苯-甲苯
- 格式:doc
- 大小:605.50 KB
- 文档页数:24
化工原理课程设计设计题目:分离苯—甲苯混合液的浮阀精馏塔学生姓名:学号:班级:指导老师:写作时间:1分离苯—甲苯混合液的浮阀精馏塔1.设计任务及操作条件1.1工艺条件及数据(1)原料液为苯—甲苯混合液,苯含量为45%(质量分率)。
(2)塔顶苯含量不低于98%(质量分率)。
(3)塔底苯含量不高于2%(质量分率)。
(4)进料温度为35℃。
(5)生产能力:年处理苯—甲苯混合液3.5万吨(开工率330天/年)。
(6)塔板类型:浮阀塔板。
1.2操作条件(1)塔顶压力4kPa(表压)。
(2)间接蒸汽加热,加热蒸汽压力为2.5kgf/cm2(表压)。
(3)冷却水进口温度30℃,出口温度50℃。
(4)设备热损失为加热蒸汽供热量的5%。
1.3厂址厂址为济南。
2.设计方案本设计任务为分离苯-甲苯混合液。
对于二元混合物系的分离,应采用连续精馏流程。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器后送至储罐。
该物系属易分离物系,最小回流比小,合适的操作回流比为最小回流比的1.7至2倍之间。
塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。
错误!未找到引用源。
为精馏塔的工艺流程图。
精馏塔工艺流程图图133.1精馏塔的物料衡算(1)原料液及塔顶、塔底产品的摩尔分数苯的摩尔质量为M=78.11kg/kmol。
A甲苯的摩尔质量为M=92.13kg/kmol。
B原料液苯含量为45%,塔顶苯含量不低于98%,塔底苯含量不高于2%(均为质量分率)。
转换成摩尔分率为0.45/78.11=0.491x=F92.13/78.11?0.55/0.4578.110.98/=0.983x=D92.1378.11?0.02/0.98/78.110.02/=0.024x=w92.13/?0.980.02/78.11(2)原料液及塔顶、塔底产品的平均摩尔质量M=0.491×78.11+(1-0.491)×92.13=85.25kg/kmol F M=0.983×78.11+(1-0.983)×92.13=78.35kg/kmol D M=0.024×78.11+(1-0.024)×92.13=91.80kg/kmol W(3)物料衡算年处理苯—甲苯混合液3.5万吨(开工率330天/年)。
化工原理课程设计设计题目:苯—甲苯连续精馏塔的工艺设计学院石油化工学院专业03高分子材料与工程2班姓名徐峰沈阳工业大学化工原理课程设计苯—甲苯连续精馏塔的工艺设计计:说明书28页表格 2 个插图 4 幅完成日期:指导教师:设计成绩:教研室主任:沈阳工业大学化工原理课程设计任务书专业班级设计人一、设计题目苯—甲苯连续精馏塔的工艺设计二、原始数据及条件1.生产能力:14.5万吨/年(7800小时/年)2.进料温度:30℃3.进料组成:32 %(质量)4.分离要求:塔顶产品95%(质量),塔底产品 3.5 %(质量)。
5.操作条件:(1) 精馏塔顶压强 3×103Pa(表压)(2) 回流比自选(3) 单板压降≯8×102 Pa (浮阀塔);≯7×102Pa (筛板塔)三、设备型式设备型式为筛板塔/ 浮阀塔(F1型)四、设计内容及要求编制一份设计说明书,主要内容包括:1.前言2.设计方案及工艺流程说明3.工艺计算及设备的结构计算4.设计结果一览表5.设计结果的讨论和说明6.符号说明7.参考文献8.结束语五、设计日期:2005 年12月19 日至2005年12 月23 日目录1.前言2.设计方案及流程说明3.工艺计算及设备结构计算塔的物料衡算3.1.1 料液及塔顶.塔产品含苯摩尔分率3.1.2 平均分子量3.1.3 物料衡算3.2 塔板数确定3.2.1 理论塔板数的确定3.2.2 塔板效率3.2.3 实际塔板数3.3 塔的工艺条件3.3.1 操作压强3.3.2 温度3.3.3 平均分子量3.3.4 平均密度3.3.5 表面张力3.3.6 液体粘度3.3.7 气液负荷3.4 塔体的工艺尺寸计算3.4.1 塔径计算3.4.2 塔的高度计算3.5 塔板的主要工艺尺寸3.5.1 溢流装置3.5.2 塔板布置3.5.3 塔板布置及浮阀数排列3.6 浮阀流体力学验算3.6.1 气体通过浮阀塔板时压降3.6.2 雾沫夹带量的验证3.6.3 液泛验算3.6.4 漏液验证3.7 塔板负荷性能图3.7.1 雾沫夹带线3.7.2 液泛线3.7.3 液相负荷上限线3.7.4 漏夜线3.7.5 液相负荷下限线4 计算结果一览表5 设计结果说明6 符号说明7 参考文献8 结束语9 附表、图1.前言1.1塔设备的类型随着化学工业的发展,研制了设备结构。
前言精馏是多级分离过程,即同时进行多次部分汽化和多次部分冷凝的过程,因此可使混合液得到完全的分离。
精馏可视为多次蒸馏演变而来的,不管何种操作方式,混合物中组分间挥发度差异是蒸馏分离的前提和依据。
本次精馏是分离苯-甲苯混合物,是工业上常见的一种分离模式,所设计的塔为浮阀精馏塔,浮阀塔在50年代得到广泛使用,由于它兼有泡罩塔和筛板塔的优点,已成为最广泛的使用塔型,特别是在石油和化工方面受到相当重视,对其特性的研究也比较全面。
在本次的设计中,查阅了许多资料,在前人的基础上利用了他们很多的经验公式,并因此省略了一些不必要的环节但在设计过程中,也出现了许多困难,最终在老师的帮助下,困难都解决了。
最后得到的数据或设计结果属于初级设计,由于经验不足,水平有限,其中难免有不妥之处,恳请各读者批评指正。
目录课程设计任务书 (4)一.设计任务及设计条件 (4)1.设计任务 (4)2.操作条件 (4)3.设备形式 (4)4.厂址 (4)二.设计计算 (4)(一)设计方案的确定 (4)(二)精馏塔的物料衡算 (5)1.原料液及塔顶、塔底产品的摩尔分数 (5)2.原料液及塔顶、塔底产品的平均摩尔质量 (5)3.物料衡算 (5)4.全塔热平衡 (6)5.塔底再沸器及加热蒸汽消耗量 (6)6.冷凝器的热负荷及冷却水消耗量 (6)(三)塔板数的确定 (6)1.理论板层数的确定 (6)2.实际板层数的求取 (9)(四)精馏塔的工艺条件及有关物性数据的计算 (9)(五)精馏塔的塔体工艺尺寸 (11)1.塔径的计算 (11)2.精馏塔有效高度的计算 (12)(六)塔板主要工艺尺寸的计算 (13)1.溢流装置计算 (13)2.塔板布置及浮阀数目与排列 (14)(七)塔板流体力学验算 (15)1.气相通过浮阀塔板得压降 (15)2.淹塔 (16)3.雾沫夹带 (16)(八)塔板负荷性能图 (17)三.塔附件设计 (21)1.接管—进料管 (21)2.法兰 (21)3.筒体与封头 (22)4.人孔 (22)四.设计评述 (23)五.参考资料 (24)课程设计任务书设计题目苯:苯(A)-甲苯(B)板式浮阀精馏塔工艺设计一、设计任务及设计条件1.设计任务生产能力(进料量):16000t/年操作周期:72000h/年进料组成:40%塔顶产品组成:>=97%塔底产品组成:<=1%2.操作条件每年实际生产天数:330天(一年中一个月检修)塔顶压强:4kpa(表压)进料热状况:自选单板压降:<=0.7kpa塔釜用间接蒸汽加热,加热蒸汽压力为2--4Kgf/cm^2塔顶冷凝用冷却水,进出口温差为20--40℃=52%全塔效率:ET3.设备形式:浮阀塔4.厂址:太原地区(大气压为92kpa,绝压;夏天水温为16--18℃)二、设计计算(一)设计方案的确定本设计任务为分离苯和甲苯混合物。
苯合成甲苯反应方程式苯合成甲苯反应方程式是指通过化学反应将苯转化为甲苯的过程。
这个反应是通过加氢反应来实现的,具体的反应方程式如下:C6H6 + 3 H2 → C7H8在这个反应中,苯(C6H6)与氢气(H2)发生反应,生成甲苯(C7H8)。
苯合成甲苯是一种重要的化学反应,具有广泛的应用。
甲苯是一种有机化合物,常用作溶剂和原料,广泛应用于化工、医药、染料、涂料等行业。
通过苯合成甲苯反应,可以高效地合成甲苯,满足各种工业生产的需求。
苯合成甲苯的反应机理是通过加氢反应来实现的。
在反应中,苯分子中的一个氢原子被氢气中的一个氢原子取代,形成甲苯分子。
这个反应需要在适当的温度和压力条件下进行,通常需要使用催化剂来促进反应速率。
在反应中,催化剂可以是金属催化剂,如铂、钯、铑等,或者是合成的分子催化剂。
催化剂的作用是提供一个反应的活化能降低的路径,使反应能够在较低的温度和压力条件下进行。
在苯合成甲苯反应中,催化剂可以吸附和激活氢气分子,使其与苯分子发生反应,生成甲苯。
苯合成甲苯反应的条件是关键因素。
通常,反应需要在一定的温度和压力下进行。
温度的选择取决于催化剂的性质和反应速率的要求,一般在100-200摄氏度之间。
压力的选择也是根据反应速率和催化剂的特性来确定的,一般在1-10兆帕之间。
除了温度和压力,反应的物质比例和反应时间也是影响反应效果的因素。
通常情况下,苯和氢气的比例应该是3:1,以保证充足的氢气供应。
反应时间一般在几小时到几十小时之间,取决于反应速率和产品收率的要求。
苯合成甲苯反应是一种通过加氢反应将苯转化为甲苯的化学反应。
这个反应具有广泛的应用,可以高效地合成甲苯,满足各种工业生产的需求。
反应的条件和催化剂的选择是关键因素,需要在适当的温度和压力下进行,并使用适合的催化剂来促进反应。
通过合理控制反应的条件和物质比例,可以获得高产率和高纯度的甲苯产品。
襄樊学院化工原理课程设计论题:分离苯-甲苯混合物的精馏塔设计系别:化学工程和食品科学学院班级:化学工程和工艺0711指导老师:田志高学生姓名:张力学号: 07115042目录一、前言 (1)(一)塔设备设计概述: (1)(二)板式精馏塔设备选型及设计 (1)二、设计方案的确定 (2)三、精馏塔的工艺计算和论叙 (3)(一)精馏塔的物料衡算 (3)(二)塔板数的确定 (4)(四).塔体工艺尺寸的计算: (7)(五)板式塔的塔板工艺尺寸计算: (9)四、筛板的流体力学验算 (12)五、塔板负荷性能图: (14)1、漏夜线: (14)2、液沫夹带线: (15)3、液相负荷下限线: (16)4、液相负荷上限线: (16)5、液泛线: (17)6、负荷性能图: (18)六、板式塔的结构和附属设备: (18)(一)塔顶结构: (18)七、塔体设计总表: (19)八、方案优化 (20)一、前言(一)塔设备设计概述:塔设备是化工、石油化工和炼油等生产中最重要的设备之一,他可以使气(或汽)液或液液两相紧密接触,达到相际传质及传热的目的。
在化工厂、石油化工厂、炼油厂等中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各方面都有重大影响。
塔设备中常见的单元操作有:精馏、吸收、解吸和萃取等。
此外,工业气体的冷却和回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等。
最常见的塔设备为板式塔和填料塔两大类。
作为主要用于传质过程的塔设备,首先必须使气(汽)液两相能充分接触,以获得高的传质效率。
此外,为满足工业生产的需要,塔设备还必须满足以下要求:1、生产能力大;2、操作稳定,弹性大;3、流体流动阻力小;4、结构简单、材料耗用量少,制造和安装容易;5、耐腐蚀和不易阻塞,操作方便,调节和检修容易。
(二)板式精馏塔设备选型及设计因为板式塔处理量大、效率高、清洗检修方便且造价低,故工业上多采用板式塔。
苯1 、名称23概述:高度易燃,可致癌。
毒性:通过长时间的吸入、皮肤接触以及吞食对身体产生严重危害。
诱变剂。
危险等级(GB6944-86):3.2(处于中级闪点组的可燃液体)潜在的健康危害眼睛:对眼睛产生严重的刺激。
可造成轻度短暂性伤害。
皮肤:产生中度皮肤刺激。
可通过皮肤吸收有害数量的苯。
与液态苯直接接触可产生红斑和气泡。
长时间或反复接触可导致干性鳞状皮炎或引起二次感染。
摄入:吸取危害。
可抑制中枢神经系统,起初以兴奋为特征,随后产生头痛,头晕目眩,昏昏欲睡以及恶心。
进一步可以导致虚脱,失去意识,昏迷甚至由于呼吸衰竭而死亡。
可导致类似呼吸苯蒸汽产生的后果。
吸入到肺中的苯可产生化学性肺炎,这种肺炎可能是致命的。
吸入:产生呼吸道刺激。
可导致中枢神经系统的不良后果,包括头疼、惊厥、直至死亡。
可产生昏睡、丧失意识及中枢神经系统的压抑。
对中枢神经系统的影响包括:混淆、运动失调、眩晕、耳鸣、虚弱、迷惑、嗜眠症、最终昏迷。
在苯环境中可导致骨髓的不可逆伤害,还可导致再生障碍。
苯可以吸入肺部。
慢性:实验室动物实验证实苯可能导致癌症。
长时间或反复暴露在苯环境中会导致不利的可重复出现的后果。
可引起骨髓畸形,影响造血功能。
还可引起贫血及其它血细胞奇异。
慢性吸入与较高的白血病和骨髓瘤的发生率有关。
据报道,苯具有免疫抑制剂的作用。
动物研究表明苯还会引起胎儿生长发育延缓或畸形。
4 、急救措施眼睛:立即用大量的水至少冲洗15分钟,不时提升上下眼皮,立即寻求医疗救助。
皮肤:立即寻求医疗救助。
马上采用大量的肥皂水至少冲洗15分钟,脱去脏的衣服和鞋,洗后再穿。
摄入:不要诱发呕吐。
如果受害者意识清醒,让其喝下2~4杯牛奶和水。
绝不要让意识不清醒的人口服任何东西,因为可能导致呼吸危险。
应立即寻求医疗救助。
吸入:立即寻求医疗救助。
迅速将受害者从苯氛围转移到空气新鲜的地方。
如果呼吸发生困难,可让其吸氧。
不可采用嘴对嘴的复苏方式。
如果呼吸已停止,宜采用适当的机械装置如氧气袋、面罩等进行人工呼吸。
化工原理课程设计题目分离苯-甲苯精馏塔设计学院专业班级学生姓名指导教师成绩2016年6月27 日摘要精馏塔是分离液体混合物最常用的一种单元操作,主要是利用回流使液体混合物得到高纯度分离的蒸馏方法,是工业上应用最广的液体混合物分离操作,广泛用于石油、化工、轻工、食品、冶金等部门。
本设计的题目是苯-甲苯二元物系筛板式精馏塔的设计。
在确定的工艺条件下,确定设计方案和设计内容,其主要包括精馏塔工艺设计计算、塔辅助设备设计计算、精馏工艺过程流程图、精馏塔设备结构图以及设计说明书。
关键词:筛板塔;苯-甲苯;工艺计算;结构图AbstractFractionator is separating the liquid mixture of the most commonly used as a unit operation, mainly using reflux liquid mixture was distilled to obtain high-purity separation, is the industry's most widely used liquid mixture is separated, widely used in petroleum, chemical, light work, food, metallurgy and other sectors. This design is entitled benzene - Toluene Binary System sieve tray type distillation column design. Under certain conditions, to determine the design and content design, which includes rectifying tower design and calculation process, tower auxiliary equipment design calculations, distillation process flow diagram, distillation apparatus configuration diagram and design specifications.Key words:Sieve tray; benzene - toluene; process calculation; configuration diagram目录摘要 (Ⅱ)Abstract (Ⅲ)第1章绪论 (1)1.1 概述 (1)1.2 设计依据 (3)1.3 厂址选择 (3)第2章设计方案的选择和论证 (3)2.1 设计流程 (3)2.1.1 选择原则 (4)2.1.2 设计流程图 (4)2.2 设计要求 (5)2.2.1 满足工艺与操作的要求 (5)2.2.2 满足经济上的需求 (5)2.2.3 保证安全生产 (5)2.3 设计思路 (5)2.3.1 文献检索 (6)2.3.2 小组讨论 (7)2.4 相关符号说明 (7)第3章塔的工艺计算 (9)3.1 基础物性数据 (9)3.1.1 苯和甲苯的物理性质 (9)3.1.2 苯和甲苯饱和蒸汽压P o (9) (9)3.1.3 苯和甲苯的液相密度ρL3.1.4 液体表面张力σ (10)3.1.5 液体粘度μ (10)3.2 塔的工艺计算 (10)3.2.1 操作压力的计算 (10)3.2.2 操作温度的计算 (11)3.2.3 原料液及塔顶、塔底产品的摩尔分率 (11)3.2.4 原料液及塔顶、塔底产品的平均摩尔质量 (12)3.2.5 物料衡算 (12)3.3 理论板数计算 (12)3.3.1 相对挥发度的求取 (12)3.3.2 操作回流比的求取 (13)3.3.3 精馏塔的气液负荷 (13)3.3.4 操作线的求取 (13)3.3.5 理论板层数N T的求取 (13)3.3.6 实际板数N的求取 (15)3.4 塔的工艺条件及有关物性数据的计算 (16)3.4.1 平均密度计算 (16)3.4.2 液体表面张力计算 (17)3.4.3 液体平均粘度计算 (18)3.4.4 气液负荷计算 (19)3.5 精馏塔的工艺尺寸的计算 (20)3.6 塔板流体力学校核 (21)3.6.1 溢流装置计算 (21)3.6.2 塔板布置 (24)3.7 塔板负荷性能图 (25)第4章辅助设备的选型 (34)4.1 进料管的选择 (34)4.2 回流管的选择 (34)4.3 塔底出口管路的选择 (35)4.4 塔顶蒸汽管的选择 (35)4.5 加料蒸汽管的选择 (36)4.6 人孔的设计 (36)4.7 法兰 (36)第5章塔附件设计计算 (37)5.1 选用釜式再沸器 (37)5.2 冷凝器的选型 (37)设计总结 (37)参考文献 (40)附录1 设计结果一览表 (42)附录2 苯-甲苯精馏塔的工艺流程图 (43)致谢 (45)第1章绪论精馏塔是进行精馏的一种塔式汽液接触装置,又称为蒸馏塔。
苯和甲苯的沸点苯和甲苯是常见的有机化合物,它们都是芳香烃,具有较高的挥发性和热稳定性。
苯的化学式为C6H6,甲苯的化学式为C7H8。
两者的分子结构非常相似,但由于甲苯分子中含有甲基基团,因此其物理化学性质与苯有所不同。
其中一个最显著的区别是它们的沸点。
沸点是指在标准大气压下,液态物质变为气态的温度。
对于苯和甲苯这两种化合物,它们的沸点有一定的差异,这是由于它们分子间的相互作用力不同所致。
苯的沸点为80.1℃,是一种无色透明的液体,具有芳香气味。
苯分子中的6个碳原子与6个氢原子形成了一个六元环,其中每个碳原子都与两个相邻的碳原子之间共享一个电子对。
这种电子共享形成了一种稳定的芳香环结构,使得苯分子中的电子云密度均匀分布,分子间的相互作用力较弱。
因此,苯的沸点比较低,易于挥发。
甲苯的沸点为139℃,是一种无色透明的液体,具有类似于苯的芳香气味。
与苯类似,甲苯分子中也含有一个芳香环结构,但在其中的一个碳原子上还带有一个甲基基团。
这个甲基基团使得甲苯分子间的相互作用力增强,分子间的作用力变得更加紧密。
因此,甲苯的沸点比苯高得多,不易挥发。
除了沸点之外,苯和甲苯还有许多其他的物理化学性质有所不同。
例如,它们的密度、熔点、溶解度等都有所不同。
这些差异使得它们在不同的应用领域中具有不同的用途。
苯是一种重要的有机溶剂,广泛应用于化学工业中。
它可以用于提取天然产物中的有机化合物,也可以作为反应物或溶剂用于有机合成反应中。
由于苯的挥发性较高,它还可以作为燃料或燃料添加剂使用。
甲苯的应用范围更广泛。
它不仅可以用作有机溶剂,还可以用于制造塑料、橡胶、染料、药品、香料等化学品。
此外,甲苯还是一种重要的工业原料,在石化、涂料、油墨等领域中广泛应用。
总之,苯和甲苯是两种常见的有机化合物,它们的沸点是由于它们分子间的相互作用力不同而产生的差异。
这些性质使得它们在不同的应用领域中具有不同的用途。
在今后的化学研究和工业生产中,苯和甲苯将继续发挥重要的作用。
不同温度下苯和甲苯的密度表篇一:正文:苯和甲苯是常见的有机化合物,在常温下是无色、易燃、有毒的气体。
它们的密度在不同温度下有所改变,以下是它们的密度表:| 温度 (°C) | 苯的密度 (g/cm3) | 甲苯的密度 (g/cm3) || ------------ | -------------- | -------------- || 0 | 1.029 | 1.068 || 10 | 1.069 | 1.097 || 20 | 1.099 | 1.126 || 30 | 1.130 | 1.161 || 40 | 1.162 | 1.196 || 50 | 1.197 | 1.232 || 60 | 1.234 | 1.269 || 70 | 1.271 | 1.306 || 80 | 1.308 | 1.344 || 90 | 1.346 | 1.382 |密度是物质的一种物理特性,与温度、压力、体积等因素有关。
因此,在不同的温度下,苯和甲苯的密度可能会有所不同。
在实际应用中,苯和甲苯的密度变化对于石油、化学、医药等领域都有重要意义。
拓展:苯和甲苯的密度变化受到温度的影响,这是由于分子的热运动增加,使得分子间的距离增大,从而使得密度减小。
对于苯和甲苯这样的有机物,温度对其密度的影响是比较显著的,而在其他温度下,它们的密度也可能有所不同。
此外,苯和甲苯的密度还与压力有关,在高压下,它们的密度可能会增加。
篇二:在表格中,您列出了不同温度下苯和甲苯的密度。
密度是物质的一个重要物理性质,它反映了物质的密度大小。
在物理学中,密度通常被用来描述物质的密度特性,尤其是在研究物质热力学和动力学时非常重要。
对于苯和甲苯而言,它们在不同温度下的密度变化非常大。
在室温下 (约为20 摄氏度),苯的密度约为 0.819 克/毫升,而甲苯的密度约为 0.86 克/毫升。
然而,当温度提高到约 40 摄氏度时,苯的密度增加到 0.896 克/毫升,而甲苯的密度则增加到 0.928 克/毫升。
分离苯和甲苯的方法一、引言苯和甲苯是常见的有机化合物,它们在化工生产和实验室中广泛应用。
由于苯和甲苯在物理性质上的差异,因此可以采用不同的方法来分离它们。
本文将介绍几种常用的分离苯和甲苯的方法。
二、蒸馏法蒸馏法是一种常用的分离混合物的方法,也适用于分离苯和甲苯。
苯和甲苯的沸点分别为80.1℃和137℃,因此可以通过升华蒸馏法来分离它们。
将混合物加热至苯的沸点80.1℃,此时苯开始汽化,蒸汽进入冷凝管,在冷凝管中冷却后变成液体。
将液体收集起来,即可得到纯苯。
然后,将剩余的混合物再次加热至甲苯的沸点137℃,甲苯开始汽化,蒸汽进入冷凝管,在冷凝管中冷却后变成液体。
将液体收集起来,即可得到纯甲苯。
三、萃取法萃取法是一种通过溶剂的选择性溶解来实现分离的方法。
苯和甲苯在极性上有差异,可以利用这一特点来分离它们。
将混合物与适当的溶剂(如乙醇)进行充分混合,使苯和甲苯溶解在溶剂中。
然后,由于苯的极性较低,与溶剂的相互作用较弱,可以通过分液漏斗将溶液和溶剂分离。
分离后的溶液中含有苯和甲苯,再经过蒸馏法可以得到纯苯和纯甲苯。
四、结晶法苯和甲苯的溶解度在温度上有所不同,可以利用这一特点来进行分离。
将混合物加热至溶解度较高的温度,使苯和甲苯完全溶解。
然后,将溶液缓慢冷却,使苯和甲苯逐渐结晶出来。
通过过滤和干燥,即可得到纯苯和纯甲苯。
五、活性炭吸附法活性炭对苯和甲苯有较强的吸附能力,可以利用这一特性来分离它们。
将混合物与活性炭充分接触,让活性炭吸附其中的苯和甲苯。
然后,通过洗涤或蒸馏等方法,将被吸附的苯和甲苯从活性炭上脱附下来。
最后,利用蒸馏等方法,可以得到纯苯和纯甲苯。
六、结论分离苯和甲苯的方法有很多种,常用的包括蒸馏法、萃取法、结晶法和活性炭吸附法。
根据实际需要和条件,选择合适的方法进行分离,可以得到纯度较高的苯和甲苯。
分离苯和甲苯的方法在工业生产和实验室中具有重要的应用价值。
一、概述化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。
生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质. 芳香族化合物是化工生产中的重要的原材料,而苯和甲苯是各有其重要作用。
苯是化工工业和医药工业的重要基本原料,可用来制备染料,树脂,农药,合成药物,合成橡胶,合成纤维和洗涤剂等等;甲苯不仅是有机化工合成的优良溶剂,而且可以合成异氰酸酯,甲酚等化工产品,同时也可以用来制造三硝基甲苯,苯甲酸,对苯二甲酸,防腐剂,染料,泡沫塑料,合成纤维等。
精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。
精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。
实现原料混合物中各组成分离该过程是同时进行传质传热的过程。
本次设计任务为设计一定处理量的精馏塔,实现苯——甲苯的分离。
苯——甲苯体系比较容易分离,待处理料液清洁。
因此用筛板塔。
筛板塔也是很早出现的一种板式塔,20世纪50年代起对筛板塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。
与泡罩塔相比,筛板塔具有下列优点:生产能力(20%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。
二、设计方案的确定本设计任务为分苯—甲苯的混合物,对于二元混合物的分离,应采用连续常压精馏流程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏塔内。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷凝器冷却后送至贮罐。
该物系属于易分离物系,故操作回流比取为2.7。
塔底采用直接蒸气加热,塔底产品经冷却后送至贮罐。
三、精馏塔的物料衡算⒈ 原料液及其塔顶、塔底产品的摩尔分率苯的摩尔质量为: 78.11/kg kmol甲苯的摩尔质量为: 92.13/kg kmol 0.55/78.110.590.55/78.110.45/92.13F x ==+ 0.995D x =0.01W x =⒉ 原料液及其塔顶与塔底产品的平均摩尔质量 0.5978.11(10.59)92.1383.86/F M kg kmol =⨯+-⨯=0.99578.11(10.995)92.1378.18/D M kg kmol =⨯+-⨯=0.0178.11(10.01)92.1391.99/W M kg kmol =⨯+-⨯=⒊物料平衡原料处理量 600071.55/83.86F kmol h == 总物料衡算 71.55D W =+苯物料衡算 71.550.590.9950.01D W ⨯=+联立解得 42.13/D kmol h =29.42/W kmol h = 四、塔板数的确定⒈ 理论板层数N T 的求取①因为苯—甲苯属于理想物系,可采用图解法求解理论板层数②操作回流比 1.8R =③求精馏塔的气、液相负荷1.842.1375.83/L RD kmol h ==⨯=(1) 2.842.13117.96/V R D kmol h =+=⨯=75.8371.55147.38/L L qF L F kmol h =+=+=+= 117.96/V V kmol h ==④求操作线方程精馏段操作线方程为75.8342.130.9950.6430.357117.96117.96D L D y x x x x V V =+=+⨯=+ 提馏段操作线方程为 147.3829.420.01 1.2490.0025117.96117.96W L W y x x x x V V ''''=-=-⨯=- ⑤图解法求理论塔板层数采用图解法求理论板层数,求解结果为总理论板层数 18.5T N =(包括再沸器)进料板位置 10F N =⒉ 理论板层数T N 的求取精馏段实际板层数 9/70%12.8613N ==≈精提馏段实际板层数 9.5/70%13.6714N ==≈提五、精馏塔的工艺条件及有关物性数据数据的计算⒈ 操作压力的计算操作为常压操作,所以 101.3P KPa =⒉ 操作温度的计算依据安托因方程苯 1206.35log 6.023220.24oA P t =-+ 甲苯 1343.94log 6.078219.58oB P t =-+ 又 o o A A B B P P x P x =+所以 塔顶温度 80.3D t =℃进料板温度 91.0F t =℃塔底温度 110.2W t =℃精馏段平均温度 80.391.085.652m t +==℃ 提馏段平均温度 91.110.2'100.62m t +==℃ ⒊ 平均摩尔质量的计算塔顶平均摩尔质量计算由10.995D x y ==查平衡曲线得 10.985x =0.99578.11(10.995)92.1378.18/VDm M kg kmol =⨯+-⨯= 0.98578.11(10.985)92.1378.32/LDm M kg kmol =⨯+-⨯=进料板平均摩尔质量计算由0.742F y = 查平衡曲线得 0.535F x =0.74278.11(10.742)92.1381.73/VFm M kg kmol =⨯+-⨯= 0.53578.11(10.535)92.1384.63/LFm M kg kmol =⨯+-⨯=塔底平均摩尔质量计算由20.01W x y == 查平衡曲线得 20.004x =0.0178.11(10.01)92.1391.99/VWm M kg kmol =⨯+-⨯=0.00478.11(10.004)92.1392.07/LWm M kg kmol =⨯+-⨯=精馏段平均摩尔质量78.1881.7379.96/2Vm M kg kmol +== 78.3284.6381.48/2Lm M kg kmol +== 提馏段平均摩尔质量81.7391.99'86.86/2Vm M kg kmol +==84.6392.07'88.35/2Lm M kg kmol +== ⒋ 平均密度的计算⑴气相平均密度计算由理想气体状态方程计算,即精馏段气相平均密度3101.379.96 2.72/8.3145(85.65273.15)m Vm Vm m P M kg m RT ρ⨯===⨯+ 提馏段气相平均密度3'101.386.86' 2.83/'8.314(100.6273.15)m Vm Vm m P M kg m RT ρ⨯===⨯+ ⑵液相平均密度计算液相平均密度依下式计算,即 1i Lm i a ρρ=∑塔顶液相平均密度的计算由80.3D t =℃,查手册得3814.7/A kg m ρ= 3809.7/B kg m ρ= 31814.67/(0.995/814.80.005/809.7)LDm kg m ρ==+ 进料板液相平均密度的计算由91.0F t =℃,查手册得3802.8/A kg m ρ= 3799.2/B kg m ρ=进料板液相的质量分率0.53578.110.4940.53578.110.46592.13A a ⨯==⨯+⨯ 31800.97/(0.494/802.80.506/799.2)LFm kg m ρ==+ 塔底液相平均密度的计算由110.2W t =℃,查手册得3780.1/A kg m ρ= 3780.1/B kg m ρ=塔底液相的质量分率0.00478.110.00340.00478.110.99692.13AW a ⨯==⨯+⨯ 31780.1/(0.0034/780.10.9966/780.1)LWm kg m ρ==+精馏段液相平均密度为 3814.67800.97807.82/2Lm kg m ρ+== 提馏段液相平均密度为3800.97780.1'790.54/2Lm kg m ρ+==⒌ 液体平均表面张力的计算 液相平均表面张力依下式计算 即Lm i i x σσ=∑塔顶液相平均表面张力的计算由80.3D t =℃,查手册得21.23/A mN m σ= 21.66/B mN m σ=0.99521.230.00521.6621.23/LDm mN m σ=⨯+⨯=进料板液相平均表面张力的计算由91.0F t =℃,查手册得19.94/A mN m σ= 20.53/B mN m σ=0.53519.940.46520.5320.21/LFm mN m σ=⨯+⨯=塔底液相平均表面张力的计算由110.2W t =℃,查手册得17.65/A mN m σ= 18.4/B mN m σ=0.0117.650.9918.418.39/LWm mN m σ=⨯+⨯=精馏段液相平均表面张力 21.2320.2120.72/2Lm mN m σ+== 提馏段液相平均表面张力 20.2118.39'19.30/2Lm mN m σ+== ⒍ 液体平均粘度的计算液相平均粘度依下式计算 即lg lg Lm i i x μμ=∑塔顶液相平均粘度的计算由80.3D t =℃,查手册得0.307A mPa s μ=⋅ 0.310B mPa s μ=⋅lg 0.995lg 0.3070.005lg 0.310LDm μ=⨯+⨯解出 0.307LDm mPa s μ=⋅ 进料板平均粘度的计算由91.0F t =℃,查手册得 0.277A mPa s μ=⋅ 0.284B mPa s μ=⋅lg 0.494lg 0.2770.506lg 0.284LFm μ=⨯+⨯解出 0.280LFm mPa s μ=⋅由110.2W t =℃,查手册得0.232A mPa s μ=⋅ 0.252B mPa s μ=⋅lg 0.01lg 0.2330.99lg 0.252LWm μ=⨯+⨯解出 0.252LWm mPa s μ=⋅ 精馏段平均粘度0.3070.2800.2942Lm mPa s μ+==⋅ 提馏段平均粘度 0.2800.252'0.2662Lm mPa s μ+==⋅ 六、精馏塔的塔体工艺尺寸计算由上面可知精馏段 75.83/L kmol h =117.96/V kmol h =⒈ 塔径的计算精馏段的气、液相体积流率为3117.9679.960.963/36003600 2.72Vm s Vm VM V m s ρ⨯===⨯ 375.8381.480.00212/36003600807.82Lm s Lm LM L m s ρ⨯===⨯由max u =负荷因子0.220()20L C C σ=由史密斯关联图查得20C ,图的横坐标为1/21/20.002123600807.82()()0.03790.9633600 2.72s L s V L V ρρ⨯=⨯=⨯ 取板间距0.40T H m =,板上清液层高度取0.06L h m =,则0.34T L H h m -=由史密斯关联图,得知 200.072C =气体负荷因子 0.20.22020.72()0.072()0.07252020LC C σ==⨯=max 0.0725 1.250/u m s == 取安全系数为0.7,则空塔气速为max 0.70.7 1.2500.875/u u m s ==⨯=1.184D m === 按标准塔径圆整后为 1.2D m =塔截面积为 221.134T A D m π==实际空塔气速为 0.9630.852/1.13u m s == 提馏段的气、液相体积流率为 3117.9686.86' 1.006/36003600 2.83Vm s Vm VM V m s ρ⨯===⨯ 3147.3888.35'0.00458/36003600790.54Lm s Lm LM L m s ρ⨯===⨯由max u =负荷因子0.220()20L C C σ=由史密斯关联图查得20C ,图的横坐标为1/21/2'0.004583600790.54()()0.0761' 1.0063600 2.83s L s V L V ρρ⨯=⨯=⨯ 取板间距0.45T H m =,板上清液层高度取0.06L h m =,则0.39T L H h m -=由史密斯关联图,得知 200.081C =气体负荷因子 0.20.22019.30()0.081()0.08042020L C C σ==⨯=max 0.0804 1.34/u m s == 取安全系数为0.7,则空塔气速为max 0.70.7 1.340.938/u u m s ==⨯=1.17D m === 按标准塔径圆整后为 1.2D m =塔截面积为 221.134T A D m π==实际空塔气速为 1.0060.89/1.13u m s == ⒉ 精馏塔有效高度的计算精馏段有效高度为 (1)(131)0.4 4.8T Z N H m =-=-⨯=精精提馏段有效高度为 (1)(141)0.45 5.85T Z N H m =-=-⨯=提提在进料板上方开一个人孔,其高度为0.55m故精馏塔有效高度为0.5511.2Z Z Z m =++=精提七、塔板主要工艺尺寸的计算⒈ 溢流装置计算精馏段:因塔径 1.2D m =,所以可选取单溢流弓形降液管,采用凹形受液盘。
吉林化工学院化工原理课程设计化工原理课程设计任务书1.设计题目苯-甲苯二元筛板精馏塔设计2.设计条件在常压下连续筛板精馏塔中精馏分离苯-甲苯混合液。
要求进料组成X D=0.42,塔顶组成X F=0.985,塔底组成X W=0.015.已知参数:苯-甲苯混合液处理量80kmol/h,进料热状况q=0.97.塔顶压强 1atm(绝压)。
单板压降小于0.7KPa.回流比R=(1.1~2.0R min)。
3.设计任务:(1)完成该精馏塔的工艺设计,包括辅助设备及进出口管路的计算和选型;(2)画出带控制点工艺流程图、x-y相平衡图、塔板负荷性能图、塔板布置图、精馏塔工艺条件图;(3)写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。
指导教师:庄志军设计时间:2012年11月22日-2010年12月16日专业:化学工程与工艺班级:化工1003班姓名:任云霞学号:10110307吉林化工学院化工原理课程设计题目筛板精馏塔分离苯--甲苯工艺设计教学院化工与材料工程学院专业班级化工1003班学生姓名学生学号 ********指导教师庄志军2012年12月06日目录摘要.............................................................................................................................. - 1 -第1章绪论........................................................................................................................... - 2 -第2章精馏流程确定 ............................................................................................................. - 3 -第3章精馏塔的设计计算....................................................................................................... - 4 -3.1物料衡算.................................................................................................................. - 4 -3.2塔板数的确定........................................................................................................... - 5 -3.2.1相对挥发度α的求解 ........................................................................................ - 5 -3.2.2确定最小回流比Rmin和回流比 ........................................................................ - 6 -3.2.3精馏段、q线、提馏段方程求解........................................................................ - 6 -3.2.4逐板计算法求解NT ......................................................................................... - 7 -3.2.5全塔效率ET.................................................................................................... - 8 -3.2.6实际塔板数 .................................................................................................... - 9 -3.3工艺条件的计算........................................................................................................ - 9 -3.3.1操作压强Pm................................................................................................... - 9 -3.3.2温度∆tm...................................................................................................... - 10 -3.4物性数据计算......................................................................................................... - 10 -3.4.1平均相对分子质量Mm................................................................................... - 10 -3.4.2平均密度ρm................................................................................................. - 11 -3.4.3液体表面张力σm.......................................................................................... - 13 -3.4.4液体粘度μLm............................................................................................... - 15 -3.5塔的气液负荷计算 .................................................................................................. - 16 -3.6塔和塔板主要工艺尺寸计算 ..................................................................................... - 16 -3.6.1塔径D.......................................................................................................... - 16 -3.6.2溢流装置...................................................................................................... - 18 -3.6.3塔板布置...................................................................................................... - 19 -3.6.4筛孔数n与开孔率φ...................................................................................... - 20 -3.6.5塔的有效高度Z............................................................................................. - 21 -3.7.1塔板压降验算............................................................................................... - 21 -3.7.2雾沫夹带量ev的验算..................................................................................... - 22 -3.7.3漏液的验算 .................................................................................................. - 22 -3.7.4液泛验算...................................................................................................... - 23 -3.8塔板负荷性能图...................................................................................................... - 24 -3.8.1雾沫夹带线(1) .......................................................................................... - 24 -3.8.2液泛线......................................................................................................... - 26 -3.8.3液相负荷性能图............................................................................................ - 28 -3.8.5液相负荷下限线............................................................................................ - 29 -3.8.6操作弹性...................................................................................................... - 30 -第4章塔的热量衡算 ........................................................................................................... - 32 -4.1加热介质的选择...................................................................................................... - 32 -4.2冷却剂的选择......................................................................................................... - 32 -4.3比热容及汽化潜热的计算......................................................................................... - 32 -4.3.1塔顶温度tD下的比热容.................................................................................. - 32 -4.3.2进料温度tF下的比热容 .................................................................................. - 32 -4.3.3塔底温度tW下的比热容................................................................................. - 33 -4.3.4塔顶温度tD下的汽化潜热 .............................................................................. - 33 -4.4热量衡算................................................................................................................ - 33 -4.4.10℃时塔顶上升的热量QV的求解 ...................................................................... - 33 -4.4.2回流热的热量QR........................................................................................... - 34 -4.4.3塔顶馏出液的热量QD.................................................................................... - 34 -4.4.4进料的热量QF .............................................................................................. - 34 -4.4.5塔底残液的热量QW ...................................................................................... - 34 -4.4.6冷凝器消耗的热量QC .................................................................................... - 34 -4.4.7再沸器提供的热量QB.................................................................................... - 35 -第5章塔总体高度计算........................................................................................................ - 35 -5.2塔顶空间................................................................................................................ - 36 -5.3塔底空间................................................................................................................ - 36 -5.4人孔...................................................................................................................... - 36 -5.5进料处板间距......................................................................................................... - 36 -5.6裙座...................................................................................................................... - 36 -第6章塔的附属设备计算..................................................................................................... - 37 -6.1塔的接管................................................................................................................ - 37 -6.1.1进料管......................................................................................................... - 37 -6.1.2回流管......................................................................................................... - 38 -6.1.3塔底出料管 .................................................................................................. - 38 -6.1.4塔顶蒸汽出料管............................................................................................ - 38 -6.1.5塔底蒸汽出气管............................................................................................ - 39 -6.2换热器的选择......................................................................................................... - 39 -6.2.1冷凝器的选择............................................................................................... - 39 -6.2.2再沸器的选择............................................................................................... - 40 -6.3进料泵的选择......................................................................................................... - 40 -第7章结果汇总表............................................................................................................... - 42 -主要符号说明 ..................................................................................................................... - 44 -参考文献............................................................................................................................ - 47 -结束语......................................................................................................................... - 48 -摘要根据化工原理课程设计任务书的要求对苯-甲苯二元筛板精馏塔的主要工艺流程进行设计,并画出了精馏塔的工艺流程图和设备条件图,此设计针对二元物系的精馏问题进行分析、选取、计算、核算、绘图等,是较完整的精馏设计过程。
1设计任务及操作条件工艺条件及数据(1)原料液含苯42%(质量分率,下同);(2)馏出液含苯98%,残液含甲苯97%;(3)泡点进料;(4)料液可视为理想溶液;(5)生产能力:13000t/year 年开工7200小时。
(6)塔板类型:浮阀塔板操作条件(1)常压操作;(2)回流液温度为塔顶蒸汽的露点;(3)塔顶压力 4kPa(表压);(4)单板压降≤;(5)间接蒸汽加热,加热蒸汽压力为5kgf/cm2(绝压);(6)冷却水进口温度300C,出口温度450C;(7)设备热损失为加热蒸汽供热量的5%。
2厂址厂址为长沙地区。
3设计方案的确定本设计任务为分离苯-甲苯混合物。
对于二元混合物的分离,应采用连续精馏流程。
设计中采用泡点进料,将原料液通过预热器加热至泡点后送入精馏内。
塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器后送至储罐。
该物系属易分离物系,最小回流比较小,故操作比取最小回流比的2倍。
塔釜采用间接蒸气加热,塔底产品经冷却后送至储罐。
表1 苯-甲苯汽液平衡4主要工艺计算精馏塔的物料衡算(1)原料液及塔顶、塔底产品的摩尔分数=78.11kg/kmol苯的摩尔质量 Ma=92.13kg/kmol甲苯的摩尔质量 MbXF =0.4278.110.420.58 78.1192.13+=X D =0.9878.110.980.02 78.1192.13+=X W =0.0378.110.030.9778.1192.13+=图1精馏塔工艺流程图(2)原料液及塔顶、塔底产品的平均摩尔质量MF=⨯()⨯=85.67kg/kmolMD=⨯()⨯=78.35kg/kmolMW=⨯()⨯=91.64kg/kmol(3)物料衡算原料处理量 F=130001000 720085.67⨯⨯=h总物料衡算 =D+W`苯物料衡算⨯联立解得:D=h W=h表2物料衡算表进料出料项目 数量(kmol/h )项目 数量(kmol/h )进料F 合计产品D 塔底出量W 合计塔板数的确定(1)理论板层数N T 的求取苯-甲苯属理想物系,可采用图解法求理论板层数①由手册查得苯-甲苯物系的气液平衡数据,绘出x-y 图 见图2 ②求最小回流比及操作回流比0.00.10.20.30.40.50.60.70.80.9 1.00.00.10.20.30.40.50.60.70.80.91.0bf XfDWed g图2图解法求理论塔数示意图采用作图法求最小回流比。
分离苯--甲苯混合液的浮阀板式精馏塔工艺设计专 业: 化学工程与工艺 学 号: ********* * 名: * * 指导教师: 谭志斗 周红艳 日 期: 二零一一年四月十六日目录Context第一章前言1.1苯和甲苯在工业中的用途1.2精馏原理及其在工业生产中的应用1.3精馏操作的特点及其对塔设备的要求1.4常用板式塔的类型及本设计的选型1.5本设计所选塔的特性1.6相关物性参数说明第二章设计题目及设计任务书第三章工艺条件的确定和说明3.1确定操作压力3.2确定进料状态3.3确定加热剂和加热方式3.4确定冷却剂及其进出口温度第四章流程的确定和说明4.1流程4.2流程说明第五章精馏塔的设计计算5.1全塔的物料衡算5.1.1料液及塔顶底产品含苯的摩尔分率 5.1.2料液及塔顶底产品平均摩尔质量 5.1.3料液及塔顶底产品摩尔流率5.2回流比的确定5.3塔板数的确定5.4气液负荷计算5.4.1平均压强5.4.2平均分子量5.4.3液体的平均粘度5.4.4液体的平均密度5.4.5体积流量5.5 精馏塔的塔体工艺尺寸计算5.5.1 塔径的计算5.5.2精馏塔有效高度的计算5.6 塔板工艺结构尺寸的设计与计算5.6.1溢流装置计算5.7 浮阀的布置5.7.1 阀孔速度5.7.2 开孔率5.7.3 阀孔总面积5.7.4 浮阀总数5.7.5 塔板上布置浮阀的有效操作面积5.7.6 浮阀的排列5.8 塔板流动性能校核5.8.1液沫夹带量校核5.8.2 塔板阻力校核5.8.3 降液管液泛校核5.8.4 液体在降液管中停留时间校核5.8.5严重漏液校核5.9 塔板负荷性能图5.9.1漏液线5.9.2 液沫夹带线5.9.3 液相负荷下限线5.9.4 液相负荷上限线5.9.5液泛线5.9.6塔板性能负荷图5.9.7浮阀塔的工艺设计计算结果总表第六章塔的机械设计6.1、设计条件6.2、按计算压力计算塔体和封头厚度6.3、塔设备质量载荷计算6.4、风载荷和风弯矩计算6.5、地震弯矩计算6.6、各种载荷引起的轴向应力6.7、塔体和裙座危险截面的强度及稳定校核6.8、塔体水压试验和吊装时的应力校核6.9、基础环设计6.10、地脚栓设计第七章设计结果的讨论及说明第八章参考文献第九章课程设计总结致谢中文摘要:目前用于气液分离的传质设备主要采用板式塔,对于二元混合物的分离,应采用连续精馏过程。
摘要在化工生产中,精馏是最常用的单元操作,,是分离均相液体混合物的最有效方法之一。
塔设备一般分为级间接触式和连续接触式两大类。
前者的代表是板式塔,后者的代表则为填料塔。
70年代初能源危机的出现,突出了节能问题。
随着石油化工的发展,填料塔日益受到人们的重视,此后的20多年间,填料塔技术有了长足的进步,涌现出不少高效填料与新型塔。
苯和甲苯的分离对于工业生产具有重要的意义。
关键词:苯甲苯精馏塔目录摘要 (1)目录 (2)前言 (3)第一章文献综述 (4)1.1苯 (4)1.1.1苯的来源 (4)1.1.2苯的性质 (5)1.2甲苯 (6)1.2.1甲苯的来源 (6)1.2.2甲苯的性质 (6)1.3精馏塔的介绍 (8)1.4精馏原理 (9)1.5精馏技术的进展 (9)第二章设计部分 (11)2.1设计任务 (11)2.2设计方案的确定 (11)2.2.1装置流程的确定 (11)2.2.2操作压力的选择 (12)2.2.3进料热况的选择 (12)2.2.4加热方式的选择 (13)2.2.5回流比的选择 (13)2.3精馏塔的工艺计算 (13)2.3.1精馏塔的物料衡算 (13)2.3.2理论板层数NT的求取 (14)2.3.3实际板层数的求取 (15)2.3.4精馏塔的工艺条件及有关物性数据的计算 (15)2.3.5精馏塔的塔体工艺尺寸计算 (17)2.3.6塔板主要工艺尺寸的计算 (18)2.3.7筛板的流体力学验算 (20)2.3.8塔板负荷性能图 (22)第三章结论 (26)参考文献 (28)附录 (29)致谢 (32)前言根据资料显示:苯沸点80.1度,而甲苯是110.6,两样物质化学性质相近,故只能采用沸点不同进行分离,可将混合物置于水浴中,进行蒸馏,这种方法只能得到的纯度不可能达到百分之九十九,故可参考酒精和水分离方法,当用普通的蒸馏方法提纯达到97.6%(体积分数)之前,挥发系数K大于1,但到了97.6%这个点时,挥发系数K就会等于1,这时酒精再也不能从混合液中挥发出来,于是就再下不能往下得到纯度更高的酒精溶液,同样,甲苯和苯混全物中,当用常规方法提取苯到一定浓度时,当苯的纯度达到了像97.6%这样的这个点时,就再也不能往下提纯了,只有用负压精蒸的方法才能进行,当压力下降到一定值时,再蒸馏就可以达到更到纯度了,甚至可达到100%。
襄樊学院化工原理课程设计论题:分离苯-甲苯混合物的精馏塔设计系别:化学工程与食品科学学院班级:化学工程与工艺0711指导老师:***学生姓名:**学号: ********目录一、前言 (2)(一)塔设备设计概述: (2)(二)板式精馏塔设备选型及设计 (2)二、设计方案的确定 (3)三、精馏塔的工艺计算和论叙 (4)(一)精馏塔的物料衡算 (4)(二)塔板数的确定 (5)(四).塔体工艺尺寸的计算: (9)(五)板式塔的塔板工艺尺寸计算: (11)四、筛板的流体力学验算 (14)五、塔板负荷性能图: (17)1、漏夜线: (17)2、液沫夹带线: (18)3、液相负荷下限线: (19)4、液相负荷上限线: (19)5、液泛线: (19)6、负荷性能图: (20)六、板式塔的结构与附属设备: (21)(一)塔顶结构: (21)七、塔体设计总表: (22)八、方案优化 (23)一、前言(一)塔设备设计概述:塔设备是化工、石油化工和炼油等生产中最重要的设备之一,他可以使气(或汽)液或液液两相紧密接触,达到相际传质及传热的目的。
在化工厂、石油化工厂、炼油厂等中,塔设备的性能对于整个装置的产品产量、质量、生产能力和消耗定额,以及三废处理和环境保护等各方面都有重大影响。
塔设备中常见的单元操作有:精馏、吸收、解吸和萃取等。
此外,工业气体的冷却和回收、气体的湿法净制和干燥,以及兼有气液两相传质和传热的增湿和减湿等。
最常见的塔设备为板式塔和填料塔两大类。
作为主要用于传质过程的塔设备,首先必须使气(汽)液两相能充分接触,以获得高的传质效率。
此外,为满足工业生产的需要,塔设备还必须满足以下要求:1、生产能力大;2、操作稳定,弹性大;3、流体流动阻力小;4、结构简单、材料耗用量少,制造和安装容易;5、耐腐蚀和不易阻塞,操作方便,调节和检修容易。
(二)板式精馏塔设备选型及设计因为板式塔处理量大、效率高、清洗检修方便且造价低,故工业上多采用板式塔。
因而本课程设计要求设计板式塔。
1、工业上常见的几种的板式塔及其优缺点:Ⅰ、浮阀塔:在塔板开孔上方,安装可浮动的阀片,浮阀可随气体流量的变化自动调节开度,可避免漏液,操作弹性大,造价低,且安装检修方便,但对材料的抗腐蚀性能要求高。
Ⅱ、筛孔塔:结构简单、造价低廉、筛板塔压降小、液面落差也较小、生产能力及塔板效率都较泡罩塔高,故应用广泛。
Ⅲ、泡罩塔:其气体通道是升气管和泡罩,由于升气管高出塔板,即使在气体负荷很低时也不会发生严重漏液,操作弹性大,升气管为气液两相提供了大量的传质界面。
但泡罩塔板结构复杂,成本高,安装检修不便,生产能力小。
综合考虑最终选择筛孔式精馏塔。
2、设计板式塔的要求及简易流程首先应根据已给定的操作条件,由图解法或解析法求得理论塔板数、选定或估算塔板效率,从而测得实际塔板数,然后对以下内容进行设计或计算:Ⅰ、塔高的计算:包括塔的主体高度、顶部与底部空间的高度,以及裙座的高度Ⅱ、塔径的计算。
Ⅲ、塔内件的设计:主要是塔盘的工艺和结构设计,此多此还包括,塔的进出口、防冲档板、防涡器、除沫器等的设计计算。
设计流程简略图流程:装置的有关操作条件→给定的塔板设计条件→确定塔径→溢流区的设计→气液接触区的设计→各项核对计算。
二、设计方案的确定1.操作压力:蒸馏操作可在常压、加压或减压下进行,应该根据处理物料的性能和设计总原则来确定操作压力。
例如对于热敏感物料,可采用减压操作。
本次设计为一般物料因此,采用常压操作。
2.进料状况:进料状态有五种:过冷液,饱和液,气液混合物,饱和气,过热气。
但在实际操作中一般将物料预热到泡点或近泡点,才送入塔内。
这样塔的操作比较容易控制。
不受季节气温的影响,此外泡点进料精馏段与提馏段的塔径相同,在设计和制造上也叫方便。
本次设计采用泡点进料即q=1。
3.加热方式蒸馏釜的加热方式一般采用间接加热方式,若塔底产物基本上就是水,而且在浓度极稀时溶液的相对挥发度较大,便可以直接采用直接加热。
直接蒸汽加热的优点是:可以利用压力较低的蒸汽加热,在釜内只需安装鼓泡管,不需安装庞大的传热面,这样,操作费用和设备费用均可节省一些,然而,直接蒸汽加热,由于蒸汽的不断涌入,对塔底溶液起了稀释作用,在塔底易挥发物损失量相同的情况下,塔釜中易于挥发组分的浓度应较低,因而塔板数稍微有增加。
但对有些物系,当残液中易挥发组分浓度低时,溶液的相对挥发度大,容易分离故所增加的塔板数并不多,此时采用直接蒸汽加热是合适的。
4.冷却方式塔顶的冷却方式通常水冷却,应尽量使用循环水。
如果要求的冷却温度较低。
可考虑使用冷却盐水来冷却。
5.热能利用蒸馏过程的特性是重复进行气化和冷凝。
因此,热效率很低,可采用一些改进措施来提高热效率。
因此,根据上叙设计方案的讨论及设计任务书的要求,本设计采用常压操作,泡点进料,间接蒸汽加热以及水冷的冷却方式,适当考虑热能利用。
三、精馏塔的工艺计算和论叙(一)精馏塔的物料衡算1、原料液及塔顶、塔底产品的摩尔分率苯的摩尔质量:M B =78kg/kmol 甲苯的摩尔质量:M B =92kg/kmol摩尔分率: X F =0.5 X D =0.99 X W =0.01 2、相对挥发度α的计算:①、各温度下苯和甲苯的饱和蒸汽压列表:计算公式为:00B A B P P X P -=;0A AA P X Y P =③、计算各温度下的苯对甲苯的相对挥发度:计算公式为:(1)(1)AA A A Y X Y X α-=-0A B P P α=或 理想状态下相对挥发度:苯的相对挥发度一般应用各温度下的挥发度的几何平均值或者算术平均值表示,本设计中使用个温度下的几何平均值来表示,α=2.453、原料液及塔顶、塔液产品的平均摩尔质量:料液的平均摩尔质量M F=0.5*78+(1-0.5)*92=85kg/kmol塔顶产品的平均摩尔质量M D=0.99*78+(1-0.99)*92=78.14 kg/kmol塔液产品的平均摩尔质量M W=0.01*78+(1-0.01)*92=91.86kg/kmol4、物料衡算:料液流量 F=110000000/300/24/85 =179.74 Kmol/h;总物料衡算: F=D+W苯物料衡算: F* X F =D* X D +W* X W代入数值解方程组得:塔顶产品(馏出液)流量D=89.87 Kmol/h;塔底产品(釜液)流量W=89.87 Kmol/h。
(二)塔板数的确定1、理论板层数的求取苯-甲苯属于理想物系,可以用图解法求理论板数。
(1)、求最小回流比及操作线回流比。
进料状态的选择:饱和液体进料(q=1)。
进料状态有五种,即过冷液体进料(q>1)、饱和液体进料(q=1)、气液混合进料(1>q>0)、饱和蒸汽进料(q=0)和过热蒸汽进料(q<0).。
基于工程和经济得综合考虑,这里选择饱和液体进料,其主要原因是:A、保证塔的操作稳定;B、避免季节气温的影响;C、为使精馏段、提馏段保持相同的路径,便于制造。
已设:饱和液体进料(q=1)则X P= X F=0.5;Yp=āX p/[1+(ā-1) X p]=2.45*0.5/[1+(2.45-1)*0.5]=0.71R min=(X D-Y P)/(Y P-X P)=(0.99-0.71)/(0.71-0.5)=1.33根据作图(1-5)和吉利兰关联图法综合得:为最理想选择,即R=2.75。
用逐板法计算理论板数如下:a、求精馏段得气液相负荷所以精馏段液相质量流量:L( Kmol/h)= RD=2.75*89.87=247.143;精馏段气相质量流量:V( Kmol/h)=(R+1)D=3.75*89.87=337.013所以精馏段操作线方程:Yn+1=R* Xn /(R+1)+X D/(R+1) =0.73Xn+0.27;因为泡点进料,所以进料热状态 q=1所以,提馏段液相质量流量: L'( Kmol/h)=L+qF=247.143+1*179.74=426.883;提馏段气相质量流量: V'( Kmol/h)=V-(1-q)F=V=337.013;所以,提馏段操作线方程:Ym+1' = L' Xm / (L'-W)-WXw/ (L'-W) =1.27Xm-0.04。
b、逐板法计算如2、理论塔板数的计算(1)联立精馏段和提馏段操作线方程解得Xn=0.57且前面已算得Xw=0.01; (2)用逐板计算法计算理论塔板数第一块板的气相组成应与回流蒸汽的组成一致,所以Y1=X D,然后可以根据平衡方程可得 X1,从第二块板开始应用精馏段操作线方程求 Yn,用平衡方程求Xn. 第一板 Y1= X D 0.99X1=Y1/[a -(a-1)Y1] 0.9730第二板 Y2=0.73Xn+0.27 0.98X2= Y2/[a -(a-1)Y2] 0.9568第三板 Y3=0.73Xn+0.27 0.96X3= Y3/[a -(a-1)Y3] 0.8971第四板 Y4= 0.73Xn+0.27 0.92X4= Y4/[a -(a-1)Y4] 0.8070第五板 Y5=0.73Xn+0.27 0.85X5= Y5/[a -(a-1)Y5] 0.6732第六板 Y6= 0.73Xn+0.27 0.76X6= Y6/[a -(a-1)Y6] 0.5352第七板 Y7= 0.73Xn+0.27 0.65X7= Y7/[a -(a-1)Y7] 0.4031<0.5第八板 Y8=1.50Xm-0.50 0.2043X8= Y8/[a -(a-1)Y8] 0.04070第九板 Y9= 1.50Xm-0.50 0.1181X9= Y9/[a -(a-1)Y9] 0.0295第十板 Y10= 1.50Xm-0.50 0.0424X10= Y10/[a -(a-1)Y10] 0.0099<0.01因为釜底间接加热,所以共需要10-1=9块塔板。
N=10;进料板位置Nf=5;如上图得:总理论板数T(3)实际塔板数的计算根据内插法,可查得:苯在泡点时的黏度μa(mPa.s)=0.25,甲苯在泡点是的黏度μb(mPa.s)=0.30,所以:平均黏度μav(mPa.s)=μa*xf+μb*(1-xf)=0.25*0.5+0.30*(1-0.5)=0.275; 所以:总板效率 Et=0.49 (a*μav)¯0.245=0.4674实际板数 Ne=Nt/Et=21.4=22实际精馏段塔板数为 Ne1=10.69=11实际提馏段塔板数为 Ne2=10.69=11由上可知,在求取实际板数时,以精馏段,提馏段分别计算为佳。