当前位置:文档之家› 恒等式证明

恒等式证明

恒等式证明
恒等式证明

初一数学竞赛系列讲座(7)

有关恒等式的证明

一、知识要点

恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。

二、例题精讲

例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n-1)a n

=1-(1-a 1)(1-a 2)…(1-a n-1)(1-a n )

分析:要证等式成立,只要证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)(1-a 2)…(1-a n-1)(1-a n )

证明:1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n

=(1-a 1)[ 1- a 2- (1-a 2)a 3- (1-a 2)(1-a 3)a 4 -…- (1-a 2)(1-a 3)…(1-a n-1)a n ]

=(1-a 1) (1-a 2)[ 1- a 3- (1-a 3)a 4- (1-a 3)(1-a 4)a 5 -…- (1-a 3)(1-a 4)…(1-a n-1)a n ]

=(1-a 1) (1-a 2) (1-a 3)[ 1- a 4- (1-a 4)a 5- (1-a 4)(1-a 5)a 6 -…- (1-a 4)(1-a 5)…(1-a n-1)a n ]

=……

=(1-a 1)(1-a 2)…(1-a n-1)(1-a n )

∴ 原等式成立

例2 证明恒等式

()()()()()()

11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ (第二十届全俄数学奥林匹克九年级试题)

证明

评注:裂项是恒等变形中常用的一种方法

()()()()()()11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=???? ??+-++???? ??+-+???? ??+-=???? ??+-++???? ??+-+???? ??+-=++++++

例3 若abc=1,求证11

11=++++++++c ca c b bc b a ab a 分析:所要求证的等式的左边是三个分母差异很大的式子,因而变形比较困难。可以充分利用abc=1,将它们化成同分母。在

1++a ab a 的分子、分母上同乘c ,化成1++=++c ca ca c ac abc ac ,将1

++b bc b 的分母中的“1”换成abc 得 ca

c abc b bc b ++=++11,然后再相加即可得证。 证明:∵abc=1 ∴

1

11++++++++c ca c b bc b a ab a =c ac abc ac +++1

+++++c ca c abc b bc b =1++c ca ca +ca c ++111

+++c ca c =11++++c ca c ca =1 于是命题得证。

评注:“1”的代换是恒等变形中常用的技巧。

例4 已知bc=ad ,求证:ab(c 2-d 2)=(a 2-b 2)cd

分析:将bc=ad 化成比例式

d

c b a =,然后利用比例的性质来解题。 证明:∵bc=a

d ∴d c d c d d c b b a d d c b b a d c b a =-=-+=+∴=,,, 将此三式左、右两边分别相乘得

()()()()b

d a d c d c d b c b a b a 22-+=-+ ∴ab(c 2-d 2)=(a 2-b 2)cd

评注:条件恒等式的证明常从已知条件出发推出结论。

例5 已知x=by+cz ,y=cz+ax ,z=ax+by ,且x+y+z ≠0.证明:1111=+++++c

c b b a a 分析:所证明的式子中不含x 、y 、z ,因而可以将已知条件中的三个等式中的x 、y 、z 看

成常数,把三个式子联合起来组成一个关于a 、b 、c 的方程,然后求出a 、b 、c 。 再代入等式的左边证明。

证明:解方程组??

???+=+=+=(3) (2)

(1) by ax z ax cz y cz by x (2)+(3)-(1) 得y+z-x=2ax ,所以x

z y x a x x z y a 21 2++=+-+=则 所以 z

y x x z y a a ++-+=+1 同理可得,

z y x y z x b b ++-+=+1,z y x z y x c c ++-+=+1 所以 1111=++++=+++++z

y x z y x c c b b a a 评注:将含有字母的等式视为方程,是方程思想的应用。

例6 数x 、y 、z 满足关系式1=+++++y

x z x z y z y x 证明:02

22=+++++y

x z x z y z y x (第十六届全俄数学奥林匹克十年级试题) 证明:将已知等式分别乘以x 、y 、z 得

x y

x xz x z xy z y x =+++++2 ① y y

x yz x z y z y xy =+++++2 ② z y

x z x z yz z y xz =+++++2

③ ①+②+③ 得

z

y x y x yz y x xz x z yz x z xy z y xz z y xy y x z x z y z y x ++=+++++++++++++++++)()()(222

所以z y x z y x y

x z x z y z y x ++=++++++++2

22 即:02

22=+++++y

x z x z y z y x

例7 已知a+b+c=a 2+b 2+c 2=2,求证:a(1-a)2=b(1-b)2=c(1-c)2

分析:求证的等式中的各式,恰好是多项式x(1-x)2中的x 分别取a 、b 、c 时的值。

因此,本题可转化为证明当x 分别取a 、b 、c 时,x(1-x)2的值不变。由于x(1-x)2

是关于x 的三次多项式,且注意到题设条件,所以我们构造三次式(x-a)(x-b)(x-c),建立它与x(1-x)2之间的某种关系。

证明:∵(a+b+c)2= a 2+b 2+c 2+2ab+2bc+2ca

又∵a+b+c=a 2+b 2+c 2=2

∴4=2+2ab+2bc+2ca ,∴ab+bc+ca=1

∴(x-a)(x-b)(x-c)=x 3-(a+b+c)x 2+(ab+bc+ca )x-abc

= x 3-2x 2+x-abc

即x(1-x)2=(x-a)(x-b)(x-c)+ abc

由此可见,当x 分别取a 、b 、c 时,x(1-x)2的值都是abc

∴ a(1-a)2=b(1-b)2=c (1-c)2

评注:本题的证明采用了构造法,它构造了三次式(x-a)(x-b)(x-c),然后建立它与x(1-x)2

之间的关系,再通过赋值来证明。

例8设c

b a

c b a ++=++1111,证明 (1) a 、b 、c 三数中必有两个数之和为零; (2) 对任何奇数n ,有

n n n n n n c b a c b a ++=++1111 分析:要求a 、b 、c 三数中必有两个数之和为零,即要证(a+b)(b+c)(c+a)=0,故可对已知

条件进行变形,使它出现(a+b)、(b+c)、(c+a)这些因式。

证明:(1)由c

b a

c b a ++=++1111得 ()()()

001111=++-++++=++-++c b a abc abc c b a ab ca bc c b a c b a ,即 从已知知a 、b 、c ≠0,所以abc ≠0,且a+b+c ≠0,

则 (bc+ca+ab)(a+b+c)-abc=0

∵(bc+ca+ab)(a+b+c)-abc=a (bc+ca+ab)+ (b+c) (bc+ca+ab) –abc

= (b+c) (bc+ca+ab)+ abc+a 2c+a 2b –abc

=(b+c) (bc+ca+ab)+ a 2 (b+c)

=(b+c) (a 2+bc+ca+ab)

=(a+b)(b+c)(c+a)

∴(a+b)(b+c)(c+a)=0,这就是说,在a+b 、b+c 、c+a 中至少有一个为零,即a 、b 、

c 三数中必有两个数之和为零。

(2) 由(1),不妨设a+b=0,即b= -a ,因为n 为奇数

∴()n n n n n n n c

c a a c b a 1111111=+-+=++ 又()n n n n n n n c c

a a c

b a 111=+-+=++ ∴

n n n n n n c b a c b a ++=++1111 评注:实质(bc+ca+ab)(a+b+c)-abc 是关于a 、b 、c 的一个轮换对称式。令a= -b ,代入

得 (bc+ca+ab)(a+b+c)-abc=(bc-bc-b 2)(-b+b+c)-(-b)bc= -b 2c+ b 2c=0

这就是说a+b 是(bc+ca+ab)(a+b+c)-abc 的一个因式,由轮换对称式的性质知, b+c 、a +c 也是(bc+ca+ab)(a+b+c)-abc 的一个因式,因此有

(bc+ca+ab)(a+b+c)-abc=k (a+b)(b+c)(c+a)

再令a=b=c=1代入,求出k=1,所以(bc+ca+ab)(a+b+c)-abc= (a+b)(b+c)(c+a)

例9 已知ad-bc=1,求证:a 2+b 2+c 2+d 2+ab+cd ≠1

分析:所要证明的式子是一个不等式,左边的式子又较复杂,直接从已知条件出发证明不

是很容易,因而可以考虑用反证法来证明。

证明:假设原式不成立,即a 2+b 2+c 2+d 2+ab+cd =1

∵ad-bc=1,∴a 2+b 2+c 2+d 2+ab+cd = ad-bc

∴a 2+b 2+c 2+d 2+ab+cd+bc-ad=0,即(a+b)2+(b+c)2+(c+d)2+(d-a)2=0

∴a+b=b+c=c+d=d-a=0,∴a=-b,b=-c,c=-d,d=a

于是a=-a,即a=0, ∴b=c=d=0,这与ad-bc=1矛盾。

∴原式成立,即a 2+b 2+c 2+d 2+ab+cd ≠1

评注:正难则反。碰到正面下手较难的问题,常考虑用反证法来证明。

例10证明:1

132113211211+-=++++++++++n n n 分析:等式左边的分子很简单,都是1,但是分母各不相同,又很复杂,因而给变形带来

很大困难。通过观察发现,分母很有规律,是连续自然数的和。因此我们先来研究1+2+…+n ,设S=1+2+…+n ,则S= n + (n -1)+…+2+1,所以2S=n (n+1),

∴S=()21+n n ,即1+2+…+n=()2

1+n n , 从而()??? ??+-=+=+++111212

211

n n n n n 由此,左边的每一个分数均可以分解成两项,代入变形后证明。

证明:设S=1+2+…+n ,则S= n + (n -1)+…+2+1,所以2S=n (n+1),

∴S=()21+n n ,即1+2+…+n=()2

1+n n , ∴()??? ??+-=+=+++111212

211

n n n n n ∴等式左边=??

? ??+-++??? ??-+??? ??-11124131231212n n =()11121211212+-=+-?=??

? ??+-n n n n n =右边 ∴等式成立

评注:1、要掌握数学中一般与特殊的关系,本题通过研究1+2+…+n ,得出

??

? ??+-=+++1112211n n n 的一般规律,然后将等式左边的各个分数分解,达到证明的目的。

2、结论1+2+…+n=()2

1+n n 在解题中经常使用,应该记住。 3、本题在求S=1+2+…+n 时,用的是倒序相加法,在证明等式时用的是裂项相消法,

这两种方法是求和问题解决的常用方法。

三、巩固练习

选择题

1、若a 、b 是有理数,且a 2001+b 2001=0,则

A 、a=b=0

B 、a-b=0

C 、a+b=0

D 、ab=0

2、若abc 满足a 2+b 2+c 2=9,则代数式(a-b)2+(b-c)2+(c-a)2的最大值是( )

A 、27

B 、18

C 、15

D 、12

3、已知??

???+=+=+=2004200120032001

20022001x c x b x a ,则ca bc ab c b a ---++222的值是( )

A 、0

B 、1

C 、2

D 、3

4、如果11111=++=++z

y x z y x ,则下列说法正确的是( ) A 、x 、y 、z 中至少有一个为1 B 、x 、y 、z 都等于1

C 、x 、y 、z 都不等于1

D 、以上说法都不对

5、已知=+-=-+-+=-+-+=++-+q q q q b

a c c

b a a

c b b a c c b a a c b 23 ,则( ) A 、1 B 、1-q C 、1-q 3 D 、1-2q 2

6、已知a+b+c=10,a 2+b 2+c 2=38,a 3+b 3+c 3=160,则abc 的值是( )

A 、24

B 、30

C 、36

D 、42

填空题

7、已知()()()=+≠--=-a

c b a a c b a c b ,则且0 412 8、已知a-b=2,b-c= -3,c-d=5,则(a-c) (b-d) ÷ (a-d)=

9、已知abc ≠0,a+b+c=0,则211111b 1a +??? ??++??? ??++??? ?

?+b a c a c b c 的值为 10、计算??

? ??-??? ??-??? ??-??? ??

-22221011911311211 = 11、已知a 、b 、c 、d 均不为0,当a ≠b 且

a d d c c

b b a ===时,=-+++++a d

c b

d c b a 12、已知a=102

18141211+++++ ,则a-1的倒数为 解答题

13、求证:2(a-b) (a-c)+2(b-c) (b-a)+2(c-a) (c-b)= (b-c)2+(c-a)2+(a-b)2

14、求证:(a 2+b 2+c 2) (m 2+n 2+k 2) – (am+bn+ck)2=(an-bm)2+(bk-cn)2+(cm-ak)2

(拉格朗日恒等式)

15、若14(a 2+b 2+c 2)=(a+2b+3c)2,求证:a ∶b ∶c=1∶2∶3

16、若xy

z c zx y b yz x a 222=-=-,求证:ax+by+cz=(x+y+z) (a+b+c) 17、已知a 、b 、c 、d 满足a+b=c+d ,a 3+b 3=c 3+d 3, 求证:a 2001+b 2001=c 2001+d 2001

18、已知a+b+c=abc ,求证:a(1-b 2) (1-c 2)+b(1-a 2) (1-c 2)+c(1-a 2) (1-b 2)=4abc

19、已知a 3+b 3+c 3=(a+b+c)3,求证a 2n+1+b 2n+1+c 2n+1=(a+b+c) 2n+1,其中n 为自然数。

20、设a 、b 、c 都是正数,且3=++a c c b b a ,求证:a=b=c

证明组合恒等式的方法与技巧

证明组合恒等式的方法与技巧 摘要本文是以高中二项式定理和排列组合知识为理论基础,对几个常见重要的例题作分析,总结组合恒等式常见的证明方法与技巧。对组合恒等式的证明方法本文主要讲了组合公式法,组合数性质法,二项式定理法,比较系数法,数列求和法,数学归纳法,组合分析法。 关键字组合,组合数,组合恒等式,二项式定理 Proof Methods and Skills of Combinatorial Identity ABSTRACT This thesis primarily analyses some common but significant examples on the basis of binomial theorem and permutation and combination knowledge of senior middle school to summarize the common demonstrating methods and technique of combinatorial identity. For combinatorial identity, here it mainly introduces the methods of combination formula, unitized construction, mathematical induction ,and so on . KEY WORDS combination,combinatorial identity,binomial theorem 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排 列组合、二项式定理为基础。组合恒等式的证明有一定的难度和特殊的

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左:

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2 α+cos 2 α=sec 2 α-tan 2 α=csc 2 α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α,1=tan450 =sin900 =cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。 5.化参数 用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。 例5 已知acos 2 α+bsin 2 α=mcos 2 β,asin 2 α+bcos 2 α=nsin 2 β,mtan 2 α=ntan 2 β(β≠n π) 求证:(a+b)(m+n)=2mn 6.化比 一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。 例6 已知(1+ cos α)(1- cos β)=1- 2 ( ≠0,1)。求证:tan 2 2α= -+11tan 22 β 思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中 -+11为向导,应用合比定理即可达到论证之目的。

(完整版)排列组合公式及恒等式推导、证明(word版)

排列组合公式及恒等式推导、证明(word 版) 说明:因公式编辑需特定的公式编辑插件,不管是word 还是pps 附带公式编辑经常是出错用不了。下载此word 版的,记得下载MathType 公式编辑器哦,否则乱码一堆。如果想偷懒可下截同名的截图版。另外,还有PPt 课件(包含了排列组合的精典解题方法和精典试题)供学友们下载。 一、排列数公式: !(1)(2)(1)()!m n n A n n n n m n m =---+= -L (1)(1)321n n A n n n =--创 L 推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数原理分步进行: 第一步,排第一位: 有 n 种选法; 第二步,排第二位: 有(n-1) 种选法; 第三步,排第三位: 有(n-2) 种选法; ┋ 第m 步,排第m 位: 有(n-m+1)种选法; ┋ 最后一步,排最后一位:有 1 种选法。 根据分步乘法原理,得出上述公式。 二、组合数公式: (1)(2)(1)! !!()!m m n n m m A n n n n m n C A m m n m ---+=== -L 1n n C =

推导:把n 个不同的元素任选m 个不排序,按计数原理分步进行: 第一步,取第一个: 有 n 种取法; 第二步,取第二个: 有(n-1) 种取法; 第三步,取第三个: 有(n-2) 种取法; ┋ 第m 步,取第m 个: 有(n-m+1)种取法; ┋ 最后一步,取最后一个:有 1 种取法。 上述各步的取法相乘是排序的方法数,由于选m 个,就有m!种排排法,选n 个就有n!种排法。故取m 个的取法应当除以m!,取n 个的取法应当除以n!。遂得出上述公式。 证明:利用排列和组合之间的关系以及排列的公式来推导证明。 将部分排列问题m n A 分解为两个步骤: 第一步,就是从n 个球中抽m 个出来,先不排序,此即定义的组合数问题m n C ; 第二步,则是把这m 个被抽出来的球全部排序,即全排列m m A 。 根据乘法原理,m m m n n m A C A = 即: (1)(2)(1)!!!()!m m n n m m A n n n n m n C A m m n m ---+=== -L

三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , ,

…… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2 (2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2

组合恒等式

第十讲组合恒等式 、知识概要 数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础, 并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。同时,此类问题的解决也有着自身特殊的解题技巧。因此,在各类数学竞赛中经常被采用。 1,基本的组合恒等式 简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。事实上, 许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。课本中的组合恒等式有: ①c n 丄 ② cn i=c F +cn ③ kC: = nC n;; zTx m m r __m ④ C n C r —C n C n_m ; ⑤ c;?+cn+c2+iii+C n n=2n; ⑥ C -cn +Cn2+|H+(-1)n Cn n =0. 2, 解题中常用方法 运用基本组合恒等式进行变换; 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; 运用数学归纳法; 变换求和指标; 运用赋值法进行证明; 建立递推公式,由初始条件及递推关系进行计算和证明; 构造合理的模型。

二、运用举例 例 1,求证:C : +2C 2 +3C 3+i|| + nc n = n 左边=nC ;丄+ nC :丄+ nC ;」中川中nC ;: " n 例2,求和式2 k 2 C n k 的值。 k 1 基本思路:将k 2 c nk 改写为k kCn ,先将kCn 用恒等式3提取公因式n ,然后再将kC ::变形 k 1 k 1 k 1 成为(k -1 )C n 4 +C n 4,而(k -1 )C n 4又可以继续运用上述恒等变形,这样就使得各项系数 中均不含有变动指标 k 了。 n n n k nC :;=迄 k c n ;; =n E (k -1 +1)C :; k 经 k 壬 k=t n =n S [(k -1)C :; +c n :;r n ^ [(n -1 心 km = n (n -1 严 + n2n4 = n (n +1)2:/ 2004 例 3,求艺(—1^2005 kz0 2004 解:s( -1) k C 2005 = 1 -c 爲5 + C 爲5 -川 + (-1 )2004 C 誥 kzQ R-(C 2004 +C 2004 +C 2004)-川+(T )(c 2003 +c 200: n -1 例 4,设 m, n 忘 N 十,求证:送(m +k )(m +k +1 ) = - (3m 2 + 3m n + n 2 T 卜 心 3 证明:根据前面提到的基本的组合恒等式第三条, 可得: n 解:S k 'c nk kA n -Z k kC n ; k i = (n —1)C L k =2 n T n 鳥+送H 卜-1正C 鳥+:送C k=1 」 k=2 n nJ k=i 的值。

代数恒等式的证明练习

1. 求证: ①(a+b+c)2+(a+b-c)2-(a-b-c)2-(a-b-c)2=8ab ②(x+y )4+x 4+y 4=2(x 2+xy+y 2)2 ③(x-2y)x 3-(y-2x)y 3=(x+y)(x-y)3 ④3 n+2+5 n+2―3 n ―5 n =24(5 n +3 n-1) ⑤a 5n +a n +1=(a 3 n -a 2 n +1)(a 2 n +a n +1) 2.己知:a 2+b 2=2ab 求证:a=b 3.己知:a+b+c=0 求证:①a 3+a 2c+b 2c+b 3=abc ②a 4+b 4+c 4=2a 2b 2+2b 2c 2+2c 2a 2 4.己知:a 2=a+1 求证:a 5=5a+3 5.己知:x +y -z=0 求证: x 3+8y 3=z 3-6xyz 6.己知:a 2+b 2+c 2=ab+ac+bc 求证:a=b=c 7.己知:a ∶b=b ∶c 求证:(a+b+c )2+a 2+b 2+c 2=2(a+b+c)(a+c) 8.己知:abc ≠0,ab+bc=2ac 求证: c b b a 1111-=- 9.己知:a c z c b y b a x -=-=- 求证:x+y+z=0 10.求证:(2x -3)(2x+1)(x 2-1)+1是一个完全平方式 11己知:ax 3+bx 2+cx+d 能被x 2+p 整除 求证:ad=bc

练习20 1.④左边=5 n(5 2-1)+3 n-1(33-3)= 24(5 n+3 n-1)注意右边有3n-1 2.左边-右边=(a-b)2 3.②左边-右边=(a2+b2-c2)2-4a2b2=…… 4.∵a5=a2a2a,用a2=a+1代入 5.用z=x+2y代入右边 6.用已知的(左-右)×2 7.用b2=ac分别代入左边,右边化为同一个代数式 8.在已知的等式两边都除以abc 9.设三个比的比值为k, 10.(2x2-x-2)2 11. 用待定系数法

算两次在证明组合恒等式中的应用

“算两次”思想在证明组合恒等式中的应用 1.m n m n n C C -=,取走和剩下的一一对应; 2. 2n k n n k C ==∑ 我们可令等式122(1)1n n n n n n x C x C x C x +=++++ 中的x 等于1,得到该式。 另外,我们可考察集合1{,,}n b b 的子集的个数: 一方面,采取加法原理,根据子集中元素个数分类: n k n k C =∑; 另一方面,采取乘法原理,设其子集为S ,我们逐一考察,1,2,,i b i n = 是否在S 内,每个元素都有两种可能,考察完毕,子集S 确定,或者我没把子集看成一个排列,如 0,0,,0n ?? ;{}11 1,0,0,,0n b -? 。共2n 。 所以得证。 3.11m m m n n n C C C -+=+,从1{,,,}n a b b 取m 个有1m n C +种:一类含a :1 m n C -,一类不含a :m n C 。 推广①: 11m m m n n n A A mA -+=+ 从1{,,,}n a b b 取m 个排成一排1m n A +:一类含a :1m n mA -,一类不含a :m n A 。 推广②:11121n n n n n n n m m n m n m n n n C C C C C C +++++-+-+=+++++ 解释:有m+n+1不同小球,其中黑球m+1个,白球n 个。从中选取n+1个小球, 选法共:11n n m C +++种, 考虑另外一种算法:若有黑1则在剩余小球中选n 个,即n n m C +,若无黑1,则考虑是否有黑2,若有则从剩余n+m-1个小球中取n 个,即1n n m C +-,依次考虑下去,到考虑是否有黑m ,若有,则在剩余n 个小球取n 个,即1n n C +,若无黑m 。则必有黑m+1,最后剩下的m 个白球全取。总共121n n n n n m n m n m n n n C C C C C ++-+-++++++ 。所以得证。

三角函数恒等式证明的基本方法

三角函数恒等式证明的基本方法 三角函数恒等式是指对定义域内的任何一个自变量x 都成立的等式;三角函数恒等式的证明问题是指证明给定的三角函数等式对定义域内的任何一个自变量x 都成立的数学问题。这类问题主要包括:①三角函数等式一边较繁杂,一边较简单;②三角函数等式的两边都较繁杂两种类型。那么在实际解答三角函数恒等式的证明问题时,到底应该怎样展开思路,它的基本方法如何呢?下面通过典型例题的解析来回答这个问题。 【典例1】解答下列问题: 1、证明下列三角函数恒等式: (1)4222sin sin cos cos 1αααα++=; (2) 22(cos 1)sin 22cos ααα-+=-; (3)若sin α.cos α<0,sin α.tan α<0, =±2tan 2 α 。 【解析】 【知识点】①同角三角函数的基本关系;②二次根式的定义与性质;③分式的定义与性质。 【解题思路】(1)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(2)对左边运用同角三角函数的基本关系,通过运算就可得到右边,从而证明恒等式;(3)对左边运用分式的性质,同角三角函数的基本关系和二次根式的性质,通过运算就

可得到右边,从而证明恒等式。 【详细解答】(1)Q 左边=sin 2α( sin 2α+ cos 2α)+ cos 2α= sin 2α+ cos 2α=1 =右边,∴4222sin sin cos cos 1αααα++=;(2)Q 左边= cos 2α-2 cos α+1+ sin 2α =2-2 cos α=右边,∴22(cos 1)sin 22cos ααα-+=-;(3) Q sin α.cos α<0,sin α.tan α<0,∴α是第二象限的角,?2 α 是第一象限或第三象限的角,①当 2 α 是第一象限的角时,左边 |1sin |2|cos | 2α α+- |1sin |2|cos | 2 α α-=1sin 1sin 2 2cos 2 α α α +-+=2tan 2α;②当2 α是第一象限的角时,左边 |1sin |2|cos |2α α+-|1sin | 2|cos | 2α α- = 1sin 1sin 2 2cos 2 α α α --+-=-2tan 2α;?左边=±2tan 2 α=右边,∴若若 sin α.cos α<0,sin α.tan α<0 ±2tan 2α。 2、求证:22sin()sin() sin cos αβαβαβ+-=1-22tan tan βα ; 【解析】

恒等式的证明

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz

组合恒等式的证明方法与技巧

证明组合恒等式的方法与技巧 前言 组合恒等式在数学及其应用中占有不可忽视的地位,它是以高中排前言列组合、二项式定理为基础.组合恒等式的证明有一定的难度和特殊的技巧,且灵活性很强,要求学生掌握这部分知识,不但要学好有关的基础知识,基本概念和基本技能,而且还要适当诱导学生拓宽思路、发挥才智,培养解决问题方法多样化的思想.下面就以例题讲解的形式,把证明组合恒等式的常见方法与技巧一一列举出来. 1. 利用组合公式证明 组合公式:m n C = n ! !n m m (-)! 例1. 求证:m m n C =n 11 m n C -- 分析:这是组合恒等式的一个基本性质,等式两边都只是一个简单的组合数.由此,我们只要把组合公式代入,经过简化比较,等号两边相等即可. 证:∵ m m n C = m n ! !n m m ?(-)! 11 m n C --= n n ! 1!n m m ?(-1)(-)(-)!= n n !m 1!n m m m ???(-1)(-)(-)!= m n ! !n m m ?(-)! ∴ m m n C =n --11 m n C . 技巧:利用组合公式证明时,只须将等式中的组合数用公式代入,经过化简比较即可,此方法思路清晰,对处理比较简单的等式证明很有效,但运算量比较大,如遇到比较复杂一点的组合恒等式,此方法而不可取. 2. 利用组合数性质证明 组合数的基本性质:(1)m n C =n m n C - (2)1 m n C +=m n C +1 m n C - (3)k ?k n C =n ?k 1 1n C -- (4)++...+=0 1 2 n 2n n n n n C C C C -+-+...+(-1)=00 1 2 3 n n n n n n n C C C C C (5)

排列组合公式及恒等式推导、证明(word版)

排列组合公式及恒等式推导、证明(WOrd 版) 说明:因公式编辑需特定的公式编辑插件,不管是 word 还是PPS 附带公式编辑经常是 出错用不了。下载此 word 版的,记得下载 MathTyPe 公式编辑器哦,否则乱码一堆。如果 想偷懒可下截同名的截图版。另外,还有 PPt 课件(包含了排列组合的精典解题方法和精 典试题)供学友们下载。 一、排列数公式: An l =n (n -1)(n-1) 3创2 1 推导:把n 个不同的元素任选m 个排次序或n 个全排序,按计数 原理分步进行: 第步,排第位: 有 n 种选法; 第二步,排第二位: 有(n-1)种选法; 第三步,排第三位: 有(n-2)种选法; 第m 步,排第m 位: 有(n-m+1)种选法; I I I I 最后一步,排最后一位:有 1 种选法。 根据分步乘法原理,得出上述公式。 二、组合数公式: C m =A m = n(n- 1)(n- 2)…(n - m+1)= n! n A r m m! m!( n-m)! n JI C n = 1 A m =n(n -1)(n - 2) (n - m +1) = n! (n - m)!

推导:把n个不同的元素任选m个不排序,按计数原理分步进行:第步,取第个:有n种取法; 第二步,取第二个:有(n-1)种取法; 第三步,取第三个: I I 有(n-2) 种取法; I I 第m步,取第m个:I I 有(n-m+1) 种取法; I I 最后一步,取最后一个:有1 种取法。 上述各步的取法相乘是排序的方法数,由于选m个,就有m!种排排法,选n个就有n!种排法。故取m个的取法应当除以m!,取n 个的取法应当除以n!。遂得出上述公式。 证明:利用排列和组合之间的关系以及排列的公式来推导证明 将部分排列问题A n n分解为两个步骤: 第一步,就是从n个球中抽m个出来,先不排序,此即定义的组合数问题C n n; 第二步,则是把这m个被抽出来的球全部排序,即全排列A m。 根据乘法原理,A n n=C n n A m 即: C m A Tl n(n -1)0-2厂(n-m+1) n! A Tl m!m!(n- m)! 组合公式也适用于全组合的情况,即求C(n, n)的问题。根据 m!

组合恒等式证明的几种方法

1 引言 组合恒等式是组合数学的一个重要部分.它在数学的各个分支中都有广泛应用,而且它的证明方法多种多样,具有很强的灵活性.下面通过几个实例具体讲述一下,几种证法在组合恒等式中的运用. 2 代数法 通常利用组合恒等式的一些性质进行计算或化简,使得等式两边相等, 或者利用二项式定理∑ 0==+n r r n r r n n y x C )y x (在展开式中令x 和y 为某个特定的 值,也可以先对二项式定理利用幂级数的微商或积分后再代值,得出所需要的 恒等式. 例1 111 22m m m m n n n n C C C C n m +-++++=>, . 分析:这个等式两边都很简单,我们可以利用一些常用的组合恒等式去求证. 证明:1 +2+11+=2++m n m n m n m n C C C C m n m n m n m n C m n m C ,C m m n C 1+=1+= 11 + )m n m m m n (C m n 2+1++1+∴左边= 2()11m n n m m C m n m +++++-= 2(2)(1)()(1)(1) m n n m n m m m C m n m +++-++=++- 232 () (1)(1) (2)(1)() (1)(1) m n m n n n C m n m n n C m n m ++=++-++=++- 右边=()1 2(2)!(2)(1)! (1)!1!(1)(1)()!! m n n n n n C n m m m n m n m m +++++= =+-+++--

(1)(2)(1)(1)m n n n C n m m ++=+-+ 左边=右边 即证. 例2 求证:n n n n n n n n n n C C C C 20112211233333=+++++--- . 分析:看到上式,很容易想到二项式的展开式,尝试利用二项式定理去做. 证明: 由二项式定理建立恒等式, 112221 1(3)3333n n n n n n n n n n n C x C x C x x ----+=+++++ 令1x =,即得 2112214233331 n n n n n n n n n C C C ---==+++++ 即证. 例3(1)设n 是大于2的整数,则 0)1(32321=-+++-n n n n n nC C C C . (2)n 为正整数,则 )12(1 11131211131-+=++++++n n n n n n C n C C . 分析:观察上面两式的系数,很容易想到它们和微分积分有关,我们可以尝试利用求积分或微分的方法去解决这道题目. 证明:(1)0122(1)n n n n n n n x C C x C x C x +=++++ 等式两边对x 求导, 112 1 (1)2n n n n n n n x C C x n C x --+=++ + 令0x =得, 1231023(1)n n n n n n C C C nC -=-+++- 即证. (2)由二项式定理有,

恒等式证明

初一数学竞赛系列讲座(7) 有关恒等式的证明 一、知识要点 恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。 二、例题精讲 例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n-1)a n =1-(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 分析:要证等式成立,只要证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 证明:1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)[ 1- a 2- (1-a 2)a 3- (1-a 2)(1-a 3)a 4 -…- (1-a 2)(1-a 3)…(1-a n-1)a n ] =(1-a 1) (1-a 2)[ 1- a 3- (1-a 3)a 4- (1-a 3)(1-a 4)a 5 -…- (1-a 3)(1-a 4)…(1-a n-1)a n ] =(1-a 1) (1-a 2) (1-a 3)[ 1- a 4- (1-a 4)a 5- (1-a 4)(1-a 5)a 6 -…- (1-a 4)(1-a 5)…(1-a n-1)a n ] =…… =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) ∴ 原等式成立 例2 证明恒等式 ()()()()()() 11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ (第二十届全俄数学奥林匹克九年级试题) 证明 评注:裂项是恒等变形中常用的一种方法 ()()()()()()11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=???? ??+-++???? ??+-+???? ??+-=???? ??+-++???? ??+-+???? ??+-=++++++

数论中埃米特恒等式证明

数论中埃米特恒等式证明 证明下列命题: (1)*,N n R x ∈∈+,且1至x 之间的整数中,有][n x 个是n 的倍数。 (2)若,!||n p α则 +++==][][][)!(32p n p n p n n p α。 (3)x 为实数,n 为正整数,求证:(埃米特恒等式)][]1[]2[]1[][nx n n x n x n x x =-++++++ + 。 证明:(1)因为1][][+<≤n x n x n x ,即n n x x n n x ?+<≤?)1]([][ 故*,N n R x ∈∈+,且1至x 之间的整数中,有][n x 个是n 的倍数。 (2)由于p 是质数,因此!n 含p 的方次数)!(n p 一定是1,2,3,n n ,1,- 各数中含p 的方次数的总和。由(1)知1,2,3,n n ,1,- 中有][p n 个p 倍数,有][2p n 个2p 的倍数,┈,所以 +++=][][][)!(32p n p n p n n p (3)不妨设0>x ,①当][]1[x n n x =-+时,即1}{011}{<

高中数学:组合恒等式证明方法

高中数学:组合恒等式证明方法 二项式系数可以组成许多有趣的组合恒等式,这些等式可以通过简捷的组合分析得到证明。 一、公式法 例1、求证:。 证明:由,,…, ,, ,整理即 。 小结:运用基本组合数公式进行转换,如: ,等是处理组合恒等式的常用方法,同时,在上述恒等式中,取n=1,2,…可以推出一系列新等式,如(1)由,得1+2+…+,(2)由得 等,可见本题的结论具有示范作用。

二、二项式定理法 例2、求证:。 证明:因为,令,得 ,故 。 小结:对二项式定理自身作乘法、赋值和求积等运算获得一些恒等式,根据二项展开式的特性,赋予x以不同的值,常能使问题迎刃而解。 三、倒序求和法 例3、求证:。 证明:令,故, 。 小结:恒等式可逆用二项式定理获求。 四、组合分析法 例4、求证:。

证明:构造等式左边的等价数学模型:m名男生n名女生,从中取n人参加数学竞赛可分为n+1类,男生0人、1人、…、n人,女生对应分别为n、n-1 人、…,0人,共有选法为种,又由组合数定义知所求选法为种,命题成立。 小结:对等式两端所代表的组合含义进行分析,说明等式两端恰好是对同一组合模型进行计数,或是对已经建立一一对应关系的两个组合模型进行计数即得。 五、比较系数法 例5、求证:。 证明:由于,其中含有项的系数为。而 ,其中含有项的系数为,同时,故 。 点评:由多项式恒等对应项系数相等获求。在本题中,对m,n,k取特殊关系有(1)时, ;(2)时, 等。

六、递推公式法 例6、求证: 。 证明:设右边,则由恒等式得 ,故 ,整理即 ,而,故有。 小结:本题由递推关系及初始条件进行证明,其中数列的递推思想得到了体现。 七、求导法 例7、求证:。 证明:对两边的x求导得 ,上式两边乘以x后再求导得 ,取得 ,即证。

第04讲 多项式定理及组合恒等式

沈晶

第4讲多项式定理及组合恒等式Pascal公式 二项式定理 多项式定理 牛顿二项式定理 组合恒等式证明

Pascal 公式 对于满足1≤k ≤n -1的所有整数k 和n 证法1:直接计算方法(略)证法2: 令S 是n 个元素的集合 任取一个元素用x 表示 S 的k -组合的集合可划分为不包含x 的k -组合和包含x 的k -组合 则?? ? ??--+??? ??-=??? ??111k n k n k n Blaise Pascal ??? ??k n ??? ??-k n 1? ? ? ??--11k n =+

第4讲多项式定理及组合恒等式Pascal公式 二项式定理 多项式定理 牛顿二项式定理 组合恒等式证明

设n 是正整数,对任意x , y 有 证法一:数学归纳法(略) 证法二: (x+y)n =(x+y)?(x+y)?…?(x+y) n 个x +y 相乘,每个x +y 在相乘时有两种选择,x 或y 由乘法法则可知,乘积中共有2n 项,并且每一项都可以写成x k y n-k 的形式,k = 0, 1, …, n 对于项x k y n-k ,是在k 个x +y 中选择了x ,其余n -k 个x +y 选择了y 而得到的,从n 个x +y 中选取k 个选择x 的选法数为C (n ,k ),所以该项系数为C (n ,k )。定理得证。 ()k n k n k n y x k n y x -=∑?? ? ??=+0二项式系数

推论1 推论2 () n k n k n x n n x n n x k n x ??? ??++??? ??+??? ??=??? ??=+∑= 1010 () ()()n n k n k k n x n n x n n x k n x 110110 -??? ??++??? ??-??? ??=??? ??-=-∑= 二项式定理 y=1 推论1 x = -x

第十讲 组合恒等式

第十讲 组合恒等式 一、 知识概要 数学竞赛中组合数计算和组合恒等式的证明,是以高中排列、组合、二项式定理为基础,并加以推广和补充而形成的一类习题,它往往会具有一定的难度且灵活性较强。解决这类问题常常对学生良好的运算能力和思维的灵活性都有较高的要求。同时,此类问题的解决也有着自身特殊的解题技巧。因此,在各类数学竞赛中经常被采用。 1,基本的组合恒等式 简单的组合恒等式的化简和证明,可以直接运用课本所学的基本组合恒等式。事实上,许多竞赛中出现的较复杂的组合数记算或恒等式证明,也往往运用这些基本组合恒等式,通过转化,分解为若干个简单的组合恒等式而加以解决。课本中的组合恒等式有: ①r n r n n C C -=; ②111r r r n n n C C C +++=+; ③1 1k k n n kC nC --=; ④r m m r m n r n n m C C C C --=; ⑤012 2n n n n n n C C C C +++ +=; ⑥()012 10.n n n n n n C C C C -++ +-= 2,解题中常用方法 ① 运用基本组合恒等式进行变换; ② 运用二项展开式作为辅助函数,通过比较某项的系数进行计算或证明; ③ 运用数学归纳法; ④ 变换求和指标; ⑤ 运用赋值法进行证明; ⑥ 建立递推公式,由初始条件及递推关系进行计算和证明; ⑦ 构造合理的模型。 二、 运用举例 例1,求证:1231232n n n n n n C C C nC n -+++ +=?. 证明:根据前面提到的基本的组合恒等式第三条,可得:

左边012 11 11112 n n n n n n nC nC nC nC n ------=++++=?=右边 例2,求和式 21 n k n k k C =∑的值。 基本思路:将2k n k C 改写为k n k kC ?,先将k n kC 用恒等式3提取公因式n ,然 后再将1 1k n kC --变形成为()11111k k n n k C C -----+,而()1 11k n k C ---又可以继续运用上 述恒等变形,这样就使得各项系数中均不含有变动指标k 了。 解 : ()2111 1 1 11 1 1 11 11n n n n n k k k k k n n n n n k k k k k k C k kC k nC n k C n k C ------======?=?=?=-+?∑∑∑∑∑ ()()1 121 1 1 211 1 11n n k k k k n n n n k k n k C C n n C C --------==????=-?+=-?+??? ?∑∑ ()()21212121 212111n n n n k k k k n n n n k k k k n n C C n n C n C --------====??=-?+=-+???? ∑∑∑∑ ()()2 1212 212n n n n n n n n ---=-+=+ 例3,求 () 2004 20050 1k k k C =-∑的值。 解: () () 2004 2004 122004 20052005200520050 111k k k C C C C =-=-+- +-∑ ( )( ) () ()2004 01 12 2003 200420042004200420042004 200411C C C C C C =-+++- +-+ 1= 。

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 2 2sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左: 4.化常数 将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2α+cos 2α=sec 2α-tan 2α=csc 2α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α, 1=tan450=sin900=cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。

相关主题
文本预览
相关文档 最新文档