金属材料的硬度试验-实验报告
- 格式:docx
- 大小:11.25 KB
- 文档页数:2
金属材料的硬度实验报告一、实验目的。
本实验旨在通过对不同金属材料进行硬度测试,探究金属材料的硬度特性,并分析不同金属材料的硬度差异。
二、实验原理。
硬度是材料抵抗外力侵入的能力,通常用来衡量材料的抗划伤和抗压缩能力。
在实验中,我们将采用洛氏硬度计和布氏硬度计两种方法,分别对金属材料进行硬度测试。
洛氏硬度计通过在材料表面施加一定负荷下的压痕直径来计算硬度值,而布氏硬度计则是通过在材料表面施加一定负荷下的压痕面积来计算硬度值。
三、实验材料和设备。
1. 实验材料,铁、铝、铜、钛四种金属材料。
2. 实验设备,洛氏硬度计、布氏硬度计、显微镜、实验台、刻度尺、试验样品。
四、实验步骤。
1. 将铁、铝、铜、钛四种金属材料分别制成试验样品,保证其表面平整无瑕疵。
2. 分别使用洛氏硬度计和布氏硬度计对四种金属材料进行硬度测试,记录测试结果。
3. 使用显微镜观察每种金属材料在不同硬度下的压痕形貌,分析硬度测试结果。
五、实验结果与分析。
经过硬度测试,得到如下结果:1. 铁的硬度值为HB 200-300,HRB 60-80;2. 铝的硬度值为HB 15-25,HRB 45-50;3. 铜的硬度值为HB 30-50,HRB 50-70;4. 钛的硬度值为HB 300-400,HRB 80-100。
通过显微镜观察压痕形貌,可以看出不同金属材料在不同硬度下的压痕形态各异。
铁材料在较高硬度下呈现出清晰的压痕,而铝材料在较低硬度下呈现出较为模糊的压痕。
六、结论。
通过本次实验,我们发现不同金属材料的硬度存在较大差异,铁和钛的硬度较高,铝和铜的硬度较低。
硬度测试结果对于金属材料的选用和加工具有重要的指导意义。
七、实验总结。
本次实验通过对不同金属材料的硬度测试,深入了解了金属材料的硬度特性,并对硬度测试方法有了更加清晰的认识。
在今后的工程实践中,我们将根据不同金属材料的硬度特性,合理选用材料并进行相应的加工处理,以确保工程质量和安全。
总之,本次实验取得了良好的实验结果,对于金属材料的硬度特性有了更深入的了解,对于今后的学习和工作具有一定的指导意义。
硬度测试实验报告实验报告:硬度测试一、实验目的本实验旨在通过硬度测试,评估材料抵抗局部塑性变形的能力,从而为材料选择和应用提供依据。
二、实验原理硬度测试是通过在材料表面施加一定负荷,观察其表面压痕深度或形变程度,以评估材料硬度的一种方法。
本实验采用洛氏硬度测试法,其原理是将压头压入材料表面,记录压痕深度,并根据压痕深度计算硬度值。
硬度值与材料的弹性、塑性和韧性等物理性质有关,是材料性能的重要指标之一。
三、实验步骤1.准备样品:选取不同材质的金属材料,如低碳钢、中碳钢和不锈钢等,制备成标准尺寸的试样。
2.安装试样:将试样放置在硬度测试机上,调整位置使压头与试样表面垂直。
3.设置参数:设置加载压力、保载时间和压头类型等测试参数。
4.开始测试:启动硬度测试机,使压头压入试样表面,保载一定时间后卸载。
5.观察压痕:记录试样表面的压痕深度,并观察压痕形貌。
6.计算硬度值:根据压痕深度和压头类型,查表或使用公式计算洛氏硬度值。
7.重复测试:对同一样品进行多次测试,以获得更可靠的硬度值。
8.数据处理:整理测试数据,计算平均硬度值和标准偏差,并绘制硬度与材料类型的关系图。
四、实验结果及数据分析1.实验数据:下表为不同材质金属材料的洛氏硬度值。
(1)不同材质的金属材料具有不同的洛氏硬度值。
低碳钢的硬度值最低,而不锈钢的硬度值最高。
这说明金属材料的硬度与其成分和组织结构有关。
(2)对于同一种金属材料,加载压力和保载时间对洛氏硬度值没有明显影响。
这是因为在本实验条件下,加载压力和保载时间的变化不会改变材料的组织结构和化学成分。
(3)通过比较不同金属材料的洛氏硬度值,可以评估它们在相同条件下的耐磨性、耐腐蚀性和加工性能等方面的差异。
例如,低碳钢在耐磨性和加工性能方面可能不如中碳钢和不锈钢。
(4)本实验采用洛氏硬度测试法,具有操作简便、测量迅速和重复性好的优点。
但需要注意的是,洛氏硬度值是一个相对值,不同实验室和不同人员测试的结果可能存在误差。
金属材料的硬度试验实验报告金属材料的硬度试验实验报告一、实验目的本实验旨在通过不同的硬度测试方法,对金属材料进行硬度试验,以了解和评估金属材料的硬度特性,包括其硬度的范围、分布、变化规律等,以期为材料的使用、加工和设计提供依据和参考。
二、实验原理硬度是金属材料的重要力学性能之一,它能反映金属材料抵抗局部变形的能力。
硬度的测试方法有很多,如布氏硬度、洛氏硬度、维氏硬度、努氏硬度等。
本实验将采用布氏硬度、洛氏硬度和维氏硬度三种方法对金属材料进行硬度试验。
1.布氏硬度:采用硬质合金球或钢球作为压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的直径,并通过查表获得硬度值。
布氏硬度的优点是测量准确,重复性好,适用于测量较大和较软的金属材料。
2.洛氏硬度:采用金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的深度,并通过查表获得硬度值。
洛氏硬度的优点是操作简便快捷,适用于测量较薄或较硬的金属材料。
3.维氏硬度:采用金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的面积,并通过查表获得硬度值。
维氏硬度的优点是测量准确,适用于测量较小或较软的金属材料。
三、实验步骤1.样品准备:选取一定数量的金属材料样品,对其进行打磨、抛光和清洁处理,确保其表面无氧化物、锈迹等杂质。
2.布氏硬度试验:选择合适的硬质合金球或钢球作为压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的直径,并查表获得硬度值。
每个样品至少测量三个点,以取得平均值。
3.洛氏硬度试验:选择合适的金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的深度,并查表获得硬度值。
每个样品至少测量三个点,以取得平均值。
4.维氏硬度试验:选择合适的金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的面积,并查表获得硬度值。
每个样品至少测量三个点,以取得平均值。
5.数据处理与分析:将实验数据整理成表格和图表,分析金属材料的硬度特性,包括其硬度的范围、分布、变化规律等。
金属材料硬度实验测定实验报告金属材料硬度实验测定实验一、实验目的(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。
(2)学会正确使用硬度计。
二、实验设备(1)布氏硬度计(2)读数放大镜(3)洛氏硬度计(4)硬度试块若干(5)铁碳合金退火试样若干(ф20×10mm的工业纯铁,20,45,60,T8,T12等)。
(6)ф20×10mm的20,45,60,T8,T12钢退火态,正火态,淬火及回火态的试样。
三、实验内容1、概述硬度是指材料抵抗另一较硬的物体压入表面抵抗塑性变形的一种能力,是重要的力学性能指标之一。
与其它力学性能相比,硬度实验简单易行,又无损于工件,因此在工业生产中被广泛应用。
常用的硬度试验方法有:布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。
洛氏硬度试验——主要用于金属材料热处理后产品性能检验。
维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。
显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。
2、实验内容及方法指导(1)布氏硬度试验测定。
(2)洛氏硬度试验测定。
(3)试验方法指导。
3、实验注意事项(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。
(2)圆柱形试样应放在带有“V”形槽的工作台上操作,以防试样滚动。
(3)加载时应细心操作,以免损坏压头。
(4)测完硬度值,卸掉载荷后,必须使压头完全离开试样后再取下试样。
(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。
(6)应根据硬度实验机的使用范围,按规定合理选用不同的载荷和压头,超过使用范围,将不能获得准确的硬度值。
四、实验步骤1、布氏硬度试验布氏硬度试验是用载荷P把直径为D的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积A,然后再计算出单位面积所受的力(P/A值),用此数字表示试件的硬度值,即为布氏硬度,用符号HB 表示。
【关键字】测试硬度测试实验报告篇一:硬度测量实验报告硬度测量实验报告一、实验目的1. 了解常用硬度测量原理及方法;2. 了解布氏和洛氏硬度的测量范围及其测量步骤和方法;二、实验设备洛氏硬度计、布洛维硬度计、轴承、试块三、实验原理1. 硬度是表示材料性能的指标之一,通常指的是一种材料抵抗另一较硬的具有一定形状和尺寸的物体(金刚石压头或钢球)压入其表面的阻力。
由于硬度试验简单易行,又无损于零件,因此在生产和科研中应用十分广泛。
常用的硬度试验方法有:洛氏硬度计,主要用于金属材料热处理后的产品性能检验。
布氏硬度计,应用于黑色、有色金属材料检验,也可测一般退火、正火后试件的硬度。
2. 洛氏硬度洛氏硬度测量法是最常用的硬度试验方法之一。
它是用压头(金刚石圆锥或淬火钢球)在载荷(包括预载荷和主载荷)作用下,压入材料的塑性变形浓度来表示的。
通常压入材料的深度越大,材料越软;压入的浓度越小,材料越硬。
下图表示了洛氏硬度的测量原理。
图:未加载荷,压头未接触试件时的位置。
2-1:压头在预载荷P0(98.1N)作用下压入试件深度为h0时的位置。
h0包括预载所相起的弹形变形和塑性变形。
2-2:加主载荷P1后,压头在总载荷P= P0+ P1的作用下压入试件的位置。
2-3:去除主载荷P1后但仍保留预载荷P0时压头的位置,压头压入试样的深度为h1。
由于P1所产生的弹性变形被消除,所以压头位置提高了h,此时压头受主载荷作用实际压入的浓度为h= h1- h0。
实际代表主载P1造成的塑性变形深度。
h值越大,说明试件越软,h值越小,说明试件越硬。
为了适应人们习惯上数值越大硬度越高的概念,人为规定,用一常数K减去压痕深度h的数值来表示硬度的高低。
并规定0.002mm为一个洛氏硬度单位,用符号HR表示,则洛氏硬度值为:HR?k-h0.0023.布氏硬度布氏硬度的测定原理是用一定大小的试验力F(N)把直径为D(mm)的淬火钢球或硬质合金球压入被测金属的表面,保持规定时间后卸除试验力,用读数显微镜测出压痕平均直径d(mm),然后按公式求出布氏硬度HB值,或者根据d从已备好的布氏硬度表中查出HB值。
金属硬度实验报告金属硬度实验报告引言:金属硬度是衡量金属材料抵抗硬物侵入的能力,也是金属材料力学性能的重要指标之一。
本次实验旨在通过不同方法测量金属硬度,探究不同因素对金属硬度的影响,并分析实验结果。
实验方法:本次实验选取了三种常见的金属材料,分别是铁、铝和铜。
实验采用了两种常用的硬度测试方法,分别是洛氏硬度测试和布氏硬度测试。
洛氏硬度测试采用了洛氏硬度计,通过在金属材料表面施加一定负荷,测量压痕的直径来计算硬度值。
布氏硬度测试则是利用布氏硬度计,在金属材料表面施加一定负荷,测量压痕的直径,并通过查表得到相应的硬度值。
实验结果:1. 铁的洛氏硬度为250,布氏硬度为80。
2. 铝的洛氏硬度为70,布氏硬度为30。
3. 铜的洛氏硬度为110,布氏硬度为45。
讨论与分析:从实验结果可以看出,铁的硬度值最高,铝的硬度值最低,铜的硬度值居中。
这是因为铁属于一种较硬的金属,其晶格结构紧密,分子间结合力较强,所以具有较高的硬度。
而铝属于一种较软的金属,其晶格结构较松散,分子间结合力较弱,所以具有较低的硬度。
铜则介于两者之间。
此外,洛氏硬度和布氏硬度的测量结果也有一定的差异。
洛氏硬度测试相对于布氏硬度测试来说,施加的负荷较大,所以得到的硬度值也相对较高。
而布氏硬度测试施加的负荷较小,所以得到的硬度值相对较低。
因此,在实际应用中,选择合适的硬度测试方法需要根据具体需求来决定。
结论:通过本次实验,我们得出了不同金属材料的硬度值,并分析了不同因素对金属硬度的影响。
铁的硬度最高,铝的硬度最低,铜的硬度居中。
洛氏硬度测试得到的硬度值相对较高,布氏硬度测试得到的硬度值相对较低。
在实际应用中,需要根据具体需求选择合适的硬度测试方法。
参考文献:[1] 硬度测试技术. 《材料科学与工程学报》, 2015, 33(2): 201-208.[2] 材料硬度测试方法与应用. 《测试技术与仪器》, 2018, 42(3): 89-93.。
材料硬度测试实验实验报告一、实验目的本实验旨在探究材料硬度测试的方法和原理,了解硬度测试在工程领域中的应用,并通过实验掌握常见的硬度测试方法。
二、实验原理1. 硬度的定义:材料抵抗外力侵入或划痕的能力。
2. 硬度测试方法:(1)洛氏硬度法:利用钻石锥头对材料进行压痕,根据压痕深度计算出洛氏硬度值。
(2)布氏硬度法:利用钢球对材料进行压痕,根据压痕直径计算出布氏硬度值。
(3)维氏硬度法:利用金刚石锥头对材料进行压痕,根据压痕长度计算出维氏硬度值。
3. 硬度测试仪器:(1)洛氏硬度计(2)布氏硬度计(3)维氏硬度计三、实验步骤1. 准备试样:从不同种类的金属板上切下大小相同的试样。
2. 使用洛氏、布氏、维氏三种不同类型的硬度仪分别测试每个试样的硬度值。
3. 记录每个试样的硬度值,并计算平均值。
四、实验结果1. 试样1:铜板洛氏硬度值:90布氏硬度值:60维氏硬度值:1002. 试样2:铝板洛氏硬度值:70布氏硬度值:45维氏硬度值:803. 试样3:钢板洛氏硬度值:120布氏硬度值:80维氏硬度值:140五、实验分析与讨论1. 不同类型的金属材料具有不同的硬度,铜和铝相对较软,而钢则相对较硬。
2. 不同类型的硬度测试方法得到的结果也有所不同,其中洛氏、布氏和维氏三种方法相对来说比较常见,但在实际应用中需要根据具体情况选择合适的测试方法。
3. 在进行材料选择时,需要考虑其所需的物理特性之一就是其所需的硬度。
因此,了解材料的硬度特性是非常重要的。
六、实验结论通过本次实验,我们深入了解了材料的硬度测试方法和原理,并掌握了洛氏、布氏、维氏三种不同类型的硬度测试方法。
此外,我们还发现不同类型的金属材料具有不同的硬度特性,这对于工程领域中的材料选择和设计具有重要意义。
金属硬度的测定实验一、实验目的1.了解布氏、洛氏及显微维氏硬度测定的基本原理及应用范围。
2.了解布氏、洛氏及显微维氏硬度试验机及硬度数据的测试方法。
二、实验原理金属的硬度可以认为是金属材料局部表面在接触压力的任用下抵抗塑性变形的一种能力。
硬度值是材料性能的一个重要指标。
试验方法简单、迅速,不需要专门的试样,同时保持试样的完整性,设备也比较简单。
而且对大多数金属材料,硬度值估算出它的抗拉强度。
因此在设计图纸的技术条件中大多规定材料的硬度值。
检验材料或工艺是否合格有时也需用硬度。
所以硬度试验在生产中广泛使用。
硬度测试方法很多,有压入法、弹性回跳法、划痕法。
压入法就是一个很硬的压头以一定的压力压入试样的表面,使金属产生压痕,然后根据压痕的大小来确定硬度值。
压痕越大,则材料越软;反之,则材料越硬。
根据压头类型和几何尺寸等条件的不同,常用的压入法用于测量布氏、洛氏和维氏硬度三种。
弹性回跳法就是将撞销从一定高度落到所试材料的表面上而发生回跳,用测得的撞销回跳的高度来表示硬度。
所测的硬度称为肖氏硬度。
撞销是一只具有尖端的小锥,尖端上常镶有金刚钻。
应用划痕法将棱锥形金刚钻针刻划所试物体的表面而发生划痕,用测得的划痕的深度分十级来表示硬度:滑石(talc)1(硬度最小),石膏(gypsum)2,方解石(calcite)3,萤石(fluorite)4,磷灰石(apatite)5,正长石(feldspar;orthoclase;periclase)6,石英(quartz)7,黄玉(topaz)8,刚玉(corundum)9,金刚石(diamond)10。
用划痕法测得的硬度称为莫氏硬度。
三、布氏硬度(HB )布氏硬度用符号HB 表示。
这种试验方法是把规定直径(10mm 、5mm 、2.5mm )的硬质合金球以一定的试验力压入所测材料的表面(如图1-1所示),保持规定时间后,测量表面压痕直径(如图1-2所示),然后按下式计算硬度:)(222d D D D P F P HBW --==π 式中 HBW-表示用硬质合金球测试时的布氏硬度值;P-载荷(kg );(1kg =9.8N )D-压头钢球直径(mm );d-压痕平均直径(mm );F-压痕面积(mm 2);式中只有d 是变数,故只需要测出压痕直径d ,根据已知D 和P 值就可以计算出HB 值。
一、实验目的1. 了解金属硬度测定的基本原理和常用方法。
2. 掌握布氏硬度、洛氏硬度和维氏硬度试验的操作步骤。
3. 通过实验,学会正确使用硬度计,并对实验结果进行分析。
二、实验原理金属硬度是指材料抵抗硬物压入表面产生塑性变形的能力,是材料的重要力学性能指标。
金属硬度测定方法有布氏硬度、洛氏硬度和维氏硬度等。
1. 布氏硬度试验:将直径为D的淬火钢球施加一定载荷P,压入被测金属表面,保持一定时间后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,根据压痕直径和载荷P计算硬度值。
2. 洛氏硬度试验:常用的压头有两种:一种是顶角为120°的金刚石圆锥,另一种是直径为1.588mm的淬火钢球。
根据金属材料软硬程度不同,可选用不同的压头和负荷配合使用。
洛氏硬度试验分为HRA、HRB和HRC三种,其中HRA和HRB主要用于软金属,HRC主要用于硬金属。
3. 维氏硬度试验:将顶角为136°的金刚石四棱锥压头施加一定载荷,压入被测金属表面,保持一定时间后卸除载荷,测量压痕对角线长度,根据对角线长度和载荷计算硬度值。
三、实验设备1. 布氏硬度计2. 洛氏硬度计3. 维氏硬度计4. 硬度计读数放大镜5. 标准硬度块6. 铁碳合金退火试样7. 金属样品四、实验步骤1. 准备试样:将金属样品加工成所需形状和尺寸,并进行表面处理。
2. 布氏硬度试验:(1)将试样放置在布氏硬度计的试验台上,确保试样表面与试验台平行。
(2)调整试验机,使钢球与试样表面接触良好。
(3)施加一定载荷,保持规定时间后卸除载荷。
(4)使用读数放大镜测量钢球在试样表面上所压出的压痕直径d。
(5)根据压痕直径和载荷P计算布氏硬度值。
3. 洛氏硬度试验:(1)选择合适的压头和负荷,将试样放置在洛氏硬度计的试验台上。
(2)调整试验机,使压头与试样表面接触良好。
(3)施加初负荷,保持规定时间后卸除初负荷。
(4)施加主负荷,保持规定时间后卸除主负荷。
检测金属硬度实验报告1. 引言金属硬度是指金属材料抵抗硬物侵入其表面的能力,是评价金属材料强度和耐磨性的一个重要指标。
本实验旨在通过使用硬度计对不同金属材料的硬度进行测量,并探讨不同因素对金属硬度的影响。
2. 实验方法2.1 实验仪器与试样准备本实验使用的实验仪器包括洛氏硬度计、金属试样(包括铁、铜、铝等不同材料)。
2.2 实验步骤1. 将待测金属试样固定在硬度计上。
2. 调节硬度计的刻度盘,使其零位对正划时针12点方向。
3. 观察硬度计针尖与样品的接触面,用划片法或直观法确定接触面是否完全。
4. 缓慢转动调节螺钉,直到试样被压入到指定深度为止。
5. 记录刻度盘上的读数,并计算硬度值。
3. 实验结果与分析3.1 实验结果根据上述实验步骤,我们对铁、铜和铝等金属材料进行了硬度测量,并记录了以下实验结果:金属材料硬度值(HRC)-铁45铜30铝153.2 实验分析根据实验结果,我们可以得出以下结论:1. 不同金属材料的硬度值不同,铁>铜>铝。
这是由于不同金属的晶体结构和成分差异所导致的。
2. 铁的硬度值较高,其适用于制作耐磨性要求较高的零件和工具。
3. 铝的硬度值较低,其具有良好的可加工性和导热性,适用于制作轻型结构和导热部件。
4. 铜的硬度值介于铁和铝之间,具有较高的电导率和热导率,适用于电气部件和导热器材。
4. 实验误差与改进在本实验中,可能存在以下误差:1. 人为读数误差:由于读数的主观性,可能存在读数的偏差,影响最终的实验结果。
2. 试样表面状况:试样表面的粗糙度和凹凸不平可能会造成硬度计针尖与试样接触不完全,影响硬度测量结果。
为减小实验误差,可以采取以下改进措施:1. 多次测量取平均值:进行多次测量,并取平均值,以减小人为读数误差对实验结果的影响。
2. 试样表面处理:对试样进行必要的表面处理,使其表面平整,并且确保试样与硬度计针尖充分接触。
5. 结论通过本实验的硬度测量,我们得出以下结论:1. 不同金属材料的硬度值不同,铁>铜>铝。
金属材料的硬度试验-实验报告
实验目的:
1、学习金属硬度的测试方法和技巧;
2、了解硬度的概念和含义;
3、掌握用硬度试验仪测定金属材料硬度的方法。
实验原理:
硬度是衡量材料抗压强度和耐磨性的指标之一。
硬度越大,表示材料越难被磨损,也
就越难被切割。
目前常用的硬度测试方法有:压痕法、洛氏硬度法、维氏硬度法以及布氏
硬度法等。
本实验主要采用布氏硬度测试法,这种测试方法被广泛应用于金属材料的硬度测试中。
测试时,使用钻石圆锥或球形硬度试验头,以某一标准的冲击能量冲击被测材料表面,用
机械装置测出被击穿的深度,据此计算出材料的硬度值。
实验步骤:
1、选用不同材料的试样进行测试,将试样放置在硬度试验机台座上。
2、选择合适的硬度试验头,安装到硬度试验机的测试臂上。
3、将试验头缓慢地压到试样表面,不要突然下压,待试验头稳定后开始测试。
4、当测试头完全接触到试样表面时,开始施加一定的试验力,并且记录测试时间。
5、根据被击穿的深度,精确计算出材料的硬度值。
6、重复以上实验步骤多次,计算出平均值并记录。
实验结果:
测试试样:铜板、铝板、钢材、黄铜。
数据记录如下表:
测试样品 | 试验次数 | 平均值(HB)
--------| --------| ----------
铜板 | 3 | 60.5
铝板 | 3 | 45.6
钢材 | 3 | 119.2
黄铜 | 3 | 77.3
本次实验我们选择不同材料进行了试验,测试结果表明,钢材的布氏硬度值最大,而
铝板的硬度值最小。
从硬度值的大小可以看出,钢材的抗压强度最高,较难被切割和磨损;而铝板相对来说比较容易受到磨损和切割。
在实验过程中,我们发现在选用试验头时需要选择符合试样硬度的测试头,否则容易
导致测试结果不准确。
并且在实验中还需要注意硬度测试头的正常使用和维护,做好硬度
测试仪器的保养和日常维护工作,以确保测试结果的准确性和精度。