热辐射计算讲解
- 格式:ppt
- 大小:1.36 MB
- 文档页数:30
热学问题解析热传导与热辐射的分析与计算热学是物理学中的一个重要分支,它研究物体内部和周围的热现象以及热能的传递和转化。
在热学的领域中,热传导和热辐射是两种重要的热能传递方式。
本文将对热传导和热辐射的分析与计算进行详细的解析。
一、热传导的分析与计算热传导是指物体内部或相邻物体之间热能的传导过程。
它遵循热量从高温区到低温区传递的物理规律,可以通过热传导方程进行分析和计算。
1. 热传导方程热传导方程是描述热传导过程的方程,通常用来计算物体内部温度分布随时间的变化。
在一维情况下,热传导方程可以写为:∂T/∂t = α ∂²T/∂x²其中,T表示物体的温度,t表示时间,x表示空间坐标,α表示热扩散系数。
这个方程可以通过差分法或有限元法进行数值计算。
2. 热传导的边界条件在进行热传导的计算时,需要给定适当的边界条件。
常见的边界条件包括:- 温度边界条件: 在物体的边界上指定温度值,可以是恒定的或随时间变化的。
- 热通量边界条件: 在物体的边界上指定热通量值,表示单位面积上的热能流量。
- 对流边界条件: 考虑物体与周围介质的热对流传热,需要给定对流系数和环境温度。
根据具体问题的特点和要求,选择适当的边界条件进行热传导计算。
3. 热传导的数值计算方法热传导可以通过数值方法进行计算,常用的方法有差分法和有限元法。
差分法是将空间和时间进行离散化,利用差分近似代替微分方程,通过迭代求解离散化的方程组来计算温度分布。
有限元法则是将连续的物体划分为有限数量的子区域,建立离散化的有限元模型,通过求解线性或非线性方程组得到温度分布。
二、热辐射的分析与计算热辐射是物体通过电磁波辐射传递热能的过程。
它是一种无需介质的传热方式,可以通过热辐射定律进行分析和计算。
1. 斯特藩-玻尔兹曼定律斯特藩-玻尔兹曼定律描述了黑体辐射的能量与其温度的关系。
根据这个定律,辐射通量(单位时间通过单位面积的辐射能量)正比于黑体的表面温度的四次方:Q = εσT^4其中,Q表示辐射通量,ε表示黑体的发射率,σ是斯特藩-玻尔兹曼常数,T表示温度。
辐射传热量计算公式
辐射传热量计算公式
辐射传热是一种热能的传递方式,其原理是通过热辐射将发热体上的热量传播到其他物体,从而实现热能的传输。
辐射传热量是指辐射传播过程中,一个物体收到另一个物体发出的热辐射能量的总和。
辐射传热量的计算公式是:Q=εσA(T1^4-T2^4),其中Q是辐射传热量,ε是表面外反射率,σ是每平方米每秒发射的热量,A是物体表面积,T1是物体表面温度,T2是物体周围环境温度。
辐射传热量的计算公式主要是根据辐射传热的物理原理来推导出来的,它可以很好地反映出物体表面温度、外反射率和周围环境温度等多种因素对辐射传热量的影响。
辐射传热的计算公式可以用于室内外热量传输的分析,以及对太阳能热水器、太阳能太阳能热发电系统、热电联产等设备热量分析中,这些设备都是利用辐射传热来实现热能传输的,所以辐射传热量的计算公式在这些设备的设计和分析中有着重要的作用。
辐射传热量的计算公式是根据辐射传热的物理原理推导出来的,它可以反映出多种因素对辐射传热量的影响,它在室内外热量传输的分析,以及对太阳能热水器、太阳能太阳能热发电系统、热电联产等设备热量分析中也有着重要的作用。
对流和辐射计算公式流和辐射计算公式是在热力学和辐射传热学中广泛应用的公式,用于计算热量和热能的传递。
一、流计算公式1.线热流密度(q)计算公式:线热流密度是单位时间内通过单位长度的传热量,通常以瓦特/米表示。
q=λ*ΔT/Δx其中,q表示线热流密度,λ表示热导率,ΔT表示温度差,Δx表示传热距离。
这个公式适用于常导热系数情况下的传热。
2.对流热传导公式(q):对流热传导是通过流体(气体或液体)传递热量的过程,可以通过以下公式计算:q=h*A*ΔT其中,q表示热量传递速率,h表示对流传热系数,A表示传热面积,ΔT表示温差。
3.对流传热系数(h)计算:对流传热系数是对流热传导中的一个参数,它表示单位面积传递的热量。
对于强制对流和自然对流,其计算公式分别为:对于强制对流:h=Nu*λ/L对于自然对流:h=Nu*λ/Lf其中,h表示传热系数,Nu表示努塞尔数,λ表示热导率,L表示流动方向的特征长度,Lf表示特征长度。
4.热传导效应(Bi):热传导效应是描述对流与热传导相对重要性的参数,可以用如下公式计算:Bi=h*L/λ其中,Bi表示热传导效应,h表示对流传热系数,L表示特征长度,λ表示热导率。
当Bi<0.1时,热传导可以忽略不计;当Bi>0.1时,热传导效应非常重要。
1.斯特藩-玻尔兹曼定律:根据斯特藩-玻尔兹曼定律,一个黑体单位时间内发射的辐射功率(P)与其绝对温度(T)的四次方成正比,可以用以下公式表示:P=σ*ε*A*T^4其中,P表示辐射功率,σ为斯特藩-玻尔兹曼常数(5.67*10^-8W/(m^2·K^4)),ε表示发射率,A表示表面积,T表示绝对温度。
2.斯特藩-玻尔兹曼定律(应用于非黑体):对于非黑体,通过引入一个修正因子,斯特藩-玻尔兹曼定律可以表示为:P=σ*ε*A*T^4*F其中,P表示辐射功率,σ为斯特藩-玻尔兹曼常数,ε表示发射率,A表示表面积,T表示绝对温度,F表示修正因子。
热传导三种方式公式热传导是指物体内部或不同物体之间因温度差异而产生热量传递的现象。
热传导过程可以通过三种方式进行:热对流、热辐射和热传导。
本文将分别介绍三种热传导方式及其公式。
1.热对流热对流是指流体(气体或液体)在物体表面或内部通过对流方式进行热传递。
在流体中,热量传递是通过流体分子间的碰撞实现的。
热对流的公式如下所示:Q=hAΔT其中,Q为热量,h为热传递系数,A为传热面积,ΔT为温度差异。
热传递系数h是由流体的性质、流速、传热面积等因素决定的,通过实验得到的。
例如,一个半径为10cm的球体,其表面与气体接触,气体温度为30℃,球体内部温度为100℃,求其表面每秒钟传递多少热量?解:首先计算出表面积,A=4πr²=4π某10²=1256.64cm²。
然后选择恰当的热传递系数,假设为h=10W/(m²·K),将其转换为cm单位,得h=0.1W/(cm²·K)。
最后代入公式得到:Q=hAΔT=0.1某1256.64某(100-30)=940.98W。
2.热辐射热辐射是指物体通过辐射方式进行热传递,而不需要介质来传递热量。
所有物体都可以辐射热量,其公式如下所示:Q=σεA(T₁⁴-T₂⁴)其中,Q为热量,σ为斯特腾-玻尔兹曼常数,ε为辐射率,A为表面积,T₁和T₂分别为两侧物体的绝对温度。
斯特腾-玻尔兹曼常数σ是一个物理常数,其数值为5.67某10⁻⁸W/(m²·K⁴),可以通过实验测定得到物体的辐射率ε。
例如,一个黑色矩形板,长50cm、宽30cm、温度为100℃,悬空悬浮在25℃的房间内,求每秒钟它向房间内传递多少热量?解:首先计算出表面积,A=2(50某30+30某100+50某100)cm²=27,000cm²。
然后计算出物体的辐射率,或参考已知黑色物体的典型值,假设为ε=1、最后代入公式得到:Q=σεA(T₁⁴-T₂⁴)=5.67某10⁻⁸某1某27,000某(373⁴-298⁴)=648.43W。
《热辐射》讲义一、热辐射的基本概念当我们在寒冷的冬天靠近火炉,会感到温暖;在夏日的阳光下,皮肤会被晒热。
这些现象背后的原理就是热辐射。
热辐射,简单来说,就是由物体自身温度所引起的,以电磁波形式向外传递能量的过程。
它与我们常见的热传递方式——热传导和热对流有着明显的区别。
热传导需要物体之间的直接接触,热对流则依赖于流体的流动来传递热量,而热辐射不需要任何介质,在真空中也能进行。
所有温度高于绝对零度(约为-27315 摄氏度)的物体都会不停地向外辐射能量。
这意味着,哪怕是一块冰冷的石头,或者遥远的恒星,都在时刻进行着热辐射。
二、热辐射的特点1、不需要介质热辐射的一个显著特点就是它可以在真空中传播。
这与热传导和热对流截然不同。
想象一下太阳的能量能够穿越浩瀚的宇宙空间到达地球,靠的就是热辐射。
2、与温度密切相关物体的温度越高,热辐射的能力就越强。
例如,烧红的铁块比常温下的铁块辐射出的热量要多得多。
而且,热辐射的波长分布也与温度有关。
温度较低时,主要辐射出较长波长的红外线;温度升高,波长逐渐变短,会出现可见光,甚至紫外线。
3、遵循一定的规律热辐射遵循斯特藩玻尔兹曼定律、维恩位移定律等。
斯特藩玻尔兹曼定律表明,黑体的辐射出射度与热力学温度的四次方成正比。
维恩位移定律则指出,黑体辐射光谱中辐射强度的峰值波长与绝对温度成反比。
三、热辐射的影响因素1、物体的材料和表面特性不同材料的物体,其热辐射的能力和吸收能力是不同的。
比如,黑色的物体通常比白色的物体更善于吸收和辐射热量。
物体的表面粗糙度也会产生影响,粗糙的表面比光滑的表面更有利于热辐射。
2、物体的温度如前所述,温度是决定热辐射强弱的关键因素。
温度越高,热辐射越剧烈。
3、环境温度周围环境的温度会影响物体与环境之间的热交换。
当物体温度高于环境温度时,物体向外辐射热量;反之,物体吸收热量。
四、热辐射在生活中的应用1、取暖设备常见的电暖器、红外线取暖器等,都是利用热辐射的原理来为我们提供温暖。
热力学练习题热传导和热辐射的计算热力学是研究热与其他形式能量之间相互转化的学科,其中热传导和热辐射是热能传递的两种重要方式。
本文将分析和计算热传导和热辐射的相关问题,旨在加深对热力学中这两种过程的理解。
一、热传导热传导是指热量通过物质内部由高温区到低温区的传递过程。
它的传导率取决于物质的导热性质、温度差和距离,可以通过以下公式进行计算:Q = -kA(ΔT/Δx)t其中Q表示传导的热流量,k为导热系数,A为交叉截面积,ΔT为温度差,Δx为热传导路径长度,t为传导时间。
例如,假设某物体的导热系数为0.5 W/(m·K),交叉截面积为0.1 m²,温度差为50 K,热传导路径长度为0.2 m,传导时间为10 s。
代入公式可得:Q = -0.5 × 0.1 × (50/0.2) × 10 = -125 W说明热量从高温区向低温区传播,单位时间内传导的热量为125瓦特。
二、热辐射热辐射是指物体在不接触其他物体的情况下通过电磁波辐射传递能量的过程。
根据斯特藩-玻尔兹曼定律,热辐射功率与物体的绝对温度的四次方成正比。
计算热辐射功率可以使用以下公式:P = εσA(T^4 - T₀^4)其中P表示辐射功率,ε为辐射率,σ为斯特藩-玻尔兹曼常数(约为5.67 × 10^(-8) W/(m²·K^4),A为物体表面积,T为物体温度,T₀为参考温度(通常为绝对零度)。
举例来说,某个物体表面积为0.5 m²,温度为500 K,参考温度为300 K。
假设该物体为黑体,其辐射率为1。
代入公式可得:P = 1 × 5.67 × 10^(-8) × 0.5 × ((500^4) - (300^4)) = 231.4 W说明该物体以每秒约231.4瓦特的功率通过热辐射传递能量。
综上所述,热传导和热辐射是热力学中的两种重要过程。
热辐射计算情景假设:下方为一块宽2m ,长15m 的钢坯(板1),上方2m 处为一块宽0.5m ,长2m 的不锈钢板(板2),位置关系如图所示,钢坯温度假设为800°C ,环境温度为50°C 。
情景分析:板1对板2有辐射热量1Q ,周围空气对板2有对流换热2Q 。
当系统达到稳态时,对于板2有:21Q Q =,即得热等于散热。
辐射换热量:)(424121,21T T A X Q s -∙∙∙=εσ其中:σ——steff 常数,)/(1067.5428K m W ∙⨯-; s ε——综合发射率,对于平行平板111121-+=εεεs ,1ε为板1发射率,2ε为板2发射率;1,2X ——板2对板1的角系数; 2A ——板2面积,215.02m =∙; 1T ——板1温度,K T 10731=;2T ——板2温度,单位K 。
查发射率表,对于高温氧化钢坯1ε=0.8,对于不锈钢表面2ε=0.07068796.0107.018.011111121=-+=-+=εεεs根据交叉线法,的断面长度表面非交叉线之和交叉线之和22-1,2∙=X通过作图法可得:9662.05001.4832)(-bd)c (1,2==∙++=ab bc ad a X因此,)1073(19662.0068796.01068.542481T Q -⨯⨯⨯⨯⨯=- 对流换热量:)(23222T T A h Q -∙∙= (2个表面);h ——自然对流换热系数,)/(1002K m W ∙—,一般取)/(52K m W ∙;2A ——板2面积,215.02m =∙; 2T ——板2温度;3T ——周围环境温度,323K 。
因此,323010)323(25222-=-⨯⨯=T T Q ,由于21Q Q =,所以 323010)1073(19662.0068796.01068.524248-=-⨯⨯⨯⨯⨯-T T得到 K T 3.7212=温度过高,考虑在钢板内侧加气凝胶毡隔热层(20mm ),再加10mm 环氧树脂板方便安装元器件,内部通以10°C 冷空气,如下图所示。