最新修订人教版八年级下册数学易错专题练习:分式与分式方程中的易错题
- 格式:doc
- 大小:31.00 KB
- 文档页数:3
八年级数学下册 反比例函数复习与分式易错题 人教新课标版1.反比例函数:一般地,形如:xky =〔k 为常数,k ≠0〕的函数称为反比例函数,其中x 是自变量,y 是x 的函数,k 是反比例系数.反比例函数有三种表示形式: 、 、 2.反比例函数图象及画法:一般地,反比例函数xky =〔k 为常数,k ≠0〕的图象是由两个分支组成的,是双曲线.这两个分支分别位于第一、三象限或者第二、四象限.双曲线两个分支关于原点对称,由于反比例函数中,自变量x ≠0,函数值y ≠0,所以它的图象与 x 轴和y 轴都没有交点,即双曲线的两个分支无限地接近坐标轴,但永远不与坐标轴相交. 反比例函数图象既是以直线 和直线 为对称轴的轴对称图形;又是是以 为对称中心的中心对称图形。
过原点任意画一条直线,与两个分支交于两点,那么这两个交点是关于 对称的,即假设一个交点是)(b a P ,,那么另一个交点是 .画反比例函数的图象的根本步骤为: ① 列表;描点;③ 连线. 3.反比例函数性质:〔1〕反比例函数图象的位置和函数值的增减性都是由比例系数k 来确定的: ① 当 k >0时, x ,y 同号,图象在第一、三象限,在每一个象限内, 由左至右呈下降趋势,y 随x 的增大而减小;② 当 k <0时, x ,y 异号,图象在第二、四象限,在每一个象限内,由左向右呈上升趋势,y 随x 的增大而增大.〔2〕描绘函数值的增减情况时,必须指出“在同一象限内〞,否那么,假设笼统地说:“当k >0时,y 随x 的增大而减小〞,就会出现与事实不符的错误,如函数xy 6=,当x 2-=时,y 3-=;当 x=2 时,y=3 .显然不是y 随x 的增大而减小. 4.求反比例函数关系式的根本方法,是待定系数法。
过反比例函数图象上的任意一点作 x 轴的垂线,那么这点与垂足、坐标系原点构成的三角形的面积是一个定值,即22kxy S ==。
过反比例函数图象上的任意一点作 x 轴、Y 轴的垂线,那么这点与坐标轴构成的矩形的面积是一个定值,即【例1】当m 取什么值时,函数23)2(m x m y --=是反比例函数?【例2】函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5.〔1〕求y 与x 的函数关系式;〔2〕当x =-2时,求函数y 的值.【例3】以下函数中,是反比例函数的是 〔 〕A .(1)1y x +-B .11y x =-C .21y x =D .23y x=【例4】假设y 与-2x 成反比例函数关系,x 与3z 成正比例,那么y 与z 的关系 〔 〕A .成正比例函数B .成反比例函数C .成一次函数D .不能确定【例5】面积为8的△ABC ,一边长x ,这边上的高为y ,那么y 与x 的变化规律用图象表示大致是 〔 〕【例6】点〔2,5〕在反比例函数y=xk的图象上,那么以下各点在该函数图象上的是〔 〕 A .〔2,—5〕 B .〔—5,—2〕 C .〔—3,4〕 D .〔4,—3〕【例7】在同一直角坐标平面内,假如直线x k y 1=与反比例函数的图象xk y 2=没有交点,那么1k 和2k 的关系一定是〔 〕A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号【例8】函数a ax y -=与xay =〔a ≠0〕在同一直角坐标系中的图象可能是〔 〕.【例9】〔2021 年〕如图,在直角坐标系中,点 A 是 x 轴正半轴上的一个定点,点 B 是双曲线xy 3=(x >0)上的一个动点,当点 B 的横坐标逐渐增大时,△OAB 的面积将会〔 〕。
(易错题精选)初中数学方程与不等式之分式方程分类汇编含解析(1)一、选择题1.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.10x-102x=20 B.102x-10x=20 C.10x-102x=13D.102x-10x=13【答案】C【解析】【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.方程24222xxx x=-+--的解为()A.2 B.2或4 C.4 D.无解【答案】C【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:2x=(x﹣2)2+4,分解因式得:(x﹣2)[2﹣(x﹣2)]=0,解得:x=2或x=4,经检验x=2是增根,分式方程的解为x=4,故选C.【点睛】此题考查了解分式方程,以及分式方程的解,熟练掌握运算法则是解本题的关键.3.已知关于x 的分式方程12111m x x--=--的解是正数,则m 的取值范围是( ) A .m <4且m ≠3 B .m <4C .m ≤4且m ≠3D .m >5且m ≠6【答案】A 【解析】 【详解】方程两边同时乘以x -1得, 1-m -(x -1)+2=0, 解得x =4-m . ∵x 为正数,∴4-m >0,解得m <4. ∵x ≠1,∴4-m ≠1,即m ≠3.∴m 的取值范围是m <4且m ≠3. 故选A .4.风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共x 人,则所列方程为( ) A .18018032x x -=+ B .18018032x x -=+ C .18018032x x -=- D .18018032x x-=- 【答案】D 【解析】 【分析】先用x 表示出增加2名同学前和增加后每人分摊的车费钱,再根据增加后每人比原来少摊了3元钱车费列出方程即可. 【详解】解:设前去观看开幕式的同学共x 人,根据题意,得:18018032x x-=-. 故选:D. 【点睛】本题考查了分式方程的应用,解题的关键是弄清题意、找准等量关系,易错点是容易弄错增加前后的人数.5.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a =【答案】D 【解析】 【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系. 【详解】根据作图方法可得点P 在第二象限角平分线上, 则P 点横纵坐标的和为0, 故11+423a a -+=0, 解得:a=13. 故答案选:D. 【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.6.为有效落实党中央“精准扶贫”战略决策,某市对农村实施“户户通”修路计划,已知该市计划在某村修路5000m ,在修了1000m 后,由于引入新技术,工作效率提高到原来的1.2倍,结果提前5天完成了任务.若设原来每天修路 m x ,则可列方程为( ) A .50004000100051.2x x x=+- B .5000100040005 1.2x x x+=+ C .5000400010005 1.2x x x -=+ D .5000100040005 1.2x x x-=+ 【答案】D【解析】 【分析】本题依题意可知等量关系为原计划工作时间-实际工作时间=5,根据等量关系列出方程即可. 【详解】设原来每天修路xm ,引入新技术后每天修路1.2xm ,实际工作天数为(100040001.2x x+),原计划工作天数为5000x天,根据题意得, 5000100040005 1.2x x x -=+, 故选D. 【点睛】本题考查了由实际问题抽象出分式方程,理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.7.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( ) A .240120420x x-=- B .240120420x x -=+ C .120240420x x -=- D .120240420x x -=+ 【答案】D 【解析】 【分析】设第一次买了x 本资料,则第二次买了(x +20)本资料,由等量关系第二次比第一次优惠了4列出方程即可解答. 【详解】解:设第一次买了x 本资料,则第二次买了(x +20)本资料, 根据题意可得:120240420x x -=+ 故选:D 【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,设出未知数,找到等量关系是解题的关键.8.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )A .B .C .D .【答案】A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.9.若数a使关于x的不等式组()3x a2x11x2x2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y的分式方程y51y--+3=ay1-有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.2【答案】D【解析】【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个, 故选:D . 【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.在阳明山国家森林公园举行中国·阳明山“和”文化旅游节暨杜鹃花会期间,几名同学包租一辆车前去游览,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加游览的学生共有x 人,则可列方程为( )A .18018032x x +=- B .18018032x x -=- C .18018032x x +=- D .18018032x x -=- 【答案】D 【解析】 【分析】设参加游览的同学共x 人,则原有的几名同学每人分担的车费为:1802x -元,出发时每名同学分担的车费为:180x元,根据每个同学比原来少摊了3元钱车费即可得到等量关系. 【详解】设参加游览的同学共x 人,根据题意得:1801802x x -=-3. 故选:D . 【点睛】本题考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.为保证某高速公路在2019年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用30天,如果甲乙两队合作,可比规定时间提前20天完成任务.若设规定的时间为x 天,由题意可以列出的方程是( ) A .111103020+=--+x x x B .111103020+=++-x x x C .111103020-=++-x x x D .111102030+=-+-x x x 【答案】B 【解析】【分析】设规定的时间为x 天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+30)天.根据甲、乙两队合作,可比规定时间提前20天完成任务,列方程为111103020+=++-x x x . 【详解】设规定时间为x 天,则 甲队单独一天完成这项工程的110+x , 乙队单独一天完成这项工程的130x +, 甲、乙两队合作一天完成这项工程的120x -. 则111103020+=++-x x x . 故选B. 【点睛】此题考查分式方程,解题关键在于由实际问题抽象出分式方程.13.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x 米,则根据题意可列方程为( ). A .120012002(120%)x x -=+ B .120012002(120%)x x-=-C .120012002(120%)x x-=+D .120012002(120%)x x -=-【答案】A 【解析】设原计划每天修建道路xm ,则实际每天修建道路为(1+20%)xm ,由题意得,()120012002120%x x -=+. 故选A.14.已知甲车行驶35千米与乙车行驶45千米所用时间相同,且乙车每小时比甲车多行驶 15 千米,设甲车的速度为x 千米/小时,依据题意列方程正确的是A .354515x x =- B .3545+15x x= C .3545-15x x = D .3545+15x x = 【答案】D 【解析】 【分析】首先根据甲车的速度为x 千米/小时,表示出乙车的速度为(x+15)千米/小时,再根据关键是语句“甲车行驶35千米与乙车行驶45千米所用时间相同”列出方程即可. 【详解】解:设甲车的速度为x 千米/小时,则乙车的速度为(x+15)千米/小时,由题意得:3545+15x x =, 故选D . 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,表示出甲乙两车的速度,再根据关键是语句列出方程即可.此题用到的公式是:路程÷速度=时间.15.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B 【解析】【分析】解关于y的不等式组,结合解集无解,确定a的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.16.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.17.2017年,全国部分省市实施了“免费校车工程”.小明原来骑自行车上学,现在乘校车上学可以从家晚10分钟出发,结果与原来到校时间相同.已知小明家距学校5千米,若校车速度是他骑车速度的2倍,设小明骑车的速度为x千米/时,则下面所列方程正确的为()A.5x+16=52xB.5x=52x+16C.5x+10=52xD.5x-10=52x【答案】B【解析】【分析】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,等量关系为:小明骑车所走的时间减去校车所走的时间=10分钟,据此列方程.【详解】设小明骑车的速度为x千米/小时,校车速度为2x千米/小时,由题意得, 5x=52x+16所以答案为B.【点睛】本题考查了分式方程,解题的关键是根据实际问题列出分式方程.18.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯-+【答案】A【解析】【分析】设规定时间为x天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x天,则慢马需要的时间为(x+1)天,快马的时间为(x-3)天,∵快马的速度是慢马的2倍∴900900213 x x⨯=+-故选A.【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.19.甲、乙两船从相距300km的A、B两地同时出发相向而行,甲船从A地顺流航行180km时与从B地逆流航行的乙船相遇,水流的速度为6km/h,若甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为()A.1806x+=1206x-B.1806x-=1206x+C.1806x+=120xD.180x=1206x-【答案】A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h,则求两船在静水中的速度可列方程为:1806 x+=1206x-.故选A.点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键.20.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.1515112x x-=+B.1515112x x-=+C.1515112x x-=-D.1515112x x-=-【答案】B【解析】【分析】设小李每小时走x千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.。
3 - x 值为整数,则 x 的整数值有___个,分别是______b ,y= b9. 已知:x= b3. 下列各式中,与分式 -a C. aD. - a A. -a x + y 中的 x ,y 的值都扩大 2 倍,则原分式的值.⎝ 3 ⎭= 2 ,3n = 5,求 92 m -n 的值 . b =2 ,求 x-3 3 - x =4 无解,那么 m 的值为_____ m - 2 ÷7. 化简:⎪ ⋅ ⎪ =a ⎪ =15. 若分式 x - 1x +17. 已知实数 x 满足 4 x 2 - 4 x + 1 = 0 ,则代数式 2 x + 1分式难题、易错题1. 从质量为 m kg 的一捆钢筋中截取一段长为 5 米的钢筋,称出这段钢筋的质量为 n kg ,则8. 若 x=2005 , y=2006 ,则 (x + y )⋅ x2 + y 2 =_____x 4 - y 4这捆钢筋的总长度为______米2. 若 3a -b 的值相等的是a-a - b B.a +b b - a b - a4. 若把分式 2 x 2 . ( )( )⎛ 1 ⎫-m11. 已知 ⎪1A.不变B.扩大 2 倍C.扩大 4 倍D.扩大 8 倍12. 关于 x 的方程 (2 - 3a )x = 1 的解为负数,则 a 的取值范围是_____a 2 - ab + b 2 5. 已知aa 2 +b 2的值6. 若 m 等于它的倒数,则分式 m 2 - 6m + 9m-3m 2 - 2m 的值为( )13 如果分式方程 1 +m14. 某地要筑一水坝,需要在规定日期内完成,如果由甲队去做,恰好如期完成;如果由乙队去做,则需超过规定日期三天。
现由甲、乙两队合作2 天后,余下的工程由乙队独做,恰好在规定日期完成,求规定的日期 x (有两种不同的方法做)A.-2B.4C.-2 或 4D. -14⎛ a - 1 ⎫2 ⎛ 1 + a ⎫3 ⎝ a + 1 ⎭ ⎝ 1 - a ⎭a 2 -b 2 ⎛ 2ab + b 2 ⎫÷a + a 2 - ab ⎝ ⎭x + 1 的值为 0,则 x 的值为_____16. 若 1 2 y + 3 3 2 1 1 1 1z = 5, x + y + z = 7 ,则 x + y + z = _____2 x的值为_____⎪ ⋅ x + y - ⎪⎛18. 计算: x - y +⎝4 x y ⎫ ⎛ 4 x y ⎫x - y ⎭ ⎝ x + y ⎭19. 甲乙两位采购员同去一家饲料公司购买两次饲料,第一次饲料的价格为a 元/千克,第二次饲料的价格为 b 元/千克,且 a ≠b 。
初中数学方程与不等式之分式方程易错题汇编附解析一、选择题1.分式方程22111x x x -=--,解的情况是( ) A .x =1 B .x =2C .x =﹣1D .无解【答案】D 【解析】 【分析】观察式子确定最简公分母为(x+1)(x ﹣1),再进一步求解可得. 【详解】方程两边同乘以(x+1)(x ﹣1),得: x (x+1)﹣(x 2﹣1)=2, 解方程得:x =﹣1,检验:把x =﹣1代入x+1=0, 所以x =﹣1不是方程的解. 故选:D . 【点睛】此题考查分式方程的解,掌握运算法则是解题关键2.若数a 使关于x 的分式方程2311a x x x--=--有正数解,且使关于y 的不等式组21142y a y y a ->-⎧⎪⎨+⎪⎩…有解,则所有符合条件的整数a 的个数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】根据分式方程的解为正数即可得出a>-1且a ≠1,根据不等式组有解,即可得:a<3,找出所有的整数a 的个数为2. 【详解】解方程2311a x x x --=--,得: 12a x +=,∵分式方程的解为正数, ∴1a +>0,即a>-1, 又1x ≠,∴12a+≠1,a≠1,∴a>-1且a≠1,∵关于y的不等式组21142y a yy a->-⎧⎪⎨+⎪⎩…有解,∴a-1<y≤8-2a,即a-1<8-2a,解得:a<3,综上所述,a的取值范围是-1<a<3,且a≠1,则符合题意的整数a的值有0、2,有2个,故选:B.【点睛】本题考查了根据分式方程解的范围求参数的取值范围,不等式组的求解,找到整数解的个数,掌握分式方程的解法和不等式组的解法是解题的关键.3.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m.求该市今年居民用水的价格.设去年居民用水价格为x元/3m,根据题意列方程,正确的是()A.30155113xx-=⎛⎫+⎪⎝⎭B.30155113xx-=⎛⎫-⎪⎝⎭C.15305113xx-=⎛⎫+⎪⎝⎭D.15305113xx-=⎛⎫-⎪⎝⎭【答案】A【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3得出方程即可.【详解】解:设去年居民用水价格为x元/3m,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.4.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10000x ﹣10=147000(140)0x + B .10000x +10=147000(140)0x + C .100000(140)0x -﹣10=14700x D .100000(140)0x -+10=14700x【答案】B 【解析】 【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可. 【详解】解:设第一批购进x 件衬衫,则所列方程为:10000x +10=()1470001400x +.故选B . 【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.5.若 x=3 是分式方程2102a x x --=- 的根,则 a 的值是A .5B .-5C .3D .-3【答案】A 【解析】把x=3代入原分式方程得,210332a --=-,解得,a=5,经检验a=5适合原方程. 故选A.6.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( ) A .4 1.2540800x x ⨯-=B .800800402.25x x-= C .800800401.25x x -= D .800800401.25x x-= 【答案】C【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可. 【详解】小进跑800米用的时间为8001.25x 秒,小俊跑800米用的时间为800x秒, ∵小进比小俊少用了40秒,方程是800800401.25x x-=, 故选C . 【点睛】本题考查了列分式方程解应用题,能找出题目中的相等关系式是解此题的关键.7.如果关于x 的分式方程11222a x x-+=--有整数解,且关于x 的不等式组43(1)211(1)22x x x x a ≥-⎧⎪⎨-+<-⎪⎩有且只有四个整数解,那么符合条件的所有整数a 的和是( ) A .4 B .-2C .-3D .2【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,表示出整数方程的解,不等式组整理后,由解只有四个整数解,确定出a 的值,求出之和即可. 【详解】解:分式方程去分母得:1-a+2x-4=-1, 解得:22a x +=,且222a +≠,a 为偶数, 即2a ≠,a 为偶数,不等式组整理得:34x a x ≥-⎧⎪⎨⎪⎩<,由不等式组只有四个整数解,得到x=-3,-2,-1,0,可得0<4a≤1,即0<a≤4,即a=1,2,3,4, 经检验a=4, 则和为4, 故选:A .此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.8.对于非零实数a 、b ,规定a ⊗b =21a b a-.若x ⊗(2x ﹣1)=1,则x 的值为( ) A .1 B .13 C .﹣1D .-13【答案】A 【解析】 【分析】 【详解】解:根据题中的新定义可得:()21x x ⊗-=21121x x x-=-, 解得:x=1,经检验x=1是分式方程的解, 故选A . 【点睛】本题考查了新定义、解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.某一景点改造工程要限期完成,甲工程队独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,若设工程期限为x 天,则下面所列方程正确的是( ) A .4116x x x +=+- B .416x x x =-+ C .4116x x x +=-- D .4116x x x +=-+ 【答案】D 【解析】 【分析】首先根据工程期限为x 天,结合题意得出甲每天完成总工程的11x -,而乙每天完成总工程的16x +,据此根据题意最终如期完成了工程进一步列出方程即可. 【详解】∵工程期限为x 天,∴甲每天完成总工程的11x -,乙每天完成总工程的16x +,∵由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,∴可列方程为:4116xx x+=-+,故选:D.【点睛】本题主要考查了分式方程的实际应用,根据题意正确找出等量关系是解题关键.10.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x万元.根据题意,列方程正确的是( )A.B.C.D.【答案】A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.12.为保证某高速公路在2019年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用30天,如果甲乙两队合作,可比规定时间提前20天完成任务.若设规定的时间为x 天,由题意可以列出的方程是( ) A .111103020+=--+x x x B .111103020+=++-x x x C .111103020-=++-x x x D .111102030+=-+-x x x 【答案】B【解析】 【分析】设规定的时间为x 天.则甲队单独完成这项工程所需时间是(x+10)天,乙队单独完成这项工程所需时间是(x+30)天.根据甲、乙两队合作,可比规定时间提前20天完成任务,列方程为111103020+=++-x x x . 【详解】设规定时间为x 天,则 甲队单独一天完成这项工程的110+x , 乙队单独一天完成这项工程的130x +, 甲、乙两队合作一天完成这项工程的120x -. 则111103020+=++-x x x . 故选B. 【点睛】此题考查分式方程,解题关键在于由实际问题抽象出分式方程.13.某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前两天完成任务,若设原计划每天修建道路x 米,则根据题意可列方程为( ). A .120012002(120%)x x -=+ B .120012002(120%)x x-=-C .120012002(120%)x x-=+D .120012002(120%)x x -=-【答案】A 【解析】设原计划每天修建道路xm ,则实际每天修建道路为(1+20%)xm , 由题意得,()120012002120%x x-=+. 故选A.14.已知A 、C 两地相距40千米,B 、C 两地相距50千米,甲乙两车分别从A 、B 两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地.设乙车的速度为x 千米/小时,依题意列方程正确的是( )A .405012x x =- B .405012x x=- C .405012x x =+ D .405012x x=+ 【答案】B 【解析】试题解析:设乙车的速度为x 千米/小时,则甲车的速度为(x-12)千米/小时, 由题意得,405012x x=-. 故选B .15.九年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了25分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的3倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .1010253x x -= B .1010253x x-= C .10105312x x -= D .10105312x x -= 【答案】D 【解析】 【分析】设骑车学生的速度为x 千米/小时,则汽车的速度为3x,先分别表示出骑自行车学生和乘汽车学生所用时间,然后根据题中所给的等量关系,即可列出方程. 【详解】解:设骑车学生的速度为x 千米/小时,则汽车的速度为3x由题意得:10105312 x x-=故答案为D.【点睛】本题考查了出分式方程的应用,明确题意、确定等量关系是解答本题的关键.16.若分式方程2+1kxx2--=12x-有增根,则k的值为()A.﹣2 B.﹣1 C.1 D.2【答案】C【解析】【分析】根据分式方程有增根得到x=2,将其代入化简后的整式方程中求出k即可.【详解】解:分式方程去分母得:2(x﹣2)+1﹣kx=﹣1,由题意将x=2代入得:1﹣2k=﹣1,解得:k=1.故选:C.【点睛】此题考查分式方程的增根,由增根求方程中其他未知数的值,根据增根的定义得到方程的解是解题的关键.17.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.18.学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费10000元,购买文学类图书花费9000元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.10000x﹣90005x-=100 B.90005x-﹣10000x=100C.100005x-﹣9000x=100 D.9000x﹣100005x-=100【答案】B【解析】【分析】直接利用购买科普书的数量比购买文学书的数量少100本得出等式进而得出答案.【详解】科普类图书平均每本的价格是x元,则可列方程为:9000 x5 -﹣10000x=100,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.19.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x天,则可列方程为()A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯-+【答案】A【解析】【分析】设规定时间为x天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程.【详解】解:设规定时间为x天,则慢马需要的时间为(x+1)天,快马的时间为(x-3)天,∵快马的速度是慢马的2倍∴900900213 x x⨯=+-故选A .【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.20.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D【解析】【分析】 根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.。
一、选择题1.若式子212x x m -+不论x 取任何数总有意义,则m 的取值范围是( ) A .m≥1 B .m>1 C .m≤1 D .m<12.如果把223y x y -中的x 和y 都扩大5倍,那么分式的值( ) A.扩大5倍 B.不变 C.缩小5倍 D.扩大10倍3.若xy y x =+,则yx 11+的值为 ( ) A 、0 B 、1 C 、-1 D 、24.若要使分式23363(1)x x x -+-的值为整数,则整数x 可取的个数为( ) A .5个 B .2个 C .3个 D .4个5.当012=-+a a 时,分式2222-21a a a a a ++++的结果是( ) A .25-1- B .251-+ C .1 D .0 6.分式的值为0,则x 的值为A .4B .-4C .D .任意实数 7.下列运算正确的是( )A .(2a 2)3=6a 6B .-a 2b 2•3ab 3=-3a 2b 5C .D .8.下列等式成立的是( ) A .212x y x y =++ B .2(1)(1)1x x x ---=-C .x x x y x y=--++ D .22(1)21x x x --=++9.已知+=3,则分式的值为( )A .B .9C .1D .不能确定10.如图,在长方形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )A .﹣12+8B .16﹣8C .8﹣4D .4﹣2 11.若分式211x x -+的值为零,则x 的值为( ) A .0B .1C .1-D .±1 12.在2x ,1()3x y +,3ππ-,5a x -,24x y -中,分式的个数为( ) A .1 B.2 C.3 D .413.分式中,最简分式个数为( )个. A .1B .2C .3D .4 14.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有( )A .1个B .2个C .3个D .4个 15.下列各式的约分,正确的是A .1a b a b --=-B .1a b a b--=-- C .22a b a b a b -=-+ D .22a b a b a b -=++ 16.已知0≠-b a ,且032=-b a ,则ba b a -+2的值是( ) A .12- B . 0 C .8 D .128或 17.已知实数a ,b ,c 均不为零,且满足a +b +c=0,则222222222111b c a c a b a b c +++-+-+-的值是( ) A .为正 B .为负 C .为0 D .与a ,b ,c 的取值有关18.(2015秋•郴州校级期中)当x=3,y=2时,代数式的值是( )A .﹣8B .8C .D . 19.下列4个数:9,227,π,(3)0,其中无理数是( ) A .9 B .227 C .π D .(3)0 20.若将分式(a ,b 均为正数)中a ,b 的值分别扩大为原来的3倍,则分式的值( ) A .扩大为原来的3倍 B .缩小为原来的 C .不变 D .缩小为原来的21.在标准大气压下氢气的密度为0.00009g/cm 3 ,用科学记数法表示0.00009正确的是( )A .5910⨯B .5910-⨯C .4910-⨯D .40.910⨯22.下列4个分式:①;②;③;④中最简分式有( ) A .1个 B .2个 C .3个 D .4个23.计算的结果是( )A .a+bB .2a+bC .1D .-124.化简-的结果是( ) A .B .C .D . 25.12⎛⎫- ⎪⎝⎭-2的正确结果是( ) A .14 B .14- C .4 D .-4【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题解析:分式212x x m-+不论x 取何值总有意义,则其分母必不等于0,即把分母整理成(a+b )2+k (k >0)的形式为(x 2-2x+1)+m-1=(x-1)2+(m-1),因为论x 取何值(x 2-2x+1)+m-1=(x-1)2+(m-1)都不等于0,所以m-1>0,即m >1.故选B .2.B解析:B【解析】 试题分析:如果把223y x y -中的x 和y 都扩大5倍,则变为()()()252253523y y x y x y =--,分式的值没改变,所以选B考点:分式点评:本题考查分式,本题的关键是掌握分式的性质,本题难度不大,属基础题3.B解析:B【解析】试题分析:先被求的代数式通分,在根据已知整体带入即可.y x 11+=1==+xyxy xy y x 考点:分式的通分,整体带入. 4.C解析:C【解析】试题分析:根据x 为整数,且分式23363(1)x x x -+-的值为整数,可得3是(x-1)的倍数,可得答案.试题解析:由题意得,x-1=-3,1,3,故x-1=-3,x=-2;x-1=1,x=2;x-1=3,x=4,故选C .考点:分式的值.5.C解析:C .【解析】 试题分析:先把2222-21a a a a a ++++进行化简得222(1)a a a -+,再把012=-+a a 化简为:2-a 2=a+1,21a a +=,代入即可求值.试题解析:2222222(2)21(1)a a a a a a a a a a ++-+-=++++ =222(1)a a a -+ ∵012=-+a a∴2-a 2=a+1,21a a += 原式=2211111(1)(1)1a a a a a a a +====+++ 故选C .考点:分式的值.6.A解析:A【解析】试题分析:根据分式的值为零的条件可以求出x 的值.试题解析:若分式的值为0,则|x|-4=0且x+4≠0.得x 1=4,x 2=-4.当x=-4时,分母为0,不合题意,舍去.故x 的值为4.故选A .考点:分式的值为零的条件. 7.D解析:D【解析】试题解析:A 、原式=8a 6,错误;B 、原式=-3a 3b 5,错误;C 、原式=,错误; D 、原式=,正确; 故选D .考点:1.分式的乘除法;2.幂的乘方与积的乘方;.3.单项式乘单项式;4.分式的加减法. 8.D解析:D【分析】此题考查了分式的基本性质,解答此类题一定要熟练掌握分式的基本性质是解题的关键.根据分式的基本性质无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,即可得出答案.A 、2122x y x y =++,22x y +≠1x y+,不符合题意; B 、(-x-1)(1-x )=[-(x+1)](1-x )=-(1-x 2)=x 2-1,不合题意;C 、x x y -+=--x x y ,x x y -+≠-+x x y,不合题意; D 、(-x-1)2=x 2+2x+1,符合题意.故选D. 考点:分式的基本性质.9.A解析:A 【解析】试题解析:∵113x y +=, ∴x+y=3xy,∴23223333===23255x xy y xy xy xy x xy y xy xy xy -+⨯-+++. 故选A .10.A解析:A【解析】面积分别为16cm 2和12cm 2的两张正方形的边长分别为4cm 、cm ,所以图中空白部分的面积为4(4+)-(12+16)=-12+8 (cm 2),故选A. 点睛:本题考查了二次根式的混合运算在实际中的应用,根据题意正确求得两个正方形的边长是解题的关键.11.B解析:B【解析】由题意得:101x x -=⇒= ,故选B.12.B解析:B【解析】试题分析:根据分式的概念,分母中含有未知数的是分式,所以在2x ,1()3x y +,3ππ-,5a x -,24x y -中分式有2x ,5a x -;特别注意3ππ-不是分式,它是分数 考点:分式 点评:本题考查分式,解答本题的关键是掌握分式的概念,利用分式的概念来判断是否是分式解析:C【解析】根据最简分式的定义——分子和分母没有公因式的分式.易得共3个是最简分式:,, 故选C.14.C解析:C【解析】改正:①任何非0数的零次方都等于1;②如果两条平行的直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行(或共线)且相等;④正确.故选C.15.C解析:C .【解析】试题分析:根据分式的基本性质作答.试题解析:A .()1a b a b a b a b ---+=≠--,故该选项错误; B .()1a b a b a b a b---+=≠---,故该选项错误; C .22()()a b a b a b a b a b a b-+-==-++,故该选项正确; D .22()()a b a b a b a b a b a b a b-+-==-≠+++,故该选项错误. 故选C .考点:约分.16.C解析:C【解析】试题分析:因为032=-b a ,所以3a=b 2,所以234=83122a b b b b a b b b b ++==--,故选:C . 考点:分式的化简求值.17.C解析:C .【解析】试题解析:∵a +b +c=0,∴a=-(b +c ),∴a 2=(b +c )2, 同理b 2=(a +c )2,c 2=(a +b )2. ∴原式=11111()022a b c bc ac ab abc++-++=-⨯=,考点:分式的运算.18.C解析:C【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x=3,y=2代入进行计算即可.解:原式=•=﹣,当x=3,y=2时,原式=﹣=﹣.故选C.考点:分式的化简求值.19.C解析:C【解析】9=3,227是无限循环小数,π是无限不循环小数,()031=,所以π是无理数,故选C.20.B解析:B【解析】由题意得==,缩小为原来的故选B21.B解析:B【解析】根据科学记数法的书写规则,易得B. 22.B解析:B【解析】①是最简分式;②,不是最简分式;③=,不是最简分式;④是最简分式;最简分式有①④,共2个;故选:B.23.C解析:C 【解析】试题解析:故选C. 24.D解析:D【解析】 试题分析:根据分式的加减运算,先确定最简公分母,再通分,然后计算即可,即22(1)(1)(1)111a a a a a a a a +--+=----221111a a a a -+==--. 故选:D25.C解析:C【解析】 试题分析:根据负整指数幂的性质1(0)p p aa a -=≠计算,可得12⎛⎫- ⎪⎝⎭2141()2==-. 故选C。
(易错题精选)初中数学分式易错题汇编及解析(1)一、选择题1.计算()22b a a -⨯的结果为 A .bB .b -C . abD .b a 【答案】A【解析】【分析】先计算(-a )2,然后再进行约分即可得.【详解】()22b a a -⨯=22b a a ⨯=b ,故选A.【点睛】本题考查了分式的乘法,熟练掌握分式乘法的运算法则是解题的关键.2.已知17x x -=,则221x x +的值是( ) A .49B .48C .47D .51 【答案】D【解析】【分析】将已知等式两边平方,利用完全平方公式展开即可得到所求式子的值.【详解】 已知等式17x x -=两边平方得:22211()249x x x x -=+-=, 则221x x+=51. 故选D .【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.3.下列运算中,不正确的是( )A .a b b a a b b a --=++B .1a b a b--=-+ C .0.55100.20.323a b a b a b a b ++=-- D .()()221a b b a -=-【答案】A【解析】【分析】根据分式的基本性质分别计算即可求解.【详解】解:A.a b b a a b b a--=-++,故错误. B 、C 、D 正确.故选:A【点睛】 此题主要考查分式的基本性质,熟练利用分式的基本性质进行约分是解题关键.4.若x 满足2220x x --=,则分式231211x x x ⎛⎫--÷ ⎪--⎝⎭的值是( ) A .1B .12C .1-D .32- 【答案】A【解析】【分析】 首先将式子231211x x x ⎛⎫--÷ ⎪--⎝⎭按照分式的运算法则进一步化简,然后通过2220x x --=得出222x x -=,最后将其代入之前化简所得的式子中进一步计算即可.【详解】 由题意得:2223132212211111x x x x x x x x x ⎛⎫---+--÷=⋅=-- ⎪---⎝⎭, 又∵2220x x --=,∴222x x -=,∴原式211=-=,故选:A .【点睛】本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.5.人的头发直径约为0.00007m ,这个数据用科学记数法表示( )A .0.7×10﹣4B .7×10﹣5C .0.7×104D .7×105【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m ,这个数据用科学记数法表示7×10﹣5.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.6.0000025=2.5×10﹣6,故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.计算(a 2)3+a 2·a 3-a 2÷a -3的结果是( )A .2a 5-aB .2a 5-1aC .a 5D .a 6 【答案】D【解析】【分析】先分别进行幂的乘方、同底数幂的乘法、同底数幂的除法运算,然后再进行合并同类项即可.【详解】原式=a 2×3+a 2+3-a 2-(-3)=a 6+a 5-a 5=a 6,故选D.【点睛】本题考查了有关幂的运算,熟练掌握“幂的乘方,底数不变,指数相乘”、“同底数幂的乘法,底数不变,指数相加”、“同底数幂的除法,底数不变,指数相减”是解题的关键.8.已知m ﹣1m ,则1m +m 的值为( )A .B C . D .11【答案】A【解析】【分析】根据完全平方公式即可得到结果.【详解】 1m-mQ21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m ∴, 22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭, 1m+m∴=. 故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.9.下列各式计算正确的是( )A .(﹣x ﹣2y )(x+2y )=224x y -B .13x -=13xC .236(2)6y y -=-D .32()(1)m m m m x x x -÷=- 【答案】D【解析】【分析】根据整式的相关运算法则计算可得.【详解】A .(﹣x ﹣2y )(x+2y )=﹣(x+2y )2=﹣x 2﹣4xy ﹣4y 2,此选项计算错误;B .3x ﹣1=3x,此选项计算错误; C .(﹣2y 2)3=﹣8y 6,此选项计算错误;D .(﹣x )3m ÷x m =(﹣1)m x 2m ,此选项计算正确;故选:D .【点睛】本题主要考查整式的运算,解题的关键是掌握整式的运算法则和负整数指数幂的规定.10.下列分式中,无论a 取何值,分式总有意义的是( )A .2311a a -+ B .21a a + C .211a - D .2a a- 【答案】A【解析】【分析】根据分式有意义的条件是分母不等于零判断.【详解】解:A 、∵a 2≥0,∴a 2+1>0, ∴2311a a -+总有意义; B 、当a =−12时,2a +1=0,21a a +无意义; C 、当a =±1时,a 2−1=0,211a -无意义; D 、当a =0时,无意义;2a a-无意义; 故选:A .【点睛】 本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.11.00519=5.19×10-3.故选B .【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1||10a ≤<,n 由原数左边起第一个不为零的数字前面的0的个数所决定.12.下列计算正确的是( )A .2236a a b b ⎛⎫= ⎪⎝⎭B .1a b a b b a -=--C .112a b a b +=+D .1x y x y --=-+ 【答案】D【解析】【分析】根据分式的乘方、分式的加减运算法则及分式的性质逐一判断即可得答案.【详解】 A.22222()3(3)9a a a b b b==,故该选项计算错误,不符合题意, B.a b a b a b a b b a a b a b a b +-=+=-----,故该选项计算错误,不符合题意, C.11b a a b a b ab ab ab ++=+=,故该选项计算错误,不符合题意, D.()1x y x y x y x y---+==-++,故该选项计算正确,符合题意,【点睛】本题考查分式的运算,分式的乘方,要把分式的分子、分母分别乘方;同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,变为同分母的分式,再加减;熟练掌握分式的运算法则是解题关键.13.化简22a b b a +-的结果是( ) A .1a b - B .1b a - C .a ﹣b D .b ﹣a【答案】B【解析】【分析】原式分子分母提取公因式变形后,约分即可得到结果.【详解】原式= a+b )()b a b a +-(= 1b a- 故答案选B.【点睛】本题考查的知识点是约分,解题的关键是熟练的掌握约分.14.计算211a a a -+-的正确结果是( ) A .211a a -- B .211a a --- C .11a - D .11a -- 【答案】A【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按同分母分式加减的法则计算就可以了.【详解】 211a a a -+-, =2(1)1a a a --- =222111a a a a a -+--- =211a a --. 故选:A.本题考查了数学整体思想的运用,分式的通分和约分的运用,解答的过程中注意符号的运用以及完全平方公式的运用.15.计算211a a a ---的正确结果是( ) A .11a -- B .11a - C .211a a --- D .211a a -- 【答案】B【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【详解】 原式()211a a a =-+- 22111a a a a -=--- 11a =-. 故选B .【点睛】 本题考查分式的通分和分式的约分的运用,解题关键在于在解答的过程中注意符号的运用及平方差公式的运用.16.计算-12的结果为( )A .2B .12C .-2D .1-2 【答案】B【解析】【分析】利用幂次方计算公式即可解答.【详解】解:原式=12. 答案选B.【点睛】本题考查幂次方计算,较为简单.17.a的取值范围是()A.a≥-1 B.a≤1且a≠-2 C.a≥1且a≠2D.a>2【答案】B【解析】【分析】直接利用二次根式有意义的条件分析得出答案.【详解】式子2a+有意义,则1-a≥0且a+2≠0,解得:a≤1且a≠-2.故选:B.【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.18.分式211xx--的值为0,则x的取值为()A.0B.±1C.1-D.1【答案】C【解析】【分析】分式值为0,则分子为0,且分母不为0即可【详解】要使分式211xx--的值为0则210 10 xx⎧-=⎨-≠⎩解得:x=-1故选:C【点睛】本题考查分式方程为0的情况,注意在涉及到分式方程时,我们都需要考虑分母不为0的情况.19.有意义时,a的取值范围是()A.a≥2B.a>2 C.a≠2D.a≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a﹣2≥0,解得:a≥2,根据分式有意义的条件:a﹣2≠0,解得:a≠2,∴a>2.故选B.20.把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1 B.﹣2 C.0.813 D.8.13【答案】D【解析】把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为8.13,故选D.。
一、选择题1.如果把分式2xx y-中的x 与y 都扩大2倍,那么分式的值( )A .不变B .扩大2倍C .缩小2倍D .扩大4倍2.下列关于分式的判断,正确的是( ) A .当x=2时,12x x +-的值为零 B .当x≠3时,3x x-有意义 C .无论x 为何值,31x +不可能得整数值 D .无论x 为何值,231x +的值总为正数 3.下列判断错误..的是( ) A .当23x ≠时,分式132x x +-有意义 B .当a b 时,分式22aba b -有意义 C .当12x =-时,分式214x x+值为0D .当x y ≠时,分式22x yy x--有意义4.下列各式中,正确的是( ) A .a m ab m b+=+ B .a b0a b+=+ C .ab 1b 1ac 1c 1--=-- D .22x y 1x y x y-=-+5.如果分式242x x --的值等于0,那么( )A .2x =±B .2x =C .2x =-D .2x ≠6.若a = (-0.4)2,b = -4-2,c =214-⎛⎫- ⎪⎝⎭,d =014⎛⎫- ⎪⎝⎭, 则 a 、b 、c 、d 的大小关系为( ) A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b7.下列关于分式的判断,正确的是( ) A .当x =2时,12x x +-的值为零 B .无论x 为何值,231x +的值总为正数 C .无论x 为何值,31x +不可能得整数值 D .当x ≠3时,3x x-有意义 8.下列各式从左到右的变形正确的是( ) A .221188a a a a ---=-++ B .()()221a b a b -+=-C .22x y x y x y+=++ D .052520.11y yx x ++=-++9.计算32-的结果是( ) A .-6B .-8C .18-D .1810.下列等式成立的是( ) A .|﹣2|=2B .(2﹣1)0=0C .(﹣12)﹣1=2 D .﹣(﹣2)=﹣211.下列选项中,使根式有意义的a 的取值范围为a <1的是( ) A .a 1- B .1a -C .()21a - D .11a- 12.3x +在实数范围内有意义,则x 的取值范围为( ) A .x<-3B .x ≥-3C .x>2D .x ≥-3,且x ≠213.下列各式计算正确的是( )A .a x ab x b+=+ B .112a b a b+=+C .22()a a b b=D .11x y x y-=-+- 14.如果把分式2mnm n-中的m.n 都扩大3倍,那么分式的值( ) A .扩大9倍B .扩大3倍C .扩大6倍D .不变15.把分式 2x-y2xy中的x 、y 都扩大到原来的4倍,则分式的值( )A .扩大到原来的16倍B .扩大到原来的4倍C .缩小到原来的14D .不变 16.一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为( )A .0.65×10﹣5 B .65×10﹣7 C .6.5×10﹣6 D .6.5×10﹣5 17.化简:32322012220122010201220122013-⨯-+-,结果是( ) A .20102013B .20102012C .20122013D .2011201318.分式b ax ,3c bx -,35a cx 的最简公分母是( ) A .5cx 3B .15abcxC .15abcx 3D .15abcx 519.下列运算正确的是( ) A .a ﹣3÷a ﹣5=a 2 B .(3a 2)3=9a 5 C .(x ﹣1)(1﹣x)=x 2﹣1D .(a+b)2=a 2+b 220.在12 ,2x y x - ,212x + ,m +13 ,-2x y - 中分式的个数有( ) A .2个B .3个C .4个D .5个21.分式212xy 和214x y的最简公分母是( )A .2xyB .2x 2y 2C .4x 2y 2D .4x 3y 322.如果2310a a ++=,那么代数式229263a aa a ⎛⎫++⋅ ⎪+⎝⎭的值为( ) A .1 B .1-C .2D .2-23.函数y =的取值范围是( ) A .x >2B .x ≥3C .x ≥3,且x ≠2D .x ≥-3,且x ≠224.3--2的倒数是( )A .-9B .9C .19D .-1925.人体中红细胞的直径约为0.000 007 7 m ,用科学记数法表示该数据为 ( ) A .7.7×106 B .7.7×107 C .7.7×10-6 D .7.7×10-7【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】分析:解答此题时,可将分式中的x ,y 用2x ,2y 代替,然后计算即可得出结论. 详解:依题意得:2222x x y ⨯-=222xx y ⋅⋅-()=原式.故选A .点睛:本题考查的是对分式的性质的理解和运用,扩大或缩小n 倍,就将原来的数乘以n 或除以n .2.D解析:D 【解析】A 选项:当x =2时,该分式的分母x -2=0,该分式无意义,故A 选项错误.B 选项:当x =0时,该分式的分母为零,该分式无意义. 显然,x =0满足x ≠3. 由此可见,当x ≠3时,该分式不一定有意义. 故B 选项错误.C 选项:当x =0时,该分式的值为3,即当x =0时该分式的值为整数,故C 选项错误.D 选项:无论x 为何值,该分式的分母x 2+1>0;该分式的分子3>0. 由此可知,无论x 为何值,该分式的值总为正数. 故D 选项正确. 故本题应选D. 点睛:本题考查了与分式概念相关的知识. 分式有意义的条件是分式的分母不等于零,并不是分母中的x 的值不等于零. 分式的值为零的条件是分式的分母不等于零且分式的分子等于零. 在分式整体的符号为正的情况下,分式值的符号由分子与分母的符号共同确定:若分子与分母同号,则分式值为正数;若分子与分母异号,则分式值为负数.3.B解析:B 【解析】A 、当分母3x-2≠0,即当x≠23时,分式x 13x 2+-有意义.故本选项正确; B 、当分母a 2-b 2≠0,即a≠±b 时,分式22aba b-有意义.故本选项错误; C 、当分子2x+1=0,即x =−12时,分式2x 14x+值为0.故本选项正确; D 、当分母y-x≠0,即x≠y 时,分式22x y y x--有意义.故本选项正确;故选:B .4.D解析:D 【解析】A.在分式的分子、分母上同时加上或减去同一个非0的数或式子分式的值要改变,故A 错误;B.a ba b++=1,故B 错误; C.a 不是分子、分母的因式,故C 错误;D.22x y x y --=()()x y x y x y -+-=1x y+;故D 正确.故选D.5.C解析:C 【解析】根据题意得:24020x x ⎧-=⎨-≠⎩,解得:x=−2. 故选C.6.B解析:B 【解析】∵a=0.16;b=-214=-116;c =(211()4-)=16;d =1;故:b<a<d<c7.B解析:B 【解析】A 选项中,因为当2x =时,分式12x x +-无意义,所以本选项错误; B 选项中,因为无论x 取何值,21x +的值始终为正数,则分式231x +的值总为正数,所以本选项正确;C 选项中,因为当2x =时,分式311x =+,所以本选项说法错误; D 选项中,因为0x ≠时,分式3x x-才有意义,所以本选项说法错误; 故选B.8.B解析:B 【解析】 解:A .原式=22(1)1(8)8a a a a -++=--- ,错误;B .原式=1,正确;C .原式为最简结果,错误;D .原式=520110yx+-+,错误.故选B .点睛:此题考查了分式的基本性质,熟练掌握分式的基本性质是解本题的关键.9.D解析:D 【解析】3311228-==. 故选D. 10.A解析:A【解析】根据绝对值、零指数幂及负整数指数幂的运算法则,可得: A、|﹣2|=2,计算正确,故本选项正确;B﹣1)0=1,原式计算错误,故本选项错误;C、(﹣12)﹣1=﹣2,原式计算错误,故本选项错误;D、﹣(﹣2)=2,原式计算错误,故本选项错误;故选:A.点睛:此题主要考查了绝对值、零指数幂及负整数指数幂的运算法则,灵活运用绝对值、零指数幂及负整数指数幂的运算法则进行计算是解决此类题目的关键.11.D解析:D【解析】解:A.当a≥1时,根式有意义.B.当a≤1时,根式有意义.C.a取任何值根式都有意义.D.要使根式有意义,则a≤1,且分母不为零,故a<1.故选D.点睛:判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母的不等于0混淆.12.D解析:D【分析】根据二次根式有意义的条件和分式有意义的条件得到x+3≥0且x-2≠0,然后求出两个不等式的公共部分即可.【详解】根据题意得x+3≥0且x−2≠0,所以x的取值范围为x≥−3且x≠2.故答案选D.【点睛】本题考查的知识点是二次根式有意义的条件,分式有意义的条件,解题的关键是熟练的掌握二次根式有意义的条件,分式有意义的条件.13.D解析:D【解析】根据分式的基本性质,可知A不正确;根据异分母的分式相加,可知11a b +=b a a b ab ab ab ++=,故不正确;根据分式的乘方,可知2a b ⎛⎫= ⎪⎝⎭22a b ,故不正确;根据分式的性质,可知11x y x y-=-+-,故正确. 故选:D.14.B解析:B 【解析】 【分析】根据分式的基本性质即可求出答案. 【详解】原式=1862333mn mn mnm n m n m n ==⨯---故选B . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质.15.C解析:C 【解析】分析:把原分式中的x .y 都扩大到原来的4倍后,再约分化简.详解:因为()422441224416242x y x y x y x y xy xy ---⨯⨯==,所以分式的值缩小到原来的14.故选C .点睛:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式或公因数约去,这种变形称为分式的约分.16.C解析:C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:0.0000065的小数点向右移动6位得到6.5, 所以数字0.0000065用科学记数法表示为6.5×10﹣6, 故选C . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.A解析:A【分析】将所求式子的分子分母前两项提取20122,整理后分子提取2010,分母提取2013,约分后即可得到结果,选出答案.【详解】原式=32322012220122010201220122013-⨯-+-=2220122012220102012201212013--⨯+-()()=22201220102010201220132013⨯-⨯-=22201020121201320121--()()=20102013,故答案选A.【点睛】本题主要考查了因式分解的应用,是一道技巧性较强的题,熟练掌握因式分解的方法是解本题的关键.18.C解析:C【分析】要求分式的最简公分母,即取各分母系数的最小公倍数与字母因式的最高次幂的积.【详解】最简公分母为3⨯5⨯a⨯b⨯c⨯x3=15abcx3故答案选:C.【点睛】本题考查的知识点是最简公分母,解题的关键是熟练的掌握最简公分母.19.A解析:A【解析】【分析】直接利用同底数幂的除法运算法则、积的乘方运算法则、完全平方公式分别化简得出答案.【详解】A.a﹣3÷a﹣5=a2,故此选项正确;B.(3a2)3=27a6,故此选项错误;C.(x﹣1)(1﹣x)=﹣x2+2x﹣1,故此选项错误;D.(a+b)2=a2+2ab+b2,故此选项错误.故选A.【点睛】本题考查了同底数幂的除法运算法则、积的乘方运算法则、完全平方公式等知识,正确掌握相关运算法则是解题的关键.20.A解析:A 【解析】 【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,找到分母中含有字母的式子的个数即可. 【详解】 解:式子2x yx- ,-2x y -中都含有字母是分式.故选:A . 【点睛】本题考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数.21.C解析:C 【解析】 【分析】确定最简公分母的方法是: (1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】分式212xy 和214x y的最简公分母是4x 2y 2. 故选C. 【点睛】本题考查了最简公分母的知识,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.22.D解析:D 【分析】根据分式的加法和乘法可以化简题目中的式子,然后根据a 2+3a+1=0,即可求得所求式子的值. 【详解】229263a a a a ⎛⎫++⋅ ⎪+⎝⎭, =22962•3a a a a a +++=()2232•3a a a a ++=2a (a+3) =2(a 2+3a ), ∵a 2+3a+1=0, ∴a 2+3a=-1,∴原式=2×(-1)=-2, 故选D . 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.23.D解析:D 【解析】 【分析】根据二次根式的性质和分式有意义的条件,被开方数大于或等于0,分母不等于0,可以求出x 的范围. 【详解】 根据题意得:3020x x +≥⎧⎨-≠⎩,解得:x ≥﹣3且x ≠2.故选D . 【点睛】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.24.A解析:A 【解析】 【分析】 首先计算3--2=-19,再根据倒数的定义求解即可. 【详解】 ∵3--2=213-=-19,-19的倒数是-9, ∴3--2的倒数是-9, 故选A. 【点睛】此题考查了倒数和负整数指数幂,掌握倒数的定义是本题的关键.25.C解析:C【解析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.000 007 7=7.7×10-6,故选C.。
分式与分式方程章节易错题一、单选题(共15道,每道6分)1.下列四个式子中,的取值范围为的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分式有意义的条件2.对于分式,下列说法正确的是( )A.不论x取何值,分式都有意义B.分式的值不可能等于1C.不论x取何值,分式值都不为0D.当x=0或-1时,分式无意义答案:C解题思路:试题难度:三颗星知识点:分式有意义3.若分式的值为0,则的值为( )A.3或-3B.-3C.3D.9答案:B解题思路:试题难度:三颗星知识点:分式值为零4.若x为整数,且的值为整数,则符合条件的x的个数为( )A.3B.4C.7D.8答案:C解题思路:试题难度:三颗星知识点:分式隐含条件(分式有意义)5.( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:分式的加减运算6.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:分式四则运算7.化简分式,并在中选取一个你认为合适的整数代入,结果可能是( )A.-3B.-1C.0D.1答案:D解题思路:试题难度:三颗星知识点:分式化简求值8.先化简,然后从的范围内选取一个合适的整数作为的值代入,所求结果为( )A. B.C. D.以上都对答案:B解题思路:试题难度:三颗星知识点:分式化简求值9.若,则( )A. B.11C.-3D.3答案:D解题思路:试题难度:三颗星知识点:整体代入10.若,则的值为( )A. B.8C. D.12答案:A解题思路:试题难度:三颗星知识点:分式条件求值11.已知,那么的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:分式条件求值12.若分式方程的解为增根,则增根可能是( )A.x=2B.x=0C.x=-1D.x=0或x=-1答案:C解题思路:试题难度:三颗星知识点:分式方程增根问题13.若解关于x的分式方程有增根x=-1,则a的值为( )A.3B.-3C.3或1D.-3或-1答案:B解题思路:试题难度:三颗星知识点:分式方程增根问题14.如果关于x的方程的解也是不等式组的一个解,则m 的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:解不等式组15.某班学生到距学校12km的烈士陵园扫墓,一部分同学骑自行车先行,经后,其余同学乘汽车出发,由于**********,设自行车的速度为,则可列方程为.题中**********表示被墨水污损部分的内容,根据此情境和所列方程,其内容应该是( )A.汽车速度是自行车速度的3倍,结果同时到达B.汽车速度是自行车速度的3倍,后部分同学比前部分同学迟到C.汽车速度是自行车速度的3倍,前部分同学比后部分同学迟到D.汽车速度比自行车速度每小时多3千米,结果同时到达答案:A解题思路:试题难度:三颗星知识点:分式方程应用题。
分式和分式方程易错题精选第1节 分式一、分式的概念和性质易错点:忽略分母不为零的条件1、若分式242+-x x 的值等于0,则x 的值为( )A .-2或2B .2C .-2D .02、若分式2)1(3-+x x 的值为正数,则x 的取值范围是_____________.3、【变式1】当x=2时,分式mx kx +-的值为0,则k 和m 必须满足的条件是_______________.4、【变式2x )1)(3(||26-+-x x x 】当取何值时,分式的值为0?5、【变式3】当x 取何值时,分式22||+-x x 满足下列要求:(1)有意义; (2)无意义; (3)值为0.6、【变式4】若分式23xx -的值为负数,则x 的取值范围是_________. 参考答案 1、B2、13≠->x x 且3、2=k ,2-≠m4、3=x5、(1)2-≠x ;(2)2-=x ;(3)2=x6、03≠<x x 且易错点:分式基本性质理解不全面1、下列从左到右的变形正确的是__________(填序号).①ab a b a 2=;②2a ab b a =;③babc ac =;④)1()1(22++=x b x a b a ;2、【变式1】下列从左到右的变形正确的是( )A .)1()1(22--=x b x a b aB .11++=b a b a C .)2)(3(231+-+=-x x x x D .31)2)(3(2-=+-+x x x x 参考答案 1、③④ 2、D二、约分易错点:不理解约分的条件1、约分:ababa 222+2、【变式1】约分:x xxy 392-3、【变式2】约分:yxy x 392+-参考答案1、b b a 22+2、392-y3、y x 3-三、通分易错点:找最简公分母就直接乘1、下列各题中,所求最简公分母正确的是( )A .x 31和261x 的最简公分母是218xB .c b a b a 32326121与的最简公分母是c b a 326C .42121-x x 与的最简公分母是)42(2-x xD .11112-+a a 与的最简公分母是)1)(1(2-+a a 参考答案 1、B易错点:不会处理分母中互为相反数的项1、下列各题中,所求最简公分母正确的是( )A .11-m 与m -11的最简公分母是2)1(--mB .)(1y x a -与)(1x y b -的最简公分母是))((x y y x ab --C .n m -1与n m +1的最简公分母是))((n m n m +-D .b a -1与a b -1的最简公分母是b a -参考答案 1、CD第2节 分式的运算一、分式的乘除易错点:没考虑到除数不能为零1、使2132-+÷-+x x x x 有意义的条件是________. 2、【变式1】先化简:222)2(3443-+÷+-+x xx x x x ,然后为x 选取一个合适的数代入求值. 3、【变式2】先化简,再求值:)11()1541(2aa a a a a --÷---+,其中a 从-2,0,1,2中选一个你喜欢的数代入求值.参考答案1、1-≠x 且2≠x 且3≠x2、x 1,只要x 不取0,-3和2,取其它数都可以.3、)2(-a a ,当a 取0,1,2时分母或除数为0,原只能a=-2,原式=8. 易错点:被诱导弄错运算顺序 1、计算:)1(11-⋅-÷x x x2、【变式1】计算:)1(3)1(+⋅+÷x x x3、【变式2】计算:)(1)(1)(122222n m n m n m -÷-÷+ 4、【变式3】计算:yx x x y x y x +⋅+÷+)( 参考答案1、x x x +-2322、1232++x x x3、222n mn m +-4、y x x +2 二、分式的加减 易错点:忽视分式中的隐藏括号 1、计算:xyy x xy x +--22、【变式1】计算:y x yx x y x y x 2222+---++参考答案 1、2--y2、1易错点:整式与分式加减时添括号出错1、计算:2a ab a b --- 2、【变式1】计算:x y y x y +-- 3、【变式2】阅读下列计算过程,回答问题: 1121121)1(1)1(111 222222++=+++-=++-+=+-+=+-+x x x x x x x x x x x x x x x x (1)以上过程有两处错误,分别在第几行? (2)请写出正确的结果.参考答案1、b a b -22、yx y xy x -+-22223、第二行和第四行有错,正确结果是11+x .三、分式的混合运算 易错点:误以为除法有分配律1、计算:)131(12-+-÷--x x x x 2、计算:24)22(-÷+--x x x x x x 3、【变式1】计算:)1(1x x x x -÷- 4、【变式2】计算:12)131(--÷--+x xx x 参考答案1、4222+--x x x2、21+x3、11+x4、2--x 四、整数指数幂易错点:负整数指数幂概念不清 1、下列各式计算正确的有__________(填序号).①3)3(1=--;②2233-=-;③2231)31(=--;④169)34(2=--;④1)14.3(0=-π;⑥823-=- 2、【变式1】计算:222)21(22---+3、【变式2】计算:102)31()4(2--+-+-π参考答案 1、④④2、41 3、-6第3节 分式方程易错点:去分母时漏乘没有分母的项1、解方程:yy y y 13112-=+- 2、【变式1】解方程:1213-+=+x x x 3、【变式2】解方程:12324+-=-xx x参考答案1、31=y2、53-=x3、35-=x易错点:分式方程忘记检验1、解方程:)2)(1(311-+=-+x x x x 2、【变式1】解方程:3911332-=-+x x x参考答案 1、无解 2、无解易错点:考虑问题不全面1、若关于x 的分式方程3222=-+-+xmx m x 的解为正实数,则实数m 的取值范围是__________.2、【变式1】若关于x 的分式方程3122=--x a x 的解为非负数,则实数a 的取值范围是__________.3、【变式2】若关于x 的分式方程xkx --=+-21221的解为正实数,则实数k 的取值范围是__________.4、【变式3】若关于x 的分式方程211=---x nx x 的解为非正实数,则实数n 的取值范围是__________. 参考答案1、26≠<m m 且2、432≠≥a a 且3、22≠->k k 且4、2≥n易错点:分不清分式方程无解和有增根 1、若关于x 的分式方程011=--x x m 有增根,则m 的值为_________. 2、若关于x 的分式方程011=--x x m 无解,则m 的值为_________.3、【变式1】若关于x 的分式方程454-+=-x ax x 有增根,则a 的值为_________. 4、【变式2】若关于x 的分式方程131212-=--+x x x m 有增根,则m 的值为_________. 5、【变式3】若关于x 的分式方程x x x m 2132=--+无解,则m 的值为_________.6、【变式4】若关于x 的分式方程2)2(321x ax x --=-无解,则a 的值为_________. 7、【变式5】若关于x 的分式方程332+-=++x kx x 无解,则k 的值为_________. 参考答案 1、0 2、0或1 3、44、23-5、21-或23-6、1或237、1。
易错专题:分式与分式方程中的易错题
◆类型一 分式值为0时求值,忽略分母不为0
1.若分式x 2-16x -4
的值为零,则x 的值为( ) A .0 B .4 C .±4 D .-4
2.若分式x 2-9x 2+x -12
=0,则x 的值是( ) A .3或-3 B .-3 C .3 D .9
◆类型二 自主取值再求值时,忽略分母或除式不为0
3.先化简,再求值:x -2x 2-1·x +1x 2-4x +4+1x -1
,其中x 是从-1、0、1、2中选取的一个合适的数.
4.先化简x 2-4x 2-9÷⎝⎛⎭
⎫1+1x -3,再从不等式2x -3<7的正整数解中选出使原式有意义的数代入求值.
◆类型三 解分式方程不验根
5.解方程:1-x x -2=12-x
-2.【易错9】
◆类型四 无解时忽略分式方程化为一次方程后未知数系数为0的情况【易错10】
6.★若关于x 的分式方程2m +x x -3
-1=2x 无解,则m 的值为( ) A .-1.5 B .1 C .-1.5或2 D .-0.5或-1.5
7.已知关于x 的分式方程a x +1-2a -x -1x 2+x
=0无解,求a 的值.
◆类型五 已知方程根的情况求参数的取值范围时忽略分母为0时参数的值【方法18】
8.若关于x 的分式方程x x -2=2-m 2-x
的解为正数,则满足条件的正整数m 的值为( ) A .1,2,3 B .1,2 C .1,3 D .2,3
9.已知关于x 的分式方程a -x x +1
=1的解为负数,求a 的取值范围.
参考答案与解析
1.D 2.B
3.解:原式=x -2(x +1)(x -1)·x +1(x -2)2+1x -1=1(x -1)(x -2)+1x -1=x -1(x -1)(x -2)
=1x -2
.当x =0时,原式=-12(x 不能取-1、1、2). 4.解:原式=(x +2)(x -2)(x +3)(x -3)·x -3x -2=x +2x +3
.解不等式2x -3<7,得x <5,其正整数解为1,2,3,4.∵x +3≠0且x -2≠0且x -3≠0,∴x ≠-3且x ≠2且x ≠3,∴x =1或4.当x =1时,原式=34
;当x =4时,原式=67
. 5.解:去分母,得1-x =-1-2(x -2),解得x =2.检验:当x =2时,x -2=0.∴x =2不是原分式方程的解,故原分式方程无解.
6.D 解析:分式方程化简得(2m +1)x =-6.当2m +1=0,即m =-0.5时,原分式方程无解;当2m +1≠0时,x =-62m +1,当x =3时,原分式方程无解,即-62m +1
=3,解得m =-1.5;当x =0时,原分式方程无解,即-62m +1
=0,此方程也无解.综上所述,m 为-0.5或-1.5,故选D. 7.解:去分母,得ax -2a +x +1=0,分两种情况讨论:①分式方程有增根,∴x (x +1)=0,得
x =-1或0.当x =-1时,-a -2a -1+1=0,解得a =0;当x =0时,-2a +1=0,解得a =12
. ②方程ax -2a +x +1=0无解,即(a +1)x =2a -1无解,∴a +1=0,a =-1.综上可知,a =0或12
或-1. 8.C 解析:方程两边都乘以x -2,得x =2(x -2)+m ,解得x =4-m .由题意得⎩
⎪⎨⎪⎧x >0,x -2≠0,即⎩
⎪⎨⎪⎧4-m >0,4-m -2≠0,解得m <4且m ≠2,∴满足条件的正整数m 的值为1和3.故选C.
9.解:由a -x x +1=1,解得x =a -12.由题意得⎩⎨⎧a -12<0,a -12+1≠0,
∴a <1且a ≠-1.。