第十一课 ANSYS热辐射
- 格式:ppt
- 大小:1.23 MB
- 文档页数:51
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析∙在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
∙ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
∙ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类∙稳态传热:系统的温度场不随时间变化∙瞬态传热:系统的温度场随时间明显变化四、耦合分析∙热-结构耦合∙热-流体耦合∙热-电耦合∙热-磁耦合∙热-电-磁-结构耦合等第二章 基础知识一、符号与单位W/m 2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdTkq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
ANSYS 工程应用教程_热与电磁学篇随着ANSYS 版本的不断更新,ANSYS 的应用领域也日益广泛。
作为融结构、热、流体、电磁、声学为一体的大型通用有限元分析软件,可广泛应用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电、等一般工业及科学研究领域。
热分析包括稳态热分析、瞬态热分析、热辐射、相变、热应力等,电磁场分析包括二维静态、谐性、瞬态磁场分析,三维静态、谐性、瞬态磁场分析,高频电磁场分析和电场分析等。
ANSYS 热分析简介:图形用户界面方式(GUI )或命令流方式进行计算。
ANSYS 如何进行热分析:实际上,其基本原理是先将所处理的对象划分成有限个单元(包含若干节点),然后根据能量守恒原理求解一定边界条件和初始条件下每一节点处的热平衡方程,由此计算出各节点温度,继而进一步求解出其他相关量。
耦合场分析:这类涉及两个和多个物理场相互作用的问题为耦合场分析。
主要方法有直接耦合和间接耦合。
直接耦合解法的耦合单元包含所有的自由度,仅仅通过一次求解就能得出耦合场分析结果。
这种方法实际上是通过计算包含所有必须项的单元矩阵或单元载荷向量来实现的。
间接耦合法又称为序贯耦合法,通过把第一磁场分析的结果作为第二次场分析的载荷来实现良种场的耦合。
三种基本传热方式:传导:当物理内部存在温度差时,热量将从高温部分传递到低温部分;而且不同温度的物体相互接触时热量会从高温物体传递到低温物体。
傅立叶定律,又称导热基本定律hot cold A(T T )t dQ κ-=,Q 为时间t 内的传热量,κ为热传导率,T 为温度,A 为面积,d 为两平面之间的距离。
对流:温度不同的各部分流体之间发生相对运动所引起的热量传递方式。
流体被加热时:w f q h(t t )=-流体被冷却时:f w q h(t t )=-,w t 和f t 分别为壁面温度和流体温度,h 为对流热系数。
ANSYS热分析详解ANSYS是一种常用的工程仿真软件,具有强大的多物理场耦合分析能力,其中热分析是其中一个重要的应用领域。
在ANSYS中进行热分析可以帮助工程师更好地了解物体在温度变化条件下的行为,从而优化设计方案。
下面将详细介绍ANSYS热分析的原理与流程。
首先,在进行ANSYS热分析前,需要进行前期准备工作。
包括建立几何模型,定义边界条件和导入材料参数等。
在建立几何模型时,可以使用ANSYS提供的建模工具或者导入CAD文件。
然后,需要定义材料参数,如热导率、比热等。
最后,需要定义边界条件,包括外界温度、边界热流、边界散热系数等。
接下来,进行热传导分析。
热传导分析是热分析的基础,用于计算物体内部的温度分布。
在ANSYS中,可以选择稳态或者瞬态分析。
对于稳态分析,需要设置收敛准则,使计算结果达到稳定状态。
对于瞬态分析,需要设置时间步长和总的仿真时间。
在进行计算时,ANSYS会利用有限元法对物体的几何形状进行离散化处理,并通过求解热传导方程来计算温度分布。
在得到物体内部的温度分布后,可以进行热应力分析。
热应力分析是在热传导分析的基础上引入力学应力计算的过程。
在ANSYS中,可以通过多物理场耦合分析的功能来实现。
首先,需要定义材料的线性热膨胀系数和弹性模量等力学参数。
然后,可以选择求解热固结方程和弹性平衡方程,来计算物体在温度变化条件下的应力分布。
除了热应力分析,还可以进行热辐射分析。
热辐射分析是在热传导分析的基础上引入辐射传热计算的过程。
在ANSYS中,可以选择不同的辐射模型来计算物体在温度变化条件下的辐射传热。
常用的辐射模型包括黑体辐射模型和灰体辐射模型等。
通过热辐射分析可以得到物体的辐射换热通量和辐射热功率等重要参数。
最后,进行结果分析和后处理。
在ANSYS中,可以对热分析的结果进行可视化和数据分析。
可以绘制温度云图、热应力云图等,从而更好地理解物体在热变形条件下的行为。
此外,还可以导出计算结果,并进行后续的工程设计和优化。
ANSYS培训教程:热分析-热辐射什么是热辐射辐射是一种通过电磁波传递能量的方式。
电磁波以光速传播且无需任何介质。
热辐射仅为电磁波谱中的一小段。
因为由于热辐射引起的热流与物体表面绝对温度的四次方成正比,因此热辐射分析是高度非线性的。
分析热辐射问题ANSYS提供了三种方法分析热辐射问题:用LINK31,辐射线单元,分析两个点或多对点之间的热辐射;用表面效应单元SURF19或SURF22,分析点对面的热辐射;用AUX12,热辐射矩阵生成器,分析面与面之间的热辐射以上三种方法既可用于稳态热分析,也可用于瞬态热分析。
热辐射分析要注意温度的单位制,因为计算热辐射使用的温度单位是绝对温度。
如果在加载时使用的是华氏温度,就要设置460的差值;如果为摄氏温度,差值为273。
Command:TOFFSTGUI: Main Menu>Preprocessor>Loads>Analysis OptionsGUI: Main Menu>Solution>Analysis Options使用LINK31—辐射线单元LINK31是一个两节点非线性线单元,用于计算由辐射引起的两点之间的热传递。
此单元要求输入如下的实常数:有效的热辐射面积;形状系数辐射率Stefan-Boltzmann 常数使用表面效应单元表面效应单元可以方便地分析点与面之间的辐射传热。
SURF19用于两维模型,SURF 22用于三维模型。
单元应设置为包含辐射KEYOPT(9)。
五、使用AUX12—辐射矩阵生成器此方法用于计算多个辐射面之间的辐射传热。
这种方法生成辐射面之间形状系数矩阵,并将此矩阵作为超单元用于热分析。
AUX12方法由三个步骤组成:定义辐射面生成辐射矩阵在热分析中使用辐射矩阵1、定义辐射面(1)、PREP7中建模、划分网格。
辐射面往往是3D模型中的面或2D模型中的边,如下图所示:(2)、在辐射表面用SHELL57(3D)或LINK32(2D)划分网格。
6.9.4计算并验证形状系数选项然后可以计算形状系数,并验证和得到平均值。
计算并存储形状系数:命令:VFCALCGUI:Main Menu>Radiation>Compute可用如下命令列出所选择单元对的形状系数并计算平均系数:命令:VFQUERYGUI:Main Menu>Radiation>Query用如下命令可将平均系数提取出来:*GET,Par,RAD,VFAVG6.9.5设定载荷选项如果模型有均匀的温度,本步将设定初始温度。
还需要定义载荷步并将边界条件的变化形式设定为渐变。
对所有节点设定初始的均匀温度命令:TUNIFGUI:Main Menu>Solution>Settings>Uniform Temp设定载荷步数量或时间步命令: SUBST或DELTIMGUI:Main Menu>Preprocessor>Loads>-Load StepOpts-Time/Frequenc>Freq and Substps or Time and Substps Main Menu>Preprocessor>Loads>-Load StepOpts-Time/Frequenc>Time-Time Step由于热辐射是高度非线性的,应设定渐变的边界条件命令: KBCGUI:Main Menu>Preprocessor>Loads>-Load StepOpts-Time/Frequency>Time-Time Step6.10静态热辐射分析的几点建议对于只有热流密度(HFLUX)或热流率(HEAT)边界条件的热辐射问题,或热辐射作为热传递主导方式的问题(即低导热系数),应采用“伪瞬态”求解方法来求解静态问题。
主要有如下三个步骤:1.在定义材料属性时,定义材料的密度和比热为常值。
设定这两个材料值的大小并不重要,因为最终是求解稳态问题;2.将求解类型设定为瞬态问题命令:ANTYPTGUI:Main Menu>Solution>New Analysis3.将准静态辐射分析求解为稳态问题命令:QSOPTGUI:Main Menu>Preprocessor>-Load StepOptions->Time/Frequency>Quasi-Static只有当SOLCONTROL,ON时,QSOPT命令才有效。
(完整)ANSYS热分析详解编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)ANSYS热分析详解)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)ANSYS热分析详解的全部内容。
第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析•在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
•ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
•ANSYS热分析包括热传导、热对流及热辐射三种热传递方式.此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类•稳态传热:系统的温度场不随时间变化•瞬态传热:系统的温度场随时间明显变化四、耦合分析•热-结构耦合•热-流体耦合•热-电耦合•热-磁耦合•热-电-磁-结构耦合等第二章 基础知识一、符号与单位 W/m 2—℃ 二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:● 对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W -- 作功;∆U ——系统内能;∆KE ——系统动能;∆PE —-系统势能;●对于大多数工程传热问题:0==PE KE ∆∆; ●通常考虑没有做功:0=W , 则:U Q ∆=; ● 对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量;●对于瞬态热分析:dt dU q =,即流入或流出的热传递速率q 等于系统内能的变化。
A N S Y S热分析详解解析-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章简介一、热分析的目的热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。
热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。
二、ANSYS的热分析在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中ANSYS/FLOTRAN不含相变热分析。
ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。
ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。
此外,还可以分析相变、有内热源、接触热阻等问题。
三、ANSYS 热分析分类稳态传热:系统的温度场不随时间变化瞬态传热:系统的温度场随时间明显变化四、耦合分析热-结构耦合热-流体耦合热-电耦合热-磁耦合热-电-磁-结构耦合等第二章基础知识一、符号与单位W/m 2-℃二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕PE KE U W Q ∆+∆+∆=-式中: Q —— 热量;W —— 作功;∆U ——系统内能; ∆KE ——系统动能; ∆PE ——系统势能;● 对于大多数工程传热问题:0==PE KE ∆∆; ● 通常考虑没有做功:0=W , 则:U Q ∆=;●对于稳态热分析:0=∆=U Q ,即流入系统的热量等于流出的热量; ●对于瞬态热分析:dtdUq =,即流入或流出的热传递速率q 等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:dxdT kq -='',式中''q 为热流密度(W/m 2),k 为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。