数字地形分析1
- 格式:docx
- 大小:25.69 KB
- 文档页数:8
数字地形上复习题数字地形,也被称为数字地图,是一种用数字数据表示地面形状和地物属性的方法。
它在地理信息系统(GIS)和地形分析中被广泛应用。
数字地形包含了高程数据、坡度、坡向、流向等地理属性。
在本文中,我们将提供一系列数字地形复习题,以帮助您复习数字地形的相关概念和技术。
题目一:高程数据的表示方法1. 解释什么是高程数据。
2. 高程数据有哪些常见的表示方法?请简要描述每种方法的优缺点。
3. 数字高程模型(DEM)是一种常见的高程数据表示方法,请解释DEM的原理和应用。
题目二:地形参数的计算1. 什么是坡度和坡向?请分别给出它们的计算公式。
2. 解释地形指数(TI)和综合地形指数(STI)分别是如何计算的,并描述它们的应用。
3. 什么是流向?请简要解释流向的计算方法。
题目三:地面分析和地形表达1. 解释什么是地形分析。
2. 请列举并解释地形分析的常见应用。
3. 什么是地形表达?请简要描述几种地形表达方法。
题目四:数字地形的数据预处理1. 数字地形数据的预处理过程包括哪些方面?请简要描述每个步骤的作用。
2. 请解释数字地形数据的平滑处理方法,并描述它的优缺点。
3. 什么是数据融合?请简要解释数据融合的意义和常用的方法。
题目五:数字地形建模和应用1. 请解释数字地形建模的概念和目的。
2. 数字地形模型可以应用于哪些领域?请列举并简要描述几个常见的应用领域。
3. 数字地形模型中的三维可视化有哪些方法?请简要描述每种方法的原理和应用。
题目六:数字地形分析的工具和软件1. 数字地形分析中常用的工具有哪些?请列举并简要描述几种工具的功能。
2. 请解释地理信息系统(GIS)在数字地形分析中的作用。
3. 数字地形分析中常用的软件有哪些?请列举并简要描述几种软件的特点和应用领域。
总结:数字地形是地理信息系统和地形分析中的重要概念。
通过本文提供的数字地形复习题,您可以回顾数字地形的相关概念、数据表示方法、地形参数计算、地形分析和建模等各个方面的知识。
【ArcGIS空间分析】数字地形分析⽂章⽬录数字地形分析原理基于ArcGIS的数字地形分析操作DEM的建⽴1 栅格表⾯的创建2 TIN的创建3 等⾼线的创建4 Terrain(地形数据集)的建⽴基本因⼦分析1 坡度(栅格表⾯与TIN表⾯的坡度不同)2 坡向(栅格表⾯与TIN表⾯的坡向不同)3 剖⾯曲率和平⾯曲率3 坡度变率(SOS)4 坡向变率(SOA)5 地形起伏度6 地表切割深度7 地表粗糙度8 ⾼程变异系数⽔⽂分析1 ⽆洼地DEM⽣成2 汇流累积量计算3 ⽔流长度计算4 河⽹提取5 流域的分割地形特征分析1 ⼭顶点2 ⼭脊线⼭⾕线2 鞍部点3 径流节点4 沟沿线可视性分析天际线天际线图天际线障碍构造通视线通视性数字地形分析原理1、数字地形分析–DEM2、DEM的建⽴3、数字地形分析–基本因⼦分析4、地形特征分析5、流域分析(⽔⽂分析)6、可视性分析7、DEM数字地形分析研究与应⽤进展基于ArcGIS的数字地形分析操作地形提取⽅法反地形max-dem&Abs(dem-2000)正负地形dem-mean正地形zhengfu>0负地形zhengfu<0因⼦提取⽅法坡度表⾯分析>坡度坡向表⾯分析>坡向表⾯分析>曲率平⾯曲率表⾯分析>曲率坡度变率坡度>坡度坡向变率坡向>坡度【((SOA1+SOA2)-Abs(SOA1-SOA2))/ 2】地形起伏度max-min地表切割深度mean-min地表粗糙度1/cos(slope*3.14159/180)⾼程变异系数std/mean地形特征提取⽅法⼭顶点max-dem==0⼭脊线zhengfu>0&SOA>70 / flowacc0_neibor_rec*zhengdixing(重分类)⼭⾕线zhengfu<0&SOA>70 / flowaccfan0_neibor_rec*fudixing(重分类)鞍部点(flowac0*flowaccfan0)*zhengdixing(重分类)径流节点slope(streamnet_raster)>0(栅格转⽮量中点)(dem - dem_smooth)>0(栅格转⽮量、⾯转线)DEM的建⽴1 栅格表⾯的创建(1)由点创建栅格表⾯(插值)插值⼯具:点要素图层反距离权重插值法点要素插值结果栅格表⾯(2)地形转栅格插值2 TIN的创建可以⽤点、线和多边形要素作为创建TIN的数据源由⽮量数据创建TIN由栅格数据创建TIN由TIN创建栅格原始dem3 等⾼线的创建间距:200间距:10004 Terrain(地形数据集)的建⽴terrain数据集是⼀种多分辨率的基于TIN的表⾯数据结构,它是基于作为要素存储在地理数据库中的测量值构建⽽成的。
使用数字高程模型进行地形分析的步骤和技巧使用数字高程模型(Digital Elevation Model,简称DEM)进行地形分析可以帮助我们更深入地了解地球表面的形态和特征。
在这个过程中,我们需要遵循一系列的步骤和技巧,以确保我们能够获得准确和可靠的分析结果。
首先,进行地形分析的第一步是获取合适的DEM数据。
DEM数据可以从多个渠道获取,包括地理信息系统(Geographic Information System,简称GIS)数据提供机构、地方政府和学术机构等。
我们可以根据自己的需求选择合适的DEM数据集,确保数据的分辨率和精度能够满足我们的要求。
在获得DEM数据后,我们需要对数据进行预处理,以便使其更适合用于地形分析。
这包括数据的清理和修复,以去除潜在的错误或缺失值。
同时,我们还可以对DEM数据进行滤波平滑以去除噪声,并进行坡度校正,以便更准确地表示地形特征。
一旦我们获得了处理后的DEM数据,我们就可以开始进行地形分析了。
其中最常见的一项分析是计算地形坡度。
坡度是地形表面上某一点的下降速率,通常以百分比或度数表示。
我们可以使用坡度计算公式来计算不同地点的坡度,并根据坡度值的分布来理解地形的陡峭程度和地形特征。
另外,地形坡向是另一个重要的地形分析指标。
它指示了地表的方向,即水流的路径。
为了计算地形坡向,我们可以使用计算水流路径的算法,如D8流向算法或D-inf流向算法。
通过分析地形坡向,我们可以更好地了解地表水流的分布和汇集情况。
此外,地形曲率也是一个常见的地形分析指标。
地形曲率表示地表曲线在某一点的曲率程度,可以帮助我们理解地形特征的起伏和起伏的连续性。
为了计算地形曲率,我们可以使用基于邻域统计的计算方法,例如偏导数方法或滑动窗口方法。
通过分析地形曲率,我们可以更好地理解地形的起伏和地貌特征。
除了这些常见的地形分析指标之外,我们还可以根据自己的需求选择其他合适的地形分析方法和技术。
例如,我们可以使用地形剖面来展示地形剖面线上的高程变化情况,或者使用地形阴影来模拟地表在不同光照条件下的阴影效果。
如何使用数字高程模型进行地形分析与可视化数字高程模型(Digital Elevation Model,简称DEM)是通过对地球表面进行测量和数据处理而生成的三维地形模型。
它提供了地形地貌的详细描述,为地质学、地理学、城市规划等学科的研究和实践提供了重要且丰富的数据来源。
本文将介绍如何使用数字高程模型进行地形分析与可视化。
一、数字高程模型的获取与处理数字高程模型可以通过多种方法获取,包括激光雷达测量、航空测绘、卫星遥感等技术手段。
获取到的原始DEM数据需要进行处理和加工,以便更好地应用于地形分析和可视化。
常见的DEM处理方法包括数据插值、滤波、剖面分析等。
1.数据插值数据插值是将不连续的离散高程数据拟合成连续的地形表面。
常用的插值方法有反距离加权插值(IDW)、克里金插值等。
插值结果将提供高程数据的连续性和平滑度,为地形分析提供了基础。
2.滤波滤波是用来去除DEM数据中的噪声和异常值,以提高地形数据的准确性和可靠性。
常用的滤波方法有中值滤波、高斯滤波等。
滤波后的DEM数据更加真实和可靠,减少了误差和不确定性。
3.剖面分析剖面分析是通过选择不同的地理剖面线,提取DEM数据的高程数值,以便更好地了解地形地貌的特征和变化趋势。
剖面分析可以帮助我们理解地质构造、水文河流等地理现象,提供更深入的地形信息。
二、地形分析与可视化方法使用数字高程模型进行地形分析和可视化的方法有很多,以下将介绍几种常见的方法。
1.坡度与坡向分析坡度与坡向分析可以帮助我们了解地表的倾斜程度和朝向。
通过计算每个像元(栅格单元)的坡度和坡向数值,可以构建坡度和坡向分布图,进而分析地形地貌的起伏和走向。
这对于地质勘探、土地利用规划等方面具有重要意义。
2.流域分析与水系提取流域分析是指根据数字高程模型的数据,确定地表上的集水区和河流网络。
通过提取DEM中的河流网络,可以了解地表水文过程的分布与特征。
流域分析对于洪水预警、水资源管理等方面具有重要意义。
数字地形分析1第一章数字地面模型概述1.概念解析:数字高程模型、数字地面模型、4D产品数字地面模型是描述地面诸特征空间分布的有序数值阵列。
在最通常的情况下所记的地面特征是高程Z,它的空间分布由X,Y水平坐标系统来描述,也可用经纬度来描述海拔H的分布。
上述高程或海拔分布的数字地面模型又称为数字高程模型,以区别于描述其他地面特性的数字地面模型。
数字地面模型可以是每三个三维坐标值为一元组的散点结构,也可以是由多项式或傅里叶级数确定的曲面方程,特别值得注意的是:数字地面模型可以包括除等高线以外的诸如地价,土地权属,土壤类型,岩层深度以及土地利用等其他地面特性信息的数字数据基础地理信息数字产品(或称数字测绘产品)的四种基本模式(4D 产品)2.古往今来,人类一直在寻求如何描述周围及其大区域范围的地形地貌形态及其地表现象的有效表达方式,它们分别是?绘图方式地图与地形图实物模型摄影术遥感技术数字地形表达3.地图上表示地貌的具体要求是什么?便于确定地面上任意一个地面点的高程便于判断地面的坡向,坡度和量测其坡度便于清楚地识别各种地貌的类型、形态特征、分布规律和相互关系,量测其面积和体积4.地形图的立体表示有哪几种表现手段?写景法地貌晕滃法地貌晕渲法分层设色法5.数字地形表达的方式可分两大类:数学描述和图像描述。
使用傅立叶级数和多项式来描述地形是常用的数学描述方式。
规则格网、不规则格网、等高线、剖面图等是图像描述的常用方式6.数字高程模型、数字地貌模型与数字地面模型之间的关系,看图说明。
数字高程模型派生出数字地貌模型,数字地貌模型纳入数字地面模型而数字地面模型包括数字地貌模型和非地貌地面特性的数字地面模型7.数字地面模型描述地表的优点容易以多种形式显示地形信息。
地形数据经过计算机处理后,产生多种比例尺的地形图、纵横断面图和立体图精度不会损失容易实现自动化、实时化8.基础地理信息数字产品(或称数字测绘产品)的四种基本模式(4D产品)。
对数字化地形图测量的特点及不足的分析贵州省毕节市勘测设计研究院测绘部叶毕升 551700关键词:数字化地形图测量特点误差来源摘要:通过对现在数字化地形图测量和原来测图方法特点的介绍,分析数字化地形图测量过程中数据误差来源情况及不足之处,提出一些建议和意见,以供测量过程中的参考。
随着GPS、GIS等相关测绘技术的发展,以及各种精度类型的全站仪的在测绘领域普遍应用,特别是在全站仪、RTK仪器和成图软件的价格大幅下降,使得这一新的测量技术得到了迅速的发展和应用。
数字化地形图测量速度快,精度高,为经济建设、城市发展提供了可靠的数据信息。
为此,根据多年的测量经验及在测量过程中所遇的问题,结合大比例尺地形图测量这几十年的发展历程,对数字化地形图测量与原来的测图方法所形成的特点及其自身的误差来源和不足作一个简单的分析。
1.大比例尺地形图测量方法运用的基本发展状况大比例尺地形图测量包括控制测量和碎部测量两大内容。
控制测量主要是指布设等级控制网和加密测图图根控制的测量工作;碎部测量主要是指在各级控制网测设和计算完成后在控制点的基础上对相关范围内的各类地形特征和地物进行测量工作,以便确定其相对的数字属性(包括坐标、高程、形状、类别等属性)。
常规所指的大比例尺地形图测量方法,主要是以碎部测量的方法成图的方法命名的。
在我从事测绘工作以来,大比例尺地形图测量方法主要是从原来的白纸测图(平板仪测图及经纬仪加小平板测图)时期和现在的全站仪数字化测图时期。
在白纸测图时期,它主要采用解析法和极坐标法,其精度也因视距误差、刺点误差、图纸伸缩误差、转描绘误差等大为降低,再加上其劳动强度大、成图周期长、使用不方便等原因,使之在98年以前还是主要的测量成图方法。
到今天,数字化测图已经发展为使用全站仪和RTK仪器进行的时代,这也是现代测绘技术新潮流、新趋势和结果。
2.数字化地形图测量的主要特点数字化地形图测量主要充分利用先进的测量仪器和自动化成图软件,采用各种灵活的定位方法进行的以数字信息表示地图信息的测图工作,它的成果为模型式的数字图。
数字地形图测绘中问题分析南京市210000摘要:目前,先进技术和仪器设备源源不断地被研发出来,在实际的建筑领域得到有效的利用和良好的成效。
数字地形图测绘技术作为其中十分重要的一项技术,可以降低外在误差,提高数据采集的精确度和容易性,然而在实际应用中仍然存在一些问题。
关键词:数字化;地形图测绘;解决方案引言:运用信息技术对地形图进行测绘,可以实现地形图测绘管理和服务的数字化应用,以更好地为建筑行业进行服务。
数字地形图测绘技术不仅可以提高地形图测绘的精确度,同时提高在外作业的效率。
一、数字地形图测绘的优点(一)具有高精度的优点与传统地形图相比,数字地形图测绘技术具有精度高的优点,传统的测绘技术主要采用光学工具进行测绘。
测量是按分类的基本原则组织的,会出现分层现象,直接影响测量的精度,而且设计过程中主要是手工绘制,精度无法保证。
在数字化信息技术快速发展的现在,全站仪测量方法可以在地形测绘中发挥作用,能有效地控制测量的精度,测量过程中控制水平基本可以降低,不受设计变形的影响,从而绘制出拥有高精度的数字地形图。
(二)具有低劳动强度的优点在正常情况下,数字地形测绘技术本身自动化程度高,相关人员的劳动强度降低,传统的测绘技术在应用过程中会涉及到更多的手工方法和设计工作,影响测绘水平和精度,班组工作强度也相对较高,施工人员可在室内应用数字测绘技术,由于科学技术和信息技术的先进,大部分工作可以通过人机通信、科学测图和计算机来完成,测绘工作更科学,工人只需完成大部分的计算机绘图工作,此外,为了减少运动站的数量,测量员也可以在地形测绘过程中充分利用全站仪,不仅可以扩大监测范围,而且保证正常的映射和映射进程,大多数站点都有芯片,该芯片可以有效地存储观测数据和信息,减少测量和注册表的工作负载。
二、数字地形图测绘的问题(一)存在缺乏精确收集的资料的问题根据实际调查,相关检查人员在设计数字地形图之前,如果没有收集到准确的数据和相关资料,没有及时发现原始地形图的缺陷的问题所在,这将导致原始地形图与实际建筑场地之间存在较大差距,而实际施工中不可避免地会受到诸多因素的影响,导致施工异常。
数字地形图测绘要点解析摘要:为了提高数字地形图测绘工作的质量,给各项工作的开展奠定良好基础。
本文在阐述数字地形图测绘价值的同时,对数字地形图测绘的问题现状以及相关措施进行了解析,具体内容如下分析。
关键词:数字地形图;测绘技术;工作要点引言在测绘经济高速发展的今天,计算机和数字化技术的应用已经越来越广泛,数字化测绘技术也因高科技的融入,测图技术得到相应的提高,数字化测绘技术因其测图精准,采集数据的便捷快速得到广泛的应用。
方便了工作人员的工作,大大的提高了测绘的工作效率。
一、数字地形图测绘价值体现(一)高精度在过去传统的测绘工作中,测量数据主要靠工作人员借助一些工具来利用人工收集,绘图人员再根据得出的数据加以分析和计算,在这个过程中,需要投入大量的人力物力,不仅耗费的时间长,过程复杂,而且误差率也居高不下,降低了测绘的工作效率。
而新兴的数字化测绘技术,利用计算机来实现图形的绘制和误差率低的分析,能非常高效迅速的完成测绘工作,其得出数据的精准度和完整性也是远远高于传统的测绘工作的,很大程度的提高了测绘技术的效率。
(二)低劳动强度新型的数字化测绘技术在现有的工程实际操作中已经得到普遍的应用,并且获得非常高的评价和认可,该技术改进了工作人员的工作环境,实际操作的工作人员不需要到户外操作,可以利用航拍技术来对地形加以拍摄,利用得到的影像资料,综合计算机专业的图形处理软件,对图形分析计算然后出图,而且由此操作得出的数字图形清晰准确,测绘工作的效率大大的提高,操作成本也相对的降低,而传统的测绘技术应用,在实际的操作过程中需要工作人员到实地进行测绘,以此来获得数据,进行计算得出图形,整个工作过程工作量大,工作人员也是非常的辛苦,而且因为整个的过程都是人工操作,存在误差也是常有的事。
二、数字地形图测绘的问题现状(一)存在缺乏精确收集的资料的问题传统的测绘技术在实际测绘过程中,需要用到相关的工具来实现数据的采集,该方法受外在因素的影响,具有很大的局限性,测量数据的准确性无法得到保证,在后续的工作中,如果把有误差的数据应用到地图绘制当中去,就会出现地形图的误差,导致后续的工作也出现偏差,影响施工的顺利进行。
网格化数字地形模型的构建与分析方法数字地形模型(Digital Terrain Model,DTM)是通过数字化地表高程数据构建的地形模型。
随着技术的发展,越来越多的研究和应用领域开始需要高精度和高分辨率的数字地形模型。
网格化数字地形模型的构建与分析方法成为研究和应用领域的关注点之一。
本文将就网格化数字地形模型的构建方法、性能评估以及相关的分析方法进行探讨。
一、数字地形模型构建方法1. 激光雷达扫描法激光雷达扫描法是一种常用的数字地形模型构建方法。
通过激光雷达设备对地面进行扫描,获取多个点云数据,然后通过点云数据的处理与过滤,提取出地面点,最终构建数字地形模型。
这种方法具有高精度、高效率的特点,被广泛应用于地形测绘、城市规划等领域。
2. 遥感影像解译法遥感影像解译法是另一种常用的数字地形模型构建方法。
通过分析遥感影像中的地物特征,如纹理、颜色等,利用图像处理算法提取出地面特征,构建数字地形模型。
这种方法适用于大范围、连续的地形建模,具有覆盖范围广、成本较低的优势。
3. 高精度测量法高精度测量法是一种精度要求较高的数字地形模型构建方法。
通过使用全站仪、GPS等高精度测量设备,对地表进行多个采样点的测量,然后通过插值算法将测量数据进行空间插值,得到数字地形模型。
这种方法适用于对特定区域进行高精度建模,如交通规划、基础设施建设等领域。
二、数字地形模型性能评估1. 精度评估数字地形模型的精度是衡量其质量的重要指标。
可以通过与实地测量数据进行对比,计算出误差值,进而评估数字地形模型的精度。
同时也可以利用地形分析工具,进行地形曲率、坡度、坡向等指标的计算,从而评估数字地形模型的几何特征。
2. 数据密度评估数据密度是指数字地形模型中数据点的分布情况。
数据密度评估可以通过统计每个网格单元内的数据点数量,并计算出平均密度值。
高密度的数字地形模型能够更准确地反映地形的细节特征。
3. 数据分辨率评估数据分辨率是指数字地形模型中每个网格单元的大小。
第11章地形分析数字高程模型(Digital Elevation Model,简称DEM),是用一组有序数值阵列形式表示地面高程的一种实体地面模型。
DEM是数字地形模型(Digital Terrain Model,简称DTM)的一个分支,其它各种地形特征值均可由此派生,如坡度、坡向及坡度变化率等地貌特性。
DEM还可以计算地形特征参数,包括山峰、山脊、平原、位面、河道和沟谷等。
建立DEM的方法有多种。
按数据源及采集方式主要有:(1)直接从地面测量,例如用GPS、全站仪?、野外测量等;(2)根据航空或航天影像,通过摄影测量途径获取,如立体坐标量测仪观测及空三加密法、解析测图、数字摄影测量等;(3)从现有地形图上采集,如格网读点法、数字化仪手扶跟踪及扫描仪半自动采集,然后通过内插生成DEM等方法。
DEM的内插方法很多,常用的有整体内插、分块内插和逐点内插三种。
下表对比了几种创建DEM的主要方法。
表几种DEM创建方法汇总i方法优点缺点航空摄影测量成熟的方法,精度高,可获取大比例尺DEM。
?成本高,周期长,且受航空管制。
高程点或者等高线差值? 成本低,操作简单。
受数据源限制大,很多地区无高程点或等高线数据。
卫星遥感?可以大范围获取DEM。
?受天气影响较大,目前可获取的比例尺较小。
?干涉雷达技术可以大范围获取DEM,不受天气影响。
? 目前获取大比例尺DEM较困难,随着德国高分辨率雷达卫星TanDEM-X的上天会有所突破。
激光雷达技术? 精度高,可获取大比例尺DEM。
?起步阶段,技术门槛高。
?要想快速的获取大范围的DEM数据,卫星遥感是一种较好的方法。
随着卫星传感器的飞速发展,获取的DEM精度越来越高。
如目前商业卫星最高分辨率的米GeoEye-1,在使用高质量控制资料时,垂直精度的中误差可达到米,可满足1:5000的地图比例尺生产。
可以立体成像的卫星主要有ASTER,ALOS?PRISM,CARTOSAT-1,FORMOSAT-2,IKONOS,KOMPSAT-2,?OrbView-3,?QuickBird,RapidEye,?GeoEye-1,WorldView-1/2,SPOT?5/6,Pleiades,以及国产的资源三号、资源一号02C星、天绘卫星等。