多元统计分析教学资料:逐步判别法
- 格式:ppt
- 大小:1.06 MB
- 文档页数:16
逐步判别分析1.基本理解逐步判别分析分析过程分两步:1.根据自变量和因变量(分类变量)相关性的大小筛选一部分自变量,这里的相关性是指自变量能否显著地把因变量区分出来;2.用取定的变量做进一步的判别分析。
注:在模型中保留的自变量不是单独的参考每个自变量和因变量的相关性,而是综合考虑由一部分自变量形成的整体对因变量的区分能力。
2.逐步判别分析操作步骤逐步判别函数第一步:首先将已确定分类情况的数据到spss软件中,点击分析、分类、判别式。
图1逐步判别操作第一步第二步:进入判别分析勾选框后首先将变量列表中的变量放入右侧的变量框中,将因变量(已知分组情况变量)放入分组变量框并定义好范围,点击继续,将自变量放入自变量框中。
图2第二步第三步:点击统计,勾选描述里的平均值、博克斯,函数系数勾选费希尔、未标准化。
点击继续。
图3第三步第四步:点击分类、勾选先验概率根据大小计算、显示下的摘要表,图勾选、合并组、领域图。
点击继续,后点击确定。
图4第四步3.逐步判别分析结果分析个案处理摘要、组统计结果。
图5组统计结果对数决定因子、检验结果、输入/除去的变量结果。
图6博克斯等同性检验输入/除去的变量、包括在分析中的变量。
图7步进统计典型判别函数系数、组质心处的函数、分类处理摘要。
图8典型判别函数系数结果分类处理摘要、组先验概率、分类函数系数(费希尔判别函数结果)。
图9费希尔判别函数系数典型判别函数、分类结果(判别函数的准确性)。
图10典则判别函数图4.结果整理结果整理将费希尔判别函数表结果粘贴到表格中,并在右侧加入分类结果中的准确率。
并根据费希尔判别函数系数表整理好每个类别的函数。
图11结果整理。
判别分析:实验步骤:1.在SPSS窗口中选择:分析-分类-判别,将变量导入自变量框中,group导入分组变量中,选择定义范围,最小为1最大为3,并选择一起输入自变量,点击继续2.点击统计量,描述性中选择“均值”,“单变量”和”Box”,选择函数系数中的“Fisher”“未标准化”,矩阵中选择“组内相关”,点击继续3.点击分类点击继续4.点击“保存”,三个框均选中,点击继续5.点击确定实验结果分析:1.表1 组统计量看各个总体在均值等指标上的值是否接近,若接近说明各类之间在该指标差异不大表2表3 汇聚的组内矩阵若自变量之间存在高度相关,则判别分析价值不大,但并不严格,允许出现一定的相关表4 协方差矩阵的均等性的箱式检验检验结果p值>0.05时,说明协方差矩阵相等,可以进行bayes检验表7由表7可知,两个Fisher 判别函数分别为1123456212345674.99 1.861 1.6560.8770.7980.098 1.57929.4820.867 1.1550.3560.0890.0540.69y XX X X X X y X X X XX X =--+-+++=--+--++表8 结构矩阵该表是原始变量与典型变量(标准化的典型判别函数)的相关系数,相关系数的绝对值越大,说明原始变量与这个判别函数的相关性越强由表9可知各类别重心的位置,通过计算观测值与各重心的距离,距离最小的即为该观测值的分类。
表10 给出贝叶斯判别函数系数第一类:11234565317.2143.9153.190.153.011.0189.3F X X X X X X =--+-+++2. 将各样品的自变量值代入上述三个Bayes 判别函数,得到函数值。
比较函数值,哪个函数值比较大就可以判断该样品判入哪一类。
Equation Chapter 1 Section 1 Array《多元统计分析》Multivariate Statistical Analysis主讲:统计学院统计学院应用统计学教研室School of Statistics第三章 判别分析【教学目的】1. 让学生了解判别分析的背景、基本思想; 2. 掌握判别分析的基本原理与方法; 3. 掌握判别分析的操作步骤和基本过程; 4. 学会应用聚类分析解决实际问题。
【教学重点】1. 注意判别分析与聚类分析的关系(联系与区别); 2. 阐述各种判别分析方法。
§1 概述一、什么是判别分析1.研究背景科学研究中,经常会遇到这样的问题:某研究对象以某种方式(如先前的结果或经验)已划分成若干类型,而每一类型都是用一些指标()12,,,p X X X X '=来表征的,即不同类型的X 的观测值在某种意义上有一定的差异。
当得到一个新样本观测值(或个体)的关于指标X 的观测值时,要判断该样本观测值(或个体)属于这几个已知类型中的哪一个,这类问题通常称为判别分析。
也就是说,判别分析(discriminant analysis )是根据所研究个体的某些指标的观测值来推断该个体所属类型的一种统计方法。
判别分析的应用十分广泛。
例如,在工业生产中,要根据某种产品的一些非破坏性测量指标判别产品的质量等级;在经济分析中,根据人均国民收入,人均工农业产值,人均消费水平等指标判断一个国家的经济发展程度;在考古研究中,根据挖掘的古人头盖骨的容量,周长等判断此人的性别;在地质勘探中,根据某地的地质结构,化探和物探等各项指标来判断该地的矿化类型;在医学诊断中,医生要根据某病人的化验结果和病情征兆判断病人患哪一种疾病,等等。
值得注意的是,作为一种统计方法,判别分析所处理的问题一般都是机理不甚清楚或者基本不了解的复杂问题,如果样本观测值的某些观测指标和其所属类型有必然的逻辑关系,也就没有必要应用判别分析方法了。
多元统计分析之判别分析第六章判别分析§6.1 什么是判别分析判别分析是判别样品所属类型的一种统计方法,其应用之广可与回归分析媲美。
在生产、科研和日常生活中经常需要根据观测到的数据资料,对所研究的对象进行分类。
例如在经济学中,根据人均国民收入、人均工农业产值、人均消费水平等多种指标来判定一个国家的经济发展程度所属类型;在市场预测中,根据以往调查所得的种种指标,判别下季度产品是畅销、平常或滞销;在地质勘探中,根据岩石标本的多种特性来判别地层的地质年代,由采样分析出的多种成份来判别此地是有矿或无矿,是铜矿或铁矿等;在油田开发中,根据钻井的电测或化验数据,判别是否遇到油层、水层、干层或油水混合层;在农林害虫预报中,根据以往的虫情、多种气象因子来判别一个月后的虫情是大发生、中发生或正常;在体育运动中,判别某游泳运动员的“苗子”是适合练蛙泳、仰泳、还是自由泳等;在医疗诊断中,根据某人多种体验指标(如体温、血压、白血球等)来判别此人是有病还是无病。
总之,在实际问题中需要判别的问题几乎到处可见。
判别分析与聚类分析不同。
判别分析是在已知研究对象分成若干类型(或组别)并已取得各种类型的一批已知样品的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。
对于聚类分析来说,一批给定样品要划分的类型事先并不知道,正需要通过聚类分析来给以确定类型的。
正因为如此,判别分析和聚类分析往往联合起来使用,例如判别分析是要求先知道各类总体情况才能判断新样品的归类,当总体分类不清楚时,可先用聚类分析对原来的一批样品进行分类,然后再用判别分析建立判别式以对新样品进行判别。
判别分析内容很丰富,方法很多。
判别分析按判别的组数来区分,有两组判别分析和多组判别分析;按区分不同总体的所用的数学模型来分,有线性判别和非线性判别;按判别时所处理的变量方法不同,有逐步判别和序贯判别等。
判别分析可以从不同角度提出的问题,因此有不同的判别准则,如马氏距离最小准则、Fisher 准则、平均损失最小准则、最小平方准则、最大似然准则、最大概率准则等等,按判别准则的不同又提出多种判别方法。