如果点M(3,x)在第一象限,则x的取值范围是x>0 .【考点】点的坐标.【分析】根据第一象限内点的横坐标大于零,点的纵坐标大于零,可得答案.【解答】解:由点M(3,x)在第一象限,得x>0.故答案为:x>0.17.不等式组的所有整数解的积为0 .【考点】一元一次不等式组的整数解.【分析】先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相乘即可求解.【解答】解:,解不等式①得:x,解不等式②得:x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.18.如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为9cm2.【考点】中点四边形;菱形的性质.【分析】连接AC、BD,首先判定四边形EFGH的形状为矩形,然后根据菱形的性质求出AC 与BD的值,进而求出矩形的长和宽,然后根据矩形的面积公式计算其面积即可.【解答】解:连接AC,BD,相交于点O,如图所示,∵E、F、G、H分别是菱形四边上的中点,∴EH=BD=FG,EH∥BD∥FG,EF=AC=HG,∴四边形EHGF是平行四边形,∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴四边形EFGH是矩形,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABO=30°,∵AC⊥BD,∴∠AOB=90°,∴AO=AB=3,∴AC=6,在Rt△AOB中,由勾股定理得:OB==3,∴BD=6,∵EH=BD,EF=AC,∴EH=3,EF=3,∴矩形EFGH的面积=EF•FG=9cm2.故答案为:9.19.如图,半径为r的⊙O分别绕面积相等的等边三角形、正方形和圆用相同速度匀速滚动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为t1>t2>t3.【考点】轨迹.【分析】根据面积,可得相应的周长,根据有理数的大小比较,可得答案.【解答】解:设面积相等的等边三角形、正方形和圆的面积为S,等边三角形、正方形的边长分别为a,b,圆的半径为r,等边三角形的面积S=a2,周长=3a=3,正方形的面积S=b2,周长=4b=4,圆的面积S=πr2,周长=2πr=2π,周长平方后的结果分别为12S,16S,4πS∴t1>t2>t3.故答案为:t1>t2>t3.三、解答题20.计算:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】利用有理数的乘方以及特殊角的三角函数值以及零指数幂的性质分别化简求出即可.【解答】解:﹣14+(2﹣2)0+|﹣2015|﹣4cos60°=﹣1+1+2015﹣4×=2013.21.在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.【考点】全等三角形的判定与性质;平行四边形的性质;翻折变换(折叠问题).【分析】由在平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,即可求得∠DBE=∠ADB,得出OB=OD,再由∠A=∠C,证明三角形全等,利用全等三角形的性质证明即可.【解答】证明:平行四边形ABCD中,将△BCD沿BD对折,使点C落在E处,可得∠DBE=∠ADB,∠A=∠C,∴OB=OD,在△AOB和△EOD中,,∴△AOB≌△EOD(AAS),∴OA=OE.22.如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数y=(k ≠0)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据OA=OB和点B的坐标易得点A坐标,再将A、B两点坐标分别代入y=kx+b,可用待定系数法确定一次函数的解析式,;(2)由B是线段AC的中点,可得C点坐标,将C点坐标代入y=(k≠0)可确定反比例函数的解析式.【解答】解:(1)∵OA=OB,点B的坐标为(0,2),∴点A(﹣2,0),点A、B在一次函数y=kx+b(k≠0)的图象上,∴,解得k=1,b=2,∴一次函数的解析式为y=x+2.(2)∵B是线段AC的中点,∴点C的坐标为(2,4),又∵点C在反比例函数y=(k≠0)的图象上,∴k=8;∴反比例函数的解析式为y=.23.“阳光体育”运动关乎每个学生未来的幸福生活,今年五月,我市某校开展了以“阳光体育我是冠军”为主题的一分钟限时跳绳比赛,要求每个班选2﹣3名选手参赛,现将80名选手比赛成绩(单位:次/分钟)进行统计.绘制成频数分布直方图,如图所示.(1)图中a值为 4 .(2)将跳绳次数在160~190的选手依次记为A1、A2、…A n,从中随机抽取两名选手作经验交流,请用树状或列表法求恰好抽取到的选手A1和A2的概率.【考点】列表法与树状图法;频数(率)分布直方图.【分析】(1)观察直方图可得:a=80﹣8﹣40﹣28=4;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽取到的选手A1和A2的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:a=80﹣8﹣40﹣28=4,故答案为:4;(2)画树状图得:∵共有12种等可能的结果,恰好抽取到的选手A1和A2的有2种情况,∴恰好抽取到的选手A1和A2的概率为: =.24.为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B 两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.【考点】一次函数的应用.【分析】(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8﹣x)辆,前往A村的小货车为(10﹣x)辆,前往B村的小货车为[7﹣(10﹣x)]辆,根据表格所给运费,求出y与x 的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【解答】解:(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8﹣x)+400(10﹣x)+600[7﹣(10﹣x)]=100x+9400.(3≤x≤8,且x 为整数).(3)由题意得:12x+8(10﹣x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+9400,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+9400=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.25.数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图,老师测得升旗台前斜坡FC的坡比为i FC=1:10(即EF:CE=1:10),学生小明站在离升旗台水平距离为35m(即CE=35m)处的C点,测得旗杆顶端B的仰角为α.已知tanα=,升旗台高AF=1m,小明身高CD=1.6m,请帮小明计算出旗杆AB的高度.【考点】解直角三角形的应用﹣仰角俯角问题;解直角三角形的应用﹣坡度坡角问题.【分析】首先根据题意分析图形,本题涉及到两个直角三角形,分别解可得BG与EF的大小,进而求得BE、AE的大小,再利用AB=BE﹣AE可求出答案.【解答】解:作DG⊥AE于G,则∠BDG=α,易知四边形DCEG为矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG•×tanα=35×=15m,∴BE=15+1.6=16.6m.∵斜坡FC的坡比为i FC=1:10,CE=35m,∴EF=35×=3.5,∵AF=1,∴AE=AF+EF=1+3.5=4.5,∴AB=BE﹣AE=16.6﹣4.5=12.1m.答:旗杆AB的高度为12.1m.。
河北省唐山市中考数学三模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共40分)1. (3分)(2017·徐州模拟) 3的相反数是()A . ﹣3B . 3C . ﹣D .2. (2分)下面关于正六棱柱的视图(主视图、左视图、俯视图)中,画法错误的是()A .B .C .D .3. (3分)估算的值是()A . 在5与6之间B . 在6与7之间C . 在7与8之间D . 在8与9之间4. (2分)(2018·深圳模拟) 如图,已知AB∥CD,∠D=50°,BC平分∠ABD,则∠ABC等于()A . 65°B . 55°C . 50°D . 45°5. (3分)小明做了6次掷质地均匀硬币的试验,在前 5 次试验中,有 2 次正面朝上,3 次正面朝下,那么第 6 次试验,硬币正面朝上的概率是()A . 1B . 0C . 0.5D . 不稳定7. (3分)下列命题中,假命题是()A . 一组邻边相等的平行四边形是菱形;B . 一组邻边相等的矩形是正方形;C . 一组对边相等且有一个角是直角的四边形是矩形;D . 一组对边平行且另一组对边不平行的四边形是梯形.8. (3分)(2019·驻马店模拟) 的相反数是()A .B . -9C . 9D .9. (3分)(2017·平顶山模拟) 如图,在平行四边形ABCD中,以点A为圆心,一定长为半径作圆弧,分别交AD、AB于点E、F;再分别以点E、F为圆心,大于 EF的长为半径作弧,两弧交于点G;作射线AG,交边CD 于点H.若AB=6,AD=4,则四边形ABCH的周长与三角形ADH的周长之差为()A . 4B . 5C . 6D . 710. (3分) (2019九上·江岸月考) 一元二次方程x2-4x+4=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 无实数根D . 无法确定11. (2分)下列各点中,在函数y=2x-1图象上的是().A .B . (1,3)C .D . (-1,3)12. (2分)已知一块蓄电池的电压为定值,以此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图,则电流I关于电阻R的函数解析式为()A . I=B . I=C . I=D . I=-13. (2分) (2017九下·萧山开学考) 已知线段,则线段的比例中项为()A .B .C .D .14. (2分) (2019七上·萝北期末) 某班分两组去两处植树,第一组22人,第二组26人.现第一组在植树中遇到困难,需第二组支援.问从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()A . 22+x=2×26B . 22+x=2(26﹣x)C . 2(22+x)=26﹣xD . 22=2(26﹣x)15. (2分)在Rt△ABC中,∠C=90°,tanB=, BC=,则AC等于()A . 4B . 4C . 3D . 616. (2分)(2018·大连) 如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2 ,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A . 10×6﹣4×6x=32B . (10﹣2x)(6﹣2x)=32C . (10﹣x)(6﹣x)=32D . 10×6﹣4x2=32二、填空题 (共3题;共10分)17. (3分) (2019八上·如皋期末) 若,则a的取值范围是________.18. (3分) (2017七上·西华期中) 如果与互为相反数,那么ab的值为________.19. (4分)如图,以O为位似中心,作出四边形ABCD的位似图形,使新图形与原图形的相似比为2:1,并以O为原点,写出新图形各点的坐标.三、解答题 (共7题;共58分)20. (9.0分) (2017七上·黄陂期中) 红红有5张写着以下数字的卡片,请你按要求抽出卡片,完成下列各问题:(1)从中取出2张卡片,使这2张卡片上数字乘积最大,最大值是________(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,最小值是________(3)从中取出除0以外的其他4张卡片,将这4个数字进行加、减、乘、除或乘方等混合运算,使运算结果为24(注:每个数字只能用一次,如:23×[1-(-2)],请另外写出两种符合要求的运算式子:________ ________21. (9分)(2016·衢州) 如图,正方形ABCD的顶点A,B在函数y= (x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.①当k=2时,正方形A′B′C′D′的边长等于________.②当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是________.22. (9分) (2019七上·天台月考) 油桶制造厂的某车间主要负责生产制造油桶用的圆形铁片和长方形铁片,该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.如图,一个油桶由两个圆形铁片和一个长方形铁片相配套.生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?23. (9.0分)(2018·青岛模拟) 一次学科测验,学生得分均为整数,满分10分,成绩达到6分以上为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:(2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.24. (10.0分) (2017八下·宜城期末) 为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.25. (10.0分)(2014·南通) 如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M作MG⊥EM,交直线BC于点G.(1)若M为边AD中点,求证△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.26. (2分) (2017八下·黄山期末) 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN 交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.参考答案一、选择题 (共16题;共40分)1-1、2-1、3-1、4-1、5-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共10分)17-1、18-1、19-1、三、解答题 (共7题;共58分)20-1、20-2、20-3、21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
河北省唐山市路北区2017届九年级数学下学期第一次模拟试题2017年九年级第一次模拟检测九年级数学参考答案一.选择题(1-10小题,每题3分;11-16小题,每题2分,共42分) 二.填空题:(17-18每小题3分,19题每空2分,共10分) 17.6.05×104; 18.; 19.(1)332(2分) ,(2) 0, 32(每个1分) 三.解答题:(共68分) 20.解:原式=÷…………………………………………2分= •………………………………………………4分=,……………………………………………………………………………5分∵x 满足方程x 2+x ﹣6=0,解得:x 1=2,x 2=﹣3,……………………………………7分 当x =2时,原式的分母为0,故舍去;…………………………………………………8分 当x =﹣3时,原式== .……………………………………………………9分21.解:(1)50;(2)略;(3)72;【每问2分】(4)估计该年该城市适宜户外活动的天数是×365=146(天).………………8分答:估计该年该城市适宜户外活动的天数是146天.…………………………………9分22.解:(1)连结OB ,OC ,作OM ⊥BC 于M ,…………………………………………………1分∵△ABC 是等边三角形, ∴∠A =60°,………………………………………2分 ∴∠BOC =120°.………………………………………………………………………3分 又∵OM ⊥BC , ∴BM =CM =3.……………………………………4分 又∵OB =OC , ∴∠OBC =∠OCB =30°.…………………………5分 ∴⊙O 半径==2;…………………………………………………………6分(2)∵由(1)知∠BOC =120°,OB=2,………………………………………………7分 ∴弧BC 的长==………………………………………………8分弓形BC 的面积=S 扇形BOC ﹣S △B OC =﹣×6×3=4π﹣3.……9分23.解:(1)把点A (﹣4,m )的坐标代入y 2=,则m ==﹣1,……………………………1分得m =﹣1;………………………………………………………………………………2分 (2)连接CB ,CD ,∵⊙C 与x 轴,y 轴相切于点D ,B ,∴∠CBO =∠CDO =90°=∠BOD ,BC =CD , ∴四边形BODC 是正方形,∴BO =OD =DC =CB ,……………………………………………………………………3分∴设C (a ,a )代入y 2=得:a 2=4, ∵a >0,∴a =2,∴C (2,2),B (0,2),………………………………………………………………4分 把A (﹣4,﹣1)和(0,2)的坐标代入y 1=kx +b 中, 得:, 解得:,………………………………………………6分∴一次函数的表达式为:y 1=x +2;……………………………………………………7分(3)∵A (﹣4,﹣1), ∴当y 1<y 2<0时,x 的取值范围是:x <﹣4.……………9分24.(1) 证明 ① 如图2,∵BM ⊥直线a 于点M ,CN ⊥直线a 于点N , ∴∠BMN =∠C NM =90︒,∴BM //CN ,∴∠MBP =∠ECP ,……………………………………………………………………1分又∵P 为BC 边中点,∴BP =CP ,又∵∠BPM =∠CPE ,∴△BPM ≅△CPE ,………………………………………………2分②∵△BPM ≌△CPE ,∴PM =PE ,∴PM =21ME ,……………………………………3分 ∴在R t △MNE 中,PN =21ME ,………………………………………………………4分 ∴PM =PN ;………………………………………………………………………………5分 (2) 成立,如图3,延长MP 与NC 的延长线相交于点E ,……………………………………………………6分∵BM ⊥直线a 于点M ,CN ⊥直线a 于点N ,∴∠BMN =∠CNM =90︒, ∴∠BMN +∠CNM =180︒,∴BM //CN ,∴∠MBP =∠ECP ,又∵P 为BC 中点, ∴BP =CP ,又∵∠BPM =∠CPE , ∴△BPM ≅△CPE ,∴PM =PE , ∴PM =21ME ,…………………………………………………………………………………7分 则在R t △MNE 中,PN =21ME ,………………………………………………………………8分 ∴PM =PN 。