气动换向回路
- 格式:doc
- 大小:61.50 KB
- 文档页数:4
单作用气缸是一种常见的气动执行元件,它通常由气缸、活塞、活塞杆和换向回路等部件组成。
换向回路是单作用气缸中至关重要的部分,它决定了气缸的工作方式和性能。
本文将就单作用气缸的换向回路工作原理进行详细介绍。
一、单作用气缸的基本结构单作用气缸是一种只能在一个方向上输出力的气动执行元件,它常被用于需要单方向运动的场合。
单作用气缸的基本结构包括气缸壳体、活塞、活塞杆及密封件等部件。
气源通过气缸内部的进气口,推动活塞向前运动,从而实现压力的输出。
而在活塞返回的时候,压缩气体会通过换向回路排出。
二、换向回路的作用换向回路是单作用气缸中的重要部分,它的作用主要包括控制气源的进出、使活塞的运动方向改变以及连通气源和出口等。
换向回路在单作用气缸的工作过程中起着至关重要的作用,它决定了气缸的工作方式和性能。
三、单作用气缸的换向回路工作原理1. 简介换向回路是单作用气缸的核心部分,它通过控制气路的开关来改变气缸的运动方向。
通常,换向回路由三通换向阀、两位五通阀、气源接头和出口等部件组成。
换向回路的设计应考虑到气缸的速度、力度、精度等因素,使得气缸的工作效果能够达到预期的目标。
2. 工作原理单作用气缸的换向回路工作原理如下:(1) 气源进入:气源通过气源接头进入气缸的进气口,推动活塞向前运动,从而实现压力的输出;(2) 活塞返回:在活塞返回的过程中,压缩气体会通过换向回路排出;(3) 换向控制:当需要改变活塞的运动方向时,换向回路会控制气源的流向,使得气缸的运动方向发生改变,从而实现气缸的正反向运动。
四、换向回路的优化设计为了提高单作用气缸的工作效率和性能,换向回路的设计需要进行优化。
具体包括以下几点:1. 气路优化:通过合理配置气源接头、气管路线和气缸布置等方式,减小气体流动的阻力,降低气压损失,提高气缸的运动效率;2. 阀门选型:选择合适的换向阀和气缸配套,确保换向回路能够灵活、快速地控制气缸的运动方向;3. 密封件优化:采用高品质的密封件,确保气缸能够长时间稳定地运行,减少泄漏,提高气缸的使用寿命。
气动系统的设计计算
浏览字体设置:
+
10pt
放入我的网络收藏夹
气动系统的设计计算
气动系统的设计一般应包括: 1)回路设计;
2)元件、辅件选用; 3)管道选择设计; 4)系统压降验算; 5)空压机选用;
6)经济性与可靠性分析。
以上各项中,回路设计是一个“骨架”基础,本章着重予以说明,然后结合实例对气对系统的设计计算进行综合介绍。
1 气动回路
1.1 气动基本回路
气动基本回路是气动回路的基本组成部分,可分为:压力与力控制回路、方向控制(换向)回路、速度控制回路、位置控制回路和基本逻辑回路。
1.1.2换向回路(见表4
2.6-2)
表42.6-2 气动换向回路及特点说明
1.1.3速度控制回路(见表4
2.6-3)
位置停止)
表42.6-4 气动位置控制回路及特点说明
1.1.5 基本逻辑回路(见表4
2.6-5)
实际应用中经常遇到的典型回路简称常用回路。
1.2.1 安全保护回路(见表42.6-6)
1.2.2往复动作回路(见表42.6-7、8)
表42.6-6 气动安全保护回路及特点说明
1.2.3程序动作控制回路
程序动作控制回路(表42.6-8)在实际中应用广、类型多。
下面仅举一个双缸程序动作(A1-B1-B0-A0)为例(表42.6-8)说明。
而不同执行缸以及各种不同程序动作的回路,将在本章第2节中介绍其基本设计方法。
1.2.4同步动作控制回路(见表42.6-9)
表42.6-9 气动同步动作控制回路及特点说明。
双作用气缸换向回路实验报告1. 实验目的在咱们动手实验之前,先来聊聊这个“换向回路”是个啥。
简单来说,就是要让气缸能来回移动,像是在玩过山车一样,既刺激又有趣。
这实验不仅能帮助我们理解气缸的工作原理,还能让我们对气动控制有个更深刻的认识,真是一举两得!就像老话说的:“一箭双雕”。
2. 实验器材在这次实验中,咱们需要的器材可不少。
首先,当然少不了气源——气泵。
这玩意儿就像是我们这次实验的“发动机”,没有它,啥都不成。
然后,咱们需要双作用气缸,它可是在气动领域里“明星”一样的存在,左右逢源,功能强大。
此外,阀门也是必不可少的,负责控制气流的进出,算是我们的“交通警察”。
再加上一些连接管、接头和压力表,嘿,这一套装备齐全,咱们就可以开始实验了。
3. 实验步骤3.1 准备工作好,咱们开始吧!首先,把气泵连接好,然后把气缸和阀门都给安装上。
别小看这一步哦,连接不紧可要出大事,气体可不是开玩笑的。
然后,调试一下压力,确保一切正常。
压力太高,那就是给气缸加压,太低就容易“漏气”,让人哭笑不得。
3.2 进行实验接下来,正式进入实验环节。
先启动气泵,观察气缸的动作。
就像小孩子看到玩具一样,心里别提多激动了。
气缸开始向一个方向移动,哇,真是流畅得很!再换个阀门,看看它能不能反向移动。
哇,果然又回来了!这时我心里乐开了花,仿佛亲眼目睹了一场精彩的杂技表演。
4. 实验结果与讨论4.1 实验现象经过几轮试验,咱们的气缸运行得很不错,没出什么乱子。
每次换向都很顺利,像是练习了无数遍的舞者,动作优雅得很。
对比一下不同压力下的表现,发现气缸在高压力下速度更快,但也稍微有点不稳,就像开车时猛踩油门,难免有点“打滑”。
所以,在实际应用中,咱们得找到一个平衡点,既要速度,又不能失去稳定。
4.2 总结体会这次实验让我明白了气动系统的奥妙,不禁让我感叹:“真是匠心独运!”气缸的换向不仅依赖于气源和阀门,还得考虑到管路的布局、压力的调节等等,真是一门学问。
⽓动系统基本回路讲解及举例1、换向控制回路采⽤⼆位五通阀的换向控制回路,使⽤双电控阀具有记忆功能,电磁阀失电时,⽓缸仍能保持在原有的⼯作状态问:单电控失电会怎样?采⽤三位五通阀的换向控制回路三种三位机能中位封闭式中位加压式中位排⽓式2、压⼒(⼒)控制回路⽓源压⼒控制主要是指使空压机的输出压⼒保持在储⽓罐所允许的额定压⼒以下为保持稳定的性能,应提供给系统⼀种稳定的⼯作压⼒,该压⼒设定是通过三联件(F.R.L)来实现的双压驱动回路:在⽓动系统中,有时需要提供两种不同的压⼒,来驱动双作⽤⽓缸在不同⽅向上的运动,采⽤减压阀的双压驱动回路电磁铁得电,⽓缸以⾼压伸出电磁铁失电,由减压阀控制⽓缸以较低压⼒返回多级压⼒控制回路在⼀些场合,需要根据⼯件重量的不同,设定低、中、⾼三种平衡压⼒利⽤电⽓⽐例阀进⾏压⼒⽆级控制,电⽓⽐例阀的⼊⼝应该安装微雾分离器3、位置控制回路利⽤双位⽓缸,可以实现多达三个定位点的位置控制利⽤带锁⽓缸,可以实现中间定位控制⼆位三通电磁阀SD3失电,带锁⽓缸锁紧制动;得电,制动解除4、速度控制回路利⽤快速排⽓阀,减少排⽓背压,实现⾼速驱动5、同步控制回路·利⽤节流阀使流⼊和流出执⾏机构的流量保持⼀致·⽓缸的活塞杆通过齿轮齿条机构连接起来,实现同步动作·⽓缸的活塞杆通过⽓液转换缸实现同步动作6、安全控制回路防⽌起动飞出回路·在⽓缸起动前使其排⽓侧产⽣背压·采⽤⼊⼝节流调速终端瞬时加压回路·采⽤SSC阀来实现·同样可以实现防⽌活塞杆⾼速伸出落下防⽌回路·采⽤制动⽓缸·采⽤先导式单向阀。
一、基本换向回路
1.单作用气缸控制回路
气缸活塞杆运动的一个方向靠压缩空气驱动,另一个方向靠外力(重力、弹簧力等)驱动。
回路简单,常用二位三通阀控制。
(1)二位三通阀
(2)二位二通阀
2.双作用气缸控制回路
气缸活塞杆伸出和缩回两个方向均靠压缩空气驱动,常用二位五通阀(或三位五通阀)控制。
(1)单控
(2)双控
换向电信号可为短脉冲信号,电磁铁发热少,具有断电保持功能。
(3)三位五通阀换向
(a )中间封闭 (b )中间排气
(a )中间封闭:活塞可在任意位置停留,但定位精度不高。
(b )中间排气:中间位置时,活塞处于自由状态,可由其他机构驱动。
(c )中间加压(单活塞杆) (d )中间加压(双活塞杆)
(c )中间加压(单活塞缸):采用一个减压阀调节无杆腔的压力,使得在活塞双向加压时,保持力平衡。
(d )中间加压(双活塞杆):活塞两端受力面积相等,故无需压力控制阀即可保持力的平衡。
补充:如果没有合适的三位阀,想让气缸在任意位置停留,用以下方法试试。
Y3
(4)电磁远程控制
可用于有防爆等要求的特殊场合。
Y1
(5)双气控阀控制
主控阀为双气控二位五通阀,用两个二位三通阀作为先导阀,可进行远程控制。
(6)带有自保回路的气动控制回路
手动1手动2
两个手动二位二通阀分别控制气缸运动的两个方向,如果将手动阀1按下,则二位五通阀上腔进气切换,气缸左腔进气,右腔排气,同时自保持回路abc也从阀的上腔进气,以防止中途手动阀1失灵,造成误动作。
手动阀1复位,手动阀2按下,主控阀复位,气缸缩回,开始下一循环。
气动回路完整实验报告1. 实验目的本实验旨在通过搭建气动回路系统,了解气动系统的基本原理和特点,并通过实验验证气动元件的工作性能。
2. 实验原理气动系统是利用气体流动力学原理,通过增加或减小压缩空气(工作介质)的能量传递,实现机械运动控制的系统。
其主要组成部分包括供气装置、控制元件、执行机构和辅助装置。
本实验所使用的气动回路包括压缩空气源、气缸、三位五通换向阀和压力表。
通过控制三位五通换向阀的工作状态,可以实现气缸的正、反向运动。
实验中使用压力表来测量气缸的压力变化。
3. 实验装置和材料- 压缩空气源- 气缸- 三位五通换向阀- 压力表4. 实验步骤1. 将气缸与三位五通换向阀通过气管连接起来,形成气动回路。
2. 将压力表与气缸连接,用以测量气缸的压力变化。
3. 打开压缩空气源,使气缸内的空气得以压缩。
4. 分别控制三位五通换向阀的工作状态,观察气缸的运动情况,并记录下压力表的读数。
5. 重复步骤4,进行多次观察和记录。
5. 实验结果与分析实验中,我们通过控制三位五通换向阀的工作状态,分别使气缸正、反向运动。
在正向运动时,压力表的读数达到最高值,气缸实现正向推动;在反向运动时,压力表的读数降为最低值,气缸实现反向推动。
通过实验观察和记录,我们可以得到气动回路在不同工作状态下的压力变化曲线,进一步分析气动元件的工作性能及系统的稳定性和灵敏性。
6. 实验总结本实验通过搭建气动回路系统,深入了解了气动系统的基本原理和特点,并通过实验验证了气动元件的工作性能。
实验的结果表明,在正确控制三位五通换向阀的工作状态下,可实现气缸的正、反向运动。
7. 实验遇到的问题与改进措施实验过程中,我们遇到了操作三位五通换向阀的困难,导致气缸无法正常运动。
经过查阅相关资料和请教助教,我们成功解决了这一问题,并进行了实验。
为了进一步提高实验效果,我们可以在实验中加入更多的气动元件和控制方式,以探索更多的应用场景和解决方案。
8. 附录实验所用仪器设备的相关说明和技术参数的表格。
东莞市塘厦领航者自动化设备厂公司官网:/气动系统基本回路讲解及举例1、换向控制回路采用二位五通阀的换向控制回路,使用双电控阀具有记忆功能,电磁阀失电时,气缸仍能保持在原有的工作状态问:单电控失电会怎样?采用三位五通阀的换向控制回路三种三位机能东莞市塘厦领航者自动化设备厂公司官网:/中位封闭式中位加压式中位排气式东莞市塘厦领航者自动化设备厂公司官网:/2、压力(力)控制回路气源压力控制主要是指使空压机的输出压力保持在储气罐所允许的额定压力以下为保持稳定的性能,应提供给系统一种稳定的工作压力,该压力设定是通过三联件(F.R.L)来实现的东莞市塘厦领航者自动化设备厂公司官网:/双压驱动回路:在气动系统中,有时需要提供两种不同的压力,来驱动双作用气缸在不同方向上的运动,采用减压阀的双压驱动回路电磁铁得电,气缸以高压伸出东莞市塘厦领航者自动化设备厂公司官网:/电磁铁失电,由减压阀控制气缸以较低压力返回多级压力控制回路在一些场合,需要根据工件重量的不同,设定低、中、高三种平衡压力利用电气比例阀进行压力无级控制,电气比例阀的入口应该安装微雾分离器东莞市塘厦领航者自动化设备厂公司官网:/3、位置控制回路利用双位气缸,可以实现多达三个定位点的位置控制东莞市塘厦领航者自动化设备厂公司官网:/利用带锁气缸,可以实现中间定位控制二位三通电磁阀SD3失电,带锁气缸锁紧制动;得电,制动解除4、速度控制回路利用快速排气阀,减少排气背压,实现高速驱动东莞市塘厦领航者自动化设备厂公司官网:/5、同步控制回路东莞市塘厦领航者自动化设备厂公司官网:/•利用节流阀使流入和流出执行机构的流量保持一致•气缸的活塞杆通过齿轮齿条机构连接起来,实现同步动作•气缸的活塞杆通过气液转换缸实现同步动作东莞市塘厦领航者自动化设备厂公司官网:/6、安全控制回路防止起动飞出回路•在气缸起动前使其排气侧产生背压•采用入口节流调速东莞市塘厦领航者自动化设备厂公司官网:/终端瞬时加压回路•采用SSC阀来实现•同样可以实现防止活塞杆高速伸出东莞市塘厦领航者自动化设备厂公司官网:/落下防止回路•采用制动气缸东莞市塘厦领航者自动化设备厂公司官网:/•采用先导式单向阀。
一、基本换向回路
1.单作用气缸控制回路
气缸活塞杆运动的一个方向靠压缩空气驱动,另一个方向靠外力(重力、弹簧力等)驱动。
回路简单,常用二位三通阀控制。
(1)二位三通阀
(2)二位二通阀
2.双作用气缸控制回路
气缸活塞杆伸出和缩回两个方向均靠压缩空气驱动,常用二位五通阀(或三位五通阀)控制。
(1)单控
(2)双控
换向电信号可为短脉冲信号,电磁铁发热少,具有断电保持功能。
(3)三位五通阀换向
(a )中间封闭 (b )中间排气
(a )中间封闭:活塞可在任意位置停留,但定位精度不高。
(b )中间排气:中间位置时,活塞处于自由状态,可由其他机构驱动。
(c )中间加压(单活塞杆) (d )中间加压(双活塞杆)
(c )中间加压(单活塞缸):采用一个减压阀调节无杆腔的压力,使得在活塞双向加压时,保持力平衡。
(d )中间加压(双活塞杆):活塞两端受力面积相等,故无需压力控制阀即可保持力的平衡。
补充:如果没有合适的三位阀,想让气缸在任意位置停留,用以下方法试试。
Y3
(4)电磁远程控制
可用于有防爆等要求的特殊场合。
Y1
(5)双气控阀控制
主控阀为双气控二位五通阀,用两个二位三通阀作为先导阀,可进行远程控制。
(6)带有自保回路的气动控制回路
手动1手动2
两个手动二位二通阀分别控制气缸运动的两个方向,如果将手动阀1按下,则二位五通阀上腔进气切换,气缸左腔进气,右腔排气,同时自保持回路abc也从阀的上腔进气,以防止中途手动阀1失灵,造成误动作。
手动阀1复位,手动阀2按下,主控阀复位,气缸缩回,开始下一循环。