电机学上册复习重点——第2篇变压器电子教案
- 格式:doc
- 大小:580.00 KB
- 文档页数:11
高二物理《变压器》教案3篇高二物理《变压器》教案2中国民用供电使用三相电作为楼层或小区进线,多用星形接法,其相电压为220V,而线电压为381V(近似值),需要中性线,一般也都有地线,即为三相五线制。
而进户线为单相线,即三相中的一相,对地或对中性线电压均为220V。
一些大功率空调等家用电器也使用三相四线制接法,此时进户线必须是三相线。
工业用电多使用6kV以上高压三相电进入厂区,经总降压变电所、总配电所或车间变电所变压成为较低电压后以三相或单相的形式深入各个车间供电。
一、知识目标1、知道三相交变电流是如何产生的.了解三相交变电流是三个相同的交流电组成的.2、了解三相交变电流的图象,知道在图象中三个交变电流在时间上依次落后1/3周期.3、知道产生三相交变电流的三个线圈中的电动势的最大值和周期都相同,但它们不是同时达到最大值(或为零).4、了解三相四线制中相线(火线)、中性线、零线、相电压、线电压等概念.5、知道什么是星形连接、三角形连接、零线、火线、线电压及相电压.二、能力目标1、培养学生将知识进行类比、迁移的能力.2、使学生理解如何用数学工具将物理规律建立成新模型3、训练学生的空间想象能力的演绎思维能力.4、努力培养学生的实际动手操作能力.三、情感目标1、通过了解我国的电力事业的发展培养学生的爱国热情2、让学生在学习的过程中体会到三相交流电的对称美教学建议教材分析三相电流在生产和生活中有广泛的应用,学生应对它有一定的了解.但这里只对学生可能接触较多的知识做些介绍,而不涉及太多实际应用中的具体问题.三相交变电流在生产生活实际中应用广泛,所以其基本常识应让每个学生了解.教法建议1、在介绍三相交变电流的产生时,除课本中提供的插图外,教师可以再找一些图片或模型,使学生明白,三个相同的线圈同时在同一磁场中转动,产生三相交变电流,它们依次落后1/3周期.三相交变电流就是三个相同的交变电流,它们具有相同的最大值、周期、频率.每一个交变电流是一个单相电.2、要让学生知道,三个线圈相互独立,每一个都可以相当于一个独立的电源单独供电.由于三个线圈平面依次相差120o角.它们达到最大值(或零)的时间就依次相差1/3周期.用挂图配合三相电机的模型演示,效果很好.让三个线圈通过星形连接或三角形连接后对外供电,一方面比用三个交变电流单独供电大大节省了线路的材料,另一方面,可同时提供两种不同电压值的交变电流.教师应组织学生观察生活实际中的交变电流的连接方式,理解课本中所介绍的三相电的连接.教学设计方案三相交变电流教学目的1、知道三相交变电流的产生及特点.2、知道星形接法、三角形接法和相电压、线电压知识.教具:演示用交流发电机教学过程:一、引入新课本章前面学习了一个线圈在磁场中转动,电路中产生交变电流的变化规律.如果三组互成120°角的线圈在磁场中转动,三组线圈产生三个交变电流.这就是我们今天要学习的三相交变电流.板书:第六节三相交变电流二、进行新课演示单相交流发电机模型:只有一个线圈在磁场中转动,电路中只产生一个交变电动势,这样的发电机叫单相交流发电机.它发出的电流叫单相交变电流.演示:三相交流发电机模型,提出研究三相交变电流的产生.板书:一、三相交变电流的产生1、三相交变电流的.产生:互成120°角的线圈在磁场中转动,三组线圈各自产生交变电流2、三相交变电流的特点:最大值和周期是相同的.板书:三组线圈到达最大值(或零值)的时间依次落后1/3周期我们还可以用图像描述三相交变电流板书:三相交变电流的图像三组线圈产生三相交变电流可对三组负载供电,那么三组线圈和三个负载是怎样连接的呢?板书:二、星形连接和三角形连接1、星形连接说明:在实际应用中,三相发电机和负载并不用6条导线连接,而是把线圈末端和负载之间用一条导线连接,这就是我们要学习的星形连接①把线圈末端和负载之间用一条导线连接的方法叫星形连接(符号Y)②端线、火线和中性线、零线从每个线圈始端引出的导线叫端线,也叫相线,在照明电路里俗称火线.从公共点引出的导线叫中性线,照明电路中,中性线是接地的叫做零线.③相电压和线电压端线和中性线之间的电压叫做相电压两条端线之间的电压叫做线电压.我国日常电路中,相电压是220V、线电压是380V2、三角形连接①把发电机的三个线圈始端和末端依次相连的方式叫三角板连接(符号△)②相电压和线电压两条端线之间的电压就是其中一个线圈的相电压,所以三角形连接中相电压等于线电压.高二物理《变压器》教案3教学目标一、知识目标1、知道变压器的构造.知道变压器是用来改变交流电压的装置.2、理解互感现象,理解变压器的工作原理.3、掌握理想变压器工作规律并能运用解决实际问题.4、理解理想变压器的原、副线圈中电压、电流与匝数的关系,能应用它分析解决基本问题.5、理解变压器的输入功率等于输出功率.能用变压器的功率关系解决简单的变压器的电流关系问题.6、理解在远距离输电时,利用变压器可以大大降低传输线路的电能消耗的原因.7、知道课本中介绍的几种常见的变压器.二、能力目标1、通过观察演示实验,培养学生物理观察能力和正确读数的习惯.2、从变压器工作规律得出过程中培养学生处理实验数据及总结概括能力.3、从理想变压器概念引入使学生了解物理模型建立的基础和建立的意义.三、情感目标1、通过原副线圈的匝数与绕线线径关系中体会物理学中的和谐、统一美.2、让学生充分体会能量守恒定律的普遍性及辩证统一思想.3、培养学生尊重事实,实事求是的科学精神和科学态度.教学建议教材分析及相应的教法建议1、在学习本章之前,首先应明确的是,变压器是用来改变交变电流电压的.变压器不能改变恒定电流的电压.互感现象是变压器工作的基础.让学生在学习电磁感应的基础上理解互感现象.这里的关键是明白原线圈和副线圈有共同的铁芯,穿过它们的磁通量和磁通量的变化时刻都是相同的.因而,其中的感应电动势之比只与匝数有关.这样原、副线圈的匝数不同,就可以改变电压了.2、在分析变压器的原理时,课本中提到了次级线圈对于负载来讲,相当于一个交流电源一般情况下,忽略变压器的磁漏,认为穿过原线圈每一匝的磁通量与穿过副线圈的磁通量总是相等的.这两个条件,都是理想变压器的工作原理的内容.利用课本中的这些内容,教师在课堂上,首先可以帮助学生分析变压器原理,原线圈上加上交变流电后,铁心中产生交变磁通量;在副线圈中产生交变电动势,则副线圈相当于交流电源对外供电.在这个过程中,如果从能量角度分析,可以看成是电能(原线圈中的交变电流)转换成磁场能(铁心中的变化磁场),磁场能又转换成电能(副线圈对外输出电流).所以,变压器是一个传递能量的装置.如果不计它的损失,则变压器在工作中只传递能量不消耗能量.要使学生明白,理想变压器是忽略了变压器中的能量损耗,它的输出功率与输入功率相等,这样才得出原、副线圈的'电压、电流与匝数的关系式.在解决有两个副线圈的变压器的问题时,这一点尤其重要.当然,在初学时,有两个副线圈的变压器的问题,不做统一要求,不必急于去分析这类问题.对于学有余力的学生,可引导他们进行分析讨论.3、学生对变压器原理和变压器中原、副线圈的电压、电流的关系常有一些似是而非的模糊认识,引导学生认真讨论章后习题,对学生澄清认识会有所帮助.4、变压器的电压公式是直接给出的.课本中利用原、副线圈的匝数关系,说明了什么是升压变压器和什么是降压变压器,这也是为了帮助学生能记住电压关系公式.利用变压器的输出功率和输人功率相等的关系,得到了 I1I2=U1U2.建议教师做好用输出负载调节输入功率的演示实验.引导学生注意观察,当负载端接入的灯泡逐渐增多时,原、副线圈上的电压基本上不发生变化,原线圈中的电流逐渐增大,副线圈中的电流也逐渐增大.5、介绍几种常见的变压器,是让学生能见到真实的变压器的外型和了解变压器的实际构造.教师应当尽可能多地找一些变压器的给学生看一看.变压器在生产和生活中有十分广泛的应用.课本中介绍了一些,教学中可根据实际情况向学生进行介绍,或看挂图、照片、实物,或参观,以开阔学生眼界,增加实际知识6、电能的输送,定性地说明了在远距离输送电能时,采用变压器进行高压输电可以大大减少输电线路上的电能损失.这里重点描述了输电线上的电流大小与造成的电热损失的关系,教师应帮助学生分析,理解采用高压输电的必要性.教学重点、难点、疑点及解决办法1、重点:变压器工作原理及工作规律.2、难点:(l)理解副线圈两端的电压为交变电压.(2)推导变压器原副线圈电流与匝数关系.(3)掌握公式中各物理量所表示对象的含义.3、疑点:变压器铁心是否带电即如何将电能从原线圈传输出到副线圈.4、解决办法:(l)通过演示实验来研究变压器工作规律使学生能在实验基础上建立规律.(2)通过理想化模型建立及理论推导得出通过原副线圈电流与匝数间的关系.(3)通过运用变压器工作规律的公式来解题使学生从实践中理解公式各物理量的含义。
电机变压器教案全绪言一、电机在电能产生、传输、转换中的的作用1、电能的产生。
原动机带动三相同步发电机转动产生三相电能。
2变压器的作用。
广泛用于远距离输电。
3、电动机的作用。
由此可见、电机、变压器在电能利用的三个重要环节上(产生、传输、转换),都起到不可替代的作用。
二、电机发展概况:近代电机发展的主要成就表现在以下几个方面:1、电机容量的不断提高。
2、中、小电机的技术及经济指标不断地提高。
3、电机制造中不断应用新技术、新材料。
4、新型的特种电机不断出现。
三、本课程的任务和要求掌握变压器、异步电动机、直流电动机的结构、原理、主要特性、使用和维护知识。
第一单元变压器的分类、结构和工作原理课题一变压器的分类和用途变压器是利用电磁感应原理制成的静止电气设备。
它能将某一电压值的交流电变换成同频率的所需电压值的交流电。
以满足高压输电、低压供电及其他用途的需要。
一.变压器的用途1、变压器的工作原理实际上是利用电磁感应原理,把一次的电能传给二次的负载。
2、变压器的效率一般很高,容量越大,效率越高。
3、在电能的输送过程中,总是把电压提高,因为传输一定的电功率,电压越高,电流也就越小。
这样即可以节省导线(截面积小)和其他架设费用也可以减少送电时导线上的损耗(P?I2R)4、电力系统中使用的电力变压器可分为升压、降压和配电变压器。
5、改变交流电压、交流电流、变换阻抗及改变相位。
二.变压器的分类表1—1课题二变压器的结构与冷却方式一变压器的结构(油浸式为例)变压器的主要部分是绕组和铁心,由他们组成器身。
图见书7—12页1变压器的绕组(1)作用:绕组是变压器的电路部分。
(2)材料:常用绝缘铜线或铝线绕制而成。
(3)绕组命名:接电源的绕组称一次绕组。
接负载的绕组称二次绕组。
也可按绕组所接电压高低分为高压绕组和低压绕组。
(4)绕组类型:按绕组绕制方式不同可分为同心绕组和交叠绕组两种类型。
A 同心绕组同心绕组是将一次、二次侧线圈套在同一铁心柱的内外层,一般低压绕组在内层,高压绕组在外层。
可编辑修改精选全文完整版1-1变压器的分类和用途【教学过程】:小结:变频器的分类及用途1-2变压器的结构与冷却方式【教学过程】:二、变压器的冷却方式1、三相油浸自冷式2、三相油浸风冷式3、三相强迫油循环风冷式4、三相强迫油循环水冷式三、变压器的主要附件1、气体继电器2、分接开关3、绝缘套管4、压力释放阀5、测温装置小结:变压器的结构及冷却方式1-3变压器的原理【教学过程】:(2)变压器中存在漏磁通(3)变压器铁心中存在铁耗二、变压器的负载运行1、磁动势平衡方程3、阻抗变换4、变压器的外特性5、电压调整率6、变压器的损耗和效率(1)铁耗 P fe P fe≈p o(2) 铜耗2-1 单相变压器绕组的极性【教学过程】:一、极性的意义1、直流电源的极性恒定不变2、交流电源的极性只存在瞬时极性3、单相变压器的极性定义:变压器一次、二次绕组在同一磁通作用下所产生的感应电动势之间的相位关系,用同名端来标记。
4、变压器绕组的连接和极性的重要性(1)绕组串联正向串联与反向串联二、变压器绕组的极性判定1、直观法2、仪表测量法(1)直流法2-2 三相变压器绕组的连接及首尾判别【教学过程】:2-3三相芯式变压器绕组的连接组别【教学过程】:2-4电力变压器的铭牌参数【教学过程】:3-1三相变压器的并联运行【教学过程】:3-2变压器的维护及检修【教学过程】:4-1自耦变压器【教学过程】:4-2仪用变压器【教学过程】:4-3电焊变压器【教学过程】:5-1电动机的种类和用途【教学过程】:5-2三相异步电动机的结构【教学过程】:5-3三相异步电动机的拆装【教学过程】:。
第二章:变压器主要内容:变压器的工作原理,运行特性,基本方程式等效电路相量土,变压器的并联运行及三相变压器的特有问题。
2-1变压器的工作原理本节以普通双绕组变压器为例介绍变压器的工作原理,基本结构和额定值。
一、 基本结构变压器的主要部件是铁心和绕组,它们构成了变压器的器身。
除此之外,还有放置器身的盛有变压器油的油箱、绝缘套管、分接开关、安全气道等部件。
主要介绍铁心和绕组的结构。
1、铁心变压器的铁心既是磁路,也是套装绕组的骨架。
铁心分:心柱:心柱上套装有绕组。
铁轭:形成闭合磁路为了减少铁心损耗,通常采用含硅量较高,厚度为0.33mm 表面涂有绝缘漆的硅钢片叠装而成。
铁心结构的基本形式分心式和壳式两种心式:铁轭靠着绕组的顶面和底面。
而不包围绕组侧面,见图2-2特结构较为简单,绕组的装配及绝缘也较为容易,所以国产变压器大多采用心式结构。
(电力变压器常采用的结构)壳式:铁轭不仅包围顶面和底面,也包围绕组的侧面。
见图2-3,这种结构机械强度较好,但制造工艺复杂,用材料较多。
铁心的叠装分为对接和叠接两种对接:将心柱和铁轭分别叠装和夹紧,然后再把它们拼在一起。
工艺简单。
迭接:把心柱和铁轭一层一层的交错重叠,工艺复杂。
由于叠接式铁心使叠片接缝错开,减小接缝处的气隙,从而减小了励磁电流,同时这种结构夹紧装置简单经济可靠性高,多采用叠接式。
缺点:工艺上费时2、绕组绕组是变压器的电路部分,用纸包或纱包的绝缘扁线或圆线绕成。
接入电能的一端称为原绕组(或一次绕组)输出电能的一端称为付绕组(或二次绕组)一、二次绕组中电压高的一端称高电压绕组,低的一端称低电压绕组高压绕组匝数多,导线细;低压绕组匝数少,导线粗。
因为不计铁心的损耗,根据能量的守恒原理S I U I U ==2211 (s 原付绕组的视在功率)电压高的一端电流小所以导线细从高低压绕组的相对位置来看,变压器绕组可以分为同心式和交叠式两类同心式:高低压绕组同心的套在铁心柱上。
电工与电子技术-变压器与电动机电子教案一、教学目标1. 让学生了解和掌握变压器的工作原理、构造及特性,能够运用变压器进行电压和电流的转换。
2. 使学生了解电动机的分类、工作原理和性能,能够选择合适的电动机并掌握其控制方法。
3. 培养学生运用电工与电子技术知识解决实际问题的能力,提高学生的实践操作技能。
二、教学内容1. 变压器:变压器的工作原理、构造、特性及应用。
2. 电动机:电动机的分类、工作原理、性能及控制方法。
三、教学方法1. 采用讲授法,讲解变压器和电动机的基本原理、构造和性能。
2. 利用实物展示和图片,帮助学生直观地理解变压器和电动机的内部结构和工作过程。
3. 通过案例分析和实践操作,培养学生的实际操作能力和问题解决能力。
四、教学准备1. 准备相关的教学PPT和教学视频,用于讲解和展示变压器和电动机的原理和结构。
2. 准备实物模型或图片,用于直观展示变压器和电动机的内部结构。
3. 准备实验设备和材料,用于学生的实践操作和实验观察。
五、教学过程1. 引入:通过讲解电工与电子技术在现代社会中的重要性,引出本节课的主题:变压器与电动机。
2. 讲解:讲解变压器的工作原理、构造和特性,以及电动机的分类、工作原理和性能。
3. 展示:利用实物展示和图片,展示变压器和电动机的内部结构和工作过程。
4. 案例分析:分析实际应用中的变压器和电动机,让学生了解其在工作中的作用和重要性。
5. 实践操作:安排学生进行实验操作,观察和记录变压器和电动机的工作情况。
6. 总结:对本节课的内容进行总结,强调重点和难点。
7. 作业布置:布置相关的练习题,巩固学生对变压器和电动机的理解和掌握。
六、教学评估1. 采用课堂提问、作业批改和实验报告等方式进行教学评估。
2. 关注学生在课堂上的参与度和理解程度,及时发现并解决问题。
3. 评估学生的实践操作能力,要求学生能够独立完成实验操作并正确记录数据。
七、教学拓展1. 介绍变压器和电动机在现代工业中的应用领域,如电力系统、交通运输、家用电器等。
电机学上册复习重点——第2篇变压器第二篇 变压器一、填空:1. 一台单相变压器额定电压为380V/220V ,额定频率为50HZ ,如果误将低压侧接到380V 上,则此时m Φ ,0I ,m Z ,Fe p 。
(增加,减少或不变)答:m Φ增大,0I 增大,m Z 减小,Fe p 增大。
2. 一台额定频率为50Hz 的电力变压器接于60Hz ,电压为此变压器的6/5倍额定电压的电网上运行,此时变压器磁路饱和程度 ,励磁电流 ,励磁电抗 ,漏电抗 。
答:饱和程度不变,励磁电流不变,励磁电抗增大,漏电抗增大。
3. 三相变压器理想并联运行的条件是(1) ,(2) ,(3) 。
答:(1)空载时并联的变压器之间无环流;(2)负载时能按照各台变压器的容量合理地分担负载;(3)负载时各变压器分担的电流应为同相。
4. 变压器空载运行时功率因数很低,其原因为 。
答:激磁回路的无功损耗比有功损耗大很多,空载时主要由激磁回路消耗功率。
5. 一台变压器,原设计的频率为50Hz ,现将它接到60Hz 的电网上运行,额定电压不变,励磁电流将 ,铁耗将 。
答:减小,减小。
6. 引起变压器电压变化率变化的原因是 。
答:负载电流的变化。
7.如将额定电压为220/110V的变压器的低压边误接到220V电压,则激磁电流将,变压器将。
答:增大很多倍,烧毁。
8.联接组号不同的变压器不能并联运行,是因为。
答:若连接,将在变压器之间构成的回路中引起极大的环流,把变压器烧毁。
9.变压器副边的额定电压指。
答:原边为额定电压时副边的空载电压。
10.通过和实验可求取变压器的参数。
答:空载和短路。
11.变压器的结构参数包括,,,,。
答:激磁电阻,激磁电抗,绕组电阻,漏电抗,变比。
12.既和原边绕组交链又和副边绕组交链的磁通为,仅和一侧绕组交链的磁通为。
答:主磁通,漏磁通。
13.变压器的一次和二次绕组中有一部分是公共绕组的变压器是。
答:自耦变压器。
14.并联运行的变压器应满足(1),(2),(3)的要求。
答:(1)各变压器的额定电压与电压比应相等;(2)各变压器的联结组号应相同;(3)各变压器的短路阻抗的标幺值要相等,阻抗角要相同。
15.变压器运行时基本铜耗可视为,基本铁耗可视为。
答:可变损耗,不变损耗。
16、变压器由空载到负载,其主磁通Φ的大小________________________。
变压mΦ的作用________________________________。
器负载时主磁通m(基本不变;传递能量的媒介)17、变压器等值电路中R是代表________________________。
变压器等值电路mX是代表___________________________________。
(反映铁损的等效电阻;中m反映铁芯磁化性能的参数)18、电压互感器在使用时,二次侧不允许________。
电流互感器在使用时,二次侧不允许________。
(短路;开路)19、变压器短路试验一般___________侧测量,空载试验一般在__________侧测量。
变压器短路试验可以测得___________阻抗,空载试验可以测得___________阻抗。
(高压侧;低压侧;短路;激磁)20、变压器带感性负载运行时,随负载电流的增加,二次侧端电压___________。
(下降)二、作图题X R所代表的意义.1、画出变压器的T形等效电路,并标明各相量的参考方向。
并说明,m m2、画出变压器的简化等效电路,并作出简化相量图(感性负载)。
3、根据绕组联结图确定联结组标号三、简答1.变压器原、副方额定电压的含义是什么?答:变压器一次额定电压U1N是指规定加到一次侧的电压,二次额定电压U2N 是指变压器一次侧加额定电压,二次侧空载时的端电压。
2.变压器空载运行时,是否要从电网取得功率?这些功率属于什么性质?起什么作用?为什么小负荷用户使用大容量变压器无论对电网和用户均不利?答:要从电网取得功率,有功功率供给变压器本身功率损耗,即铁心损耗和绕组铜耗,它转化成热能散发到周围介质中;无功功率为主磁场和漏磁场储能。
小负荷用户使用大容量变压器时,在经济技术两方面都不合理。
对电网来说,由于变压器容量大,励磁电流较大,而负荷小,电流负载分量小,使电网功率因数降低,输送有功功率能力下降,对用户来说,投资增大,空载损耗也较大,变压器效率低。
3.试述变压器激磁电抗和漏抗的物理意义。
它们分别对应什么磁通,对已制成的变压器,它们是否是常数?答:激磁电抗是表征铁心磁化性能和铁心损耗的一个综合参数;漏电抗是表征绕组漏磁效应的一个参数。
激磁电抗对应于主磁通,漏电抗对应于漏磁通,对于制成的变压器,励磁电抗不是常数,它随磁路的饱和程度而变化,漏电抗在频率一定时是常数。
4.为什么可以把变压器的空载损耗近似看成是铁耗,而把短路损耗看成是铜耗?变压器实际负载时实际的铁耗和铜耗与空载损耗和短路损耗有无区别?为什么?答:因为空载时电流很小,在空载损耗中铁耗占绝大多数,所以空载损耗近似看成铁耗。
而短路时,短路电压很低,因而磁通很小,铁耗也很小,短路损耗中铜耗占绝大多数,所以近似把短路损耗看成铜耗。
实际负载时铁耗和铜耗与空载时的铁耗和铜耗有差别,因为后一个是包含有其它损耗。
5.变压器空载时,一方加额定电压,虽然线圈(铜耗)电阻很小,电流仍然很小,为什么?答:因为一方加压后在线圈中的电流产生磁场,使线圈有很大的自感电势(接近额定电压,比额定电压小),所以虽然线圈电阻很小,电流仍然很小。
6.变压器的额定电压为220/110V,若不慎将低压方误接到220V电源上,试问激磁电流将会发生什么变化?变压器将会出现什么现象?答:误接后由m fN E U Φ=≈144.4知,磁通增加近一倍,使激磁电流增加很多(饱和时大于一倍)。
此时变压器处于过饱和状态,副边电压440V 左右,绕组铜耗增加很多,使效率降低、过热,绝缘可能被击穿等现象发生。
五、计算1. 一台单相变压器,KVA S N 1000=,kV U U NN 3.66021=,Hz f N 50=,空载及短路实验的结果如下:试计算:(1)折算到高压边的参数(实际值及标么值),假定2'21kR R R ==,2'21kX X X ==σσ (2)画出折算到高压边的T 型等效电路; (3)计算短路电压的百分值及其二分量;(4)满载及8.0cos 2=φ滞后时的电压变化率及效率; (5)最大效率。
解:(1)空载实验可以得到折算到高压边的参数 02I U k Z m = ,而k =60/6.3=9.524 所以Ω=⨯=k Z m 577.561.106300524.92 Ω=⨯==k I P k R m 446.41.105000524.9222002 Ω=-=k R Z X m m m 402.5622根据短路实验得到折算到低压边的参数Ω=⨯====5.3015.152140002222'21k k k I P R R R Ω=⨯==86.21315.1523240k k k I U ZΩ=-==5.102)2(22'21kk RZXXσσ211113.6N NNN NU U kZSI===Ω所以235.16.3446.41*===Nmm ZRR667.156.3402.561*===Nmm ZXX3311*2*110472.8106.35.30-⨯=⨯===NZRRR2311*2*1108472.2106.35.102-⨯=⨯===NZXXXσσσ(2)折算到高压的T型等效电路(3)%69.1%1000169.0%100=⨯=⨯=*KkrRu%69.5%1000569.0%100=⨯=⨯=*KkxXu%94.569.569.12222=+=+=kxkrkuuu(4) 电压变化率%77.4)%6.069.58.069.1(sincos22=⨯+⨯=+=∆φφkxkruuu此时,211'57.138N Nu kVU U U=-∆⋅=而211'16.667NNNSAI IU≈==所以kWCOSIUP3.9528.0667.16138.572'2'22=⨯⨯==φ故 kW P I I P P P k kN 24.974)(21021=++= 则 21952.3100%100%97.75%974.24P P η⨯=⨯==(5)达到最大效率时,kW p p cu Fe 5000==所以 A R p I k cu 05.9615000'2===543.067.1605.91'2*2===N I I I所以%19.98%100)14000543.050008.010*******.014000543.050001(%100)cos 1(2322*202*22*20max =⨯⨯++⨯⨯⨯⨯+-=⨯+++-=kN kP I P S I P I P φη2.一台单相变压器50kVA 、7200/480V 、60Hz 。
其空载和短路实验数据如下试求:(1)短路参数及其标么值;(2)空载和满载时的铜耗和铁耗;(3)额定负载电流、功率因数9.0cos 2=φ滞后时的电压变化率、副边电压及效率。
(注:电压变化率按近似公式计算)解: 11 6.944N N N S A I U == 22104.167N N NSA I U == (1) 短路参数 15722.427k k k U Z I ===Ω Ω===55.12761522kkk I P R Ω=-=-=58.1855.1242.222222k k k R Z X其阻抗基值 11172001036.876.944N N N U Z I ===Ω 所以 10.0216k k NZ Z Z •== 0121.087.103655.121*===N k k Z R R 0179.087.103658.181*===N k k Z X X (2) 空载时铁耗 W P p Fe 2450=≈; 铜耗 0≈cu p 满载铜耗 W P I I P k k N kN 2.605615)7944.6()(221=⨯==; 铁耗 W p Fe 245= (3) 额定负载电流时 22104.167N A I I == 根据电压变化率近似公式%100)sin cos (2*2*⨯+=∆φφk k X R u 得%87.1%100)81.010179.09.00121.0(=⨯-⨯+⨯=∆u此时副方电压 22(1 1.87%)471.02N V U U =⨯-=所以 2222471104.1670.944158.64N Cos U P I ϕ==⨯⨯=wW P p P P kN 64.450082.60524564.44158021=++=++=21100%98.11%P P η=⨯=3.三相变压器的额定值为S N =1800kVA ,U 1N /U 2N =6300/3150V ,Y ,d11联结,空载损耗P 0=6.6kW ,短路损耗P k =21.2kW ,求(1) 当输出电流I 2=I 2N ,8.0cos 2=φ时的效率; (2) 效率最大时的负载系数βm 。