鸡兔同笼的三种方法
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
鸡兔同笼问题是一个经典的数学问题,其解题技巧如下:
假设法:假设笼子里全部是鸡或者全部是兔子,然后根据已知条件计算出鸡或兔子的数量,再根据实际情况进行调整。
抬腿法:让鸡和兔子都抬起一只脚,此时笼子里的总脚数就会减少一半。
再让鸡和兔子都抬起一只脚,此时笼子里的总脚数又会减少一半。
此时,鸡已经没有脚了,而兔子还有两只脚。
因此,用此时笼子里的总脚数除以2,就可以得到兔子的数量。
列表法:根据已知条件,列出所有可能的鸡和兔子的数量组合,然后逐一计算,直到找到符合条件的组合。
代数法:通过设立未知数,列出方程来解决问题。
鸡兔同笼的几种算法鸡兔同笼问题是一个经典的数学问题,它涉及到如何根据给定的数量和总数量来确定鸡和兔子的数量。
在这篇文章中,我将介绍几种解决鸡兔同笼问题的算法。
一、穷举法穷举法是最简单直接的解决鸡兔同笼问题的方法之一。
该方法的基本思想是通过遍历所有可能的情况,找到符合条件的解。
具体步骤如下:1. 假设鸡的数量为x,兔子的数量为y。
2. 通过循环遍历x和y的可能取值,从1到给定的总数量。
3. 对于每一对x和y的取值,判断是否满足以下条件:x + y = 总数量,2x + 4y = 总数量 * 2。
如果满足条件,则找到了一组解。
4. 输出找到的解。
穷举法的优点是简单易懂,适用于问题规模较小的情况。
然而,该方法的缺点是效率低下,当总数量较大时,需要遍历的次数较多。
二、代数法代数法是另一种解决鸡兔同笼问题的方法。
该方法通过建立方程组,并通过求解方程组来得到解。
具体步骤如下:1. 假设鸡的数量为x,兔子的数量为y。
2. 建立方程组:x + y = 总数量,2x + 4y = 总数量 * 2。
3. 解方程组,得到x和y的值。
4. 输出找到的解。
代数法的优点是计算效率高,适用于问题规模较大的情况。
然而,该方法的缺点是需要具备解方程组的能力,对于一些复杂的问题可能不适用。
三、二分法二分法是一种解决鸡兔同笼问题的高效算法。
该方法通过二分查找的思想,逐步逼近解。
具体步骤如下:1. 假设鸡的数量为x,兔子的数量为y。
2. 初始化鸡的数量的上下界,上界为总数量,下界为0。
3. 通过二分查找的方式,逐步逼近符合条件的解。
具体步骤如下: 3.1 计算鸡的数量的中间值mid。
3.2 判断mid和总数量的关系,如果mid + 4y = 总数量 * 2,则找到了一组解。
3.3 如果mid + 4y > 总数量* 2,则将鸡的数量的上界更新为mid - 1。
3.4 如果mid + 4y < 总数量* 2,则将鸡的数量的下界更新为mid + 1。
鸡兔同笼13种解题方法鸡兔同笼问题是一类经典的数学问题,常见于初中数学题目中。
这个问题的基本思路是通过解方程组来求解鸡和兔子的数量。
在本文中,将介绍13种不同的解题方法,包括逆向思维、代数法、图形法等多种方法,帮助读者更好地理解和掌握这一问题。
一、逆向思维法逆向思维法是一种比较简单易懂的方法,其基本思路是先确定总数量,再确定其中一个物品的数量,最后计算出另一个物品的数量。
1. 假设笼子里有13只动物,则鸡和兔子的总数量为13。
2. 假设有x只鸡,则有13-x只兔子。
3. 根据题目所给条件“总腿数为32”,得到方程式2x+4(13-x)=32。
4. 解方程得到x=6,则笼子里有6只鸡和7只兔子。
二、代数法代数法是一种常用的解题方法,其基本思路是通过设定未知量来建立方程组,并通过求解方程组来得到答案。
1. 设鸡和兔子的数量分别为x和y,则有方程组:x+y=132x+4y=322. 通过求解方程组得到x=6,y=7,则笼子里有6只鸡和7只兔子。
三、图形法图形法是一种直观易懂的方法,其基本思路是通过画图来解决问题。
1. 在平面直角坐标系中,设鸡和兔子的数量分别为x和y,则可以用一条直线表示鸡和兔子的总数量为13。
2. 根据题目所给条件“总腿数为32”,可以得到另一条直线表示鸡和兔子的总腿数为32。
3. 通过求解两条直线的交点,即可得到笼子里有6只鸡和7只兔子。
四、枚举法枚举法是一种简单易行的方法,其基本思路是通过列举所有可能情况来找到符合条件的答案。
1. 从1到12枚举鸡的数量x。
2. 根据题目所给条件“总腿数为32”,计算出相应的兔子数量y。
3. 如果x+y=13,则找到符合条件的答案。
五、分段函数法分段函数法是一种利用函数性质解题的方法,其基本思路是将问题拆分成多个部分,并建立相应的函数关系式来求解问题。
1. 假设笼子里有x只鸡,则有13-x只兔子。
2. 根据题目所给条件“总腿数为32”,可以得到下列函数关系式: f(x)=2x+4(13-x)3. 通过求解f(x)=32的解,即可得到笼子里有6只鸡和7只兔子。
鸡兔同笼问题的三种解法
一、方法与技巧
解决鸡兔同笼问题主要有三个解题方法:方程法、十字交叉法和假设法..
1方程法:通过一元一次方程或者二元一次方程组求解;
2十字交叉图法:
二、鸡兔同笼问题举例
例:现有鸡兔同笼;已知鸡兔数头35;数脚94;求鸡和兔的个数..鸡兔同笼原型方程法:设鸡的个数为x;则兔的个数为35-x;则有2x435-x=94;解得x=23..故有鸡23只;兔12只..
三、鸡兔同笼解题技巧的运用
例:某地劳动部门租用甲、乙两个教室开展农村实用人才培训..两教室均有5排座位;甲教室每排可坐10人;乙教室每排可坐9人..两教室当月共举办该培训27次;每次培训均座无虚席;当月共培训1290人次..问甲教室当月共举办了多少次这项培训
A.8
B.10
C.12
D.15
答案D
方程法甲教室一次可坐10×5=50人;乙教室一次可坐9×5=45人;设甲教室举办了x次培训;则有:50x4527-x=1290;解得x=15..故选D..
公式法根据题意;甲教室一次可坐10×5=50人;乙教室一次可坐9×5=45人;则由鸡兔同笼公式可知:甲教室举办的培训次数=。
鸡兔同笼问题三种解题方法及精品练习题例题:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,你能算出鸡和兔子各有多少只吗?方法一:人见人爱的方法“列表法”列举法就是将各种情况一一地罗列出来,再针对要求,筛选符合题意的答案。
根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!方法二:最常用的方法“假设法”假设法:把两个不同数量假设成相同数量,再找出与假设量之间的差距解决。
其数量关系:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数 - 兔数 = 鸡数在本题中,假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
或者假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只。
方法三:最酷的方法“金鸡独立法”(见文档最后一页)精品练习1.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?2.某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?3.有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?4.一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?5.自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?6.如果被乘数增加15,乘数不变,积就增加180;如果被乘数不变,乘数增加4,那么积就增加120.原来两个数相乘的积是多少?7.编一本695页的故事书的页码,一共要用多少个数字?其中数字“5”用去了几个?8.编一本辞典一共用去了6889个数字,这本辞典共有几页?9. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?10. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?11. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?12. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?13. 今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?14. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?15. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?。
鸡兔同笼的5种解法鸡兔同笼问题,是小学阶段一个非常重要的数学模型。
解决这类问题可以极大的拓宽孩子的解题思路,帮其拓宽解题思路,加深对所学知识的理解。
今天除了常规解法之外,我也提供另外几种非常规的解法,下面来一起看看吧。
01极端假设法假设40个头都就是鸡,那么理应肢2×40=80(只),比实际太少-80=20(只)。
这就是把兔看做鸡的缘故。
而把一只兔看作一只鸡,足数就可以太少4-2=2(只)。
因此兔存有20÷2=10(只),鸡存有40-10=30(只)。
02任意假设假设40个头中,鸡存有12个(0至40中的任一整数),则兔存有40-12=28(个),那么它们一共蕨科肿足2×12+4×28=(只),比实际多-=36(只)。
这表明存有一部分鸡看做兔了,而把一只鸡看作一只兔,足数就可以多4-2=2(只),因此把鸡看作兔的只数就是36÷2=18(只)。
那么鸡实际存有12+18=30(只),兔实际存有28-18=10(只)。
通过比较第一类和第二类数学分析,我们不难看出:任一假设就是极端假设的通常形式,而极端假设就是任一假设的特定形式,也就是方便快捷数学分析。
03除减法用脚的总数除以2,也就是÷2=50(只)。
这里我们可以设想为,每只鸡都就是一只脚东站着;而每只兔子都用两条后腿,像是人一样用两只脚东站着。
这样在50这个数里,鸡的头数反正一次,兔子的头数相等于反正两次.因此从50乘以总头数40,剩的就是兔子头数10只。
存有10只兔子当然鸡就存有30只。
这种解法其实就是《孙子算经》中记载的:做一次除法和一次减法,马上能求出兔子数,多简单!这也是文章前面这个数学段子中趣解的由来,我也课堂当中也经常喜欢给学生讲解这种解法。
04第四类数学分析:盈亏法把总足数看作标准数。
假设鸡有25只,兔则有40-25=15(只),那么它们有足2×25+4×15=(只),比标准数盈余-=10(只);再假设鸡有32只,兔则有40-32=8(只),那么它们有足2×32+4×8=96(只),比标准数不足-96=4(只)。
鸡兔同笼解题方法(范文9篇)以下是网友分享的关于鸡兔同笼解题方法的资料9篇,希望对您有所帮助,就爱阅读感谢您的支持。
鸡兔同笼解题方法(1)一.笼子里有若干只鸡和兔,从上面数,有8个头,从下面数,有26只脚。
鸡和兔各有几只?解题方法:1.猜测,列表法2.假设法3.解方程法1.列表法2.假设法假设笼子里全是鸡,则共有2×8=16(只)脚,比实际少了26-16=10(只)脚,因为我们把兔子都看成了鸡,每只兔子少算了2只脚,共少了10只脚,说明兔子应该有10÷2=5(只)同理:假设笼子里的全是兔子,则一共有4×8=32(只)脚,比实际多了32-26=6(只)脚。
把鸡的脚当兔子的脚计算时,每只兔子比鸡多算了2只脚,所以鸡有6÷2=3(只)3.解方程法兔的脚数+鸡的脚数=鸡兔总脚数=26(只)设鸡有x只,那么兔就有8-x只,就有方程:2x+4(8-x)=26;解出x是鸡的只数,再求兔的只数。
鸡兔同笼解题方法(2)鸡兔同笼的解题方法【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式. (每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数.或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数. 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它的解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼解题方法(3)四年级下册鸡兔同笼数学问题解决方案:1、假设法:假设全部都是兔,(每只兔的脚数x头数-原来的总脚数)÷(每只兔的脚数-每只鸡的脚数)=鸡的只数;头数-鸡的只数=兔的只数假设全部都是鸡,(原来的总脚数-每只鸡的脚数x头数)÷(每只兔的脚数-每只鸡的脚数)=兔的只数;头数-兔的只数=鸡的只数例如:鸡兔同笼,头共有20个,脚共有50只,鸡,兔分别有多少只?(4x20-50)÷(4-2)=15(只)……鸡;20-15=5(只)……兔(50-2x20)÷(4-2)=5(只)……兔;20-5=15(只)……鸡2、列方程解:设兔有x只,鸡有20-x只。
鸡兔同笼的解题方法鸡兔同笼问题,是我国古代著名趣题之一,大约在 1500 年前的《孙子算经》中就有记载。
这个问题看似简单,却蕴含着丰富的数学思维和解题技巧。
接下来,咱们就一起探讨一下鸡兔同笼问题的各种解题方法。
咱们先来看一个经典的鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有 35 个头,从下面数,有 94 只脚。
问鸡和兔各有多少只?方法一:假设法假设全是鸡,那么一共有脚 2×35 = 70 只。
但实际上有 94 只脚,多出来的脚就是因为把兔当成鸡来算少算的。
每把一只兔当成鸡,就会少算 4 2 = 2 只脚。
总共少算了 94 70 = 24 只脚,所以兔的数量就是 24÷2 = 12 只。
鸡的数量就是 35 12 = 23 只。
假设全是兔,那么一共有脚 4×35 = 140 只。
实际上只有 94 只脚,多出来的就是因为把鸡当成兔多算的。
每把一只鸡当成兔,就会多算 4 2 = 2 只脚。
总共多算了 140 94 = 46 只脚,所以鸡的数量就是 46÷2 = 23 只。
兔的数量就是 35 23 = 12 只。
方法二:方程法咱们设鸡有 x 只,兔有 y 只。
因为鸡和兔一共有 35 个头,所以 x + y = 35。
又因为鸡有 2 只脚,兔有 4 只脚,一共有 94 只脚,所以2x + 4y = 94。
由第一个方程可得 x = 35 y,把它代入第二个方程,得到 2×(35 y) + 4y = 94,70 2y + 4y = 94,2y = 24,y = 12。
再把 y = 12 代入 x = 35 y,得到 x = 23。
方法三:抬腿法让鸡和兔都抬起两只脚,此时笼子里一共少了 2×35 = 70 只脚。
剩下的脚都是兔的,而且每只兔还剩下 2 只脚,所以兔的数量就是(94 70)÷2 = 12 只,鸡的数量就是 35 12 = 23 只。
鸡兔同笼的十种解法公式
摘要:
1.鸡兔同笼问题的基本描述
2.鸡兔同笼的十种解法公式
3.结论
正文:
一、鸡兔同笼问题的基本描述
鸡兔同笼问题是一个古老的数学问题,指的是在一个笼子里关着鸡和兔子,已知笼子里共有n 个头,m 只脚。
要求解出鸡和兔子各有多少只。
二、鸡兔同笼的十种解法公式
1.直接法:通过列方程求解,设鸡为x,兔子为y,则有x+y=n,
2x+4y=m,解得x=(m-2n)/2,y=(m-2n)/2。
2.代入法:通过列方程将一个变量表示成另一个变量,再代入另一个方程求解。
3.消元法:通过两个方程相加或相减消去一个变量,再解另一个变量。
4.置换法:通过将一个方程的项置换到另一个方程,再解出变量。
5.矩阵法:将方程列成矩阵形式,通过矩阵运算求解。
6.行列式法:通过求解行列式得到方程的解。
7.解方程组法:通过解方程组求解。
8.韦达定理法:通过韦达定理求解。
9.容斥原理法:通过容斥原理求解。
10.棋盘法:通过画棋盘,将鸡和兔子的脚分别填入棋盘,求解。
三、结论
鸡兔同笼问题有着丰富的解法,这些解法在数学中有着广泛的应用。
鸡兔同笼的三种方法鸡兔同笼的解法有:假设法、公式法、方程法等。
公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数。
公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数。
公式3:总脚数÷2-总头数=兔的只数。
扩展资料鸡兔同笼的解法(一)解法主要就是用方程解、假设法、列表法这三种。
(1)列表法、假设法是在学生还没有学习方程的情况下运用;(2)用方程解,是在学生学习了方程后的解法。
至于其他方法,如:抬腿法、飞鸡法、绑腿法、松绑法……都是由“假设法”演变而来的。
其实方程方法就是假设法的提升。
(二)因为每个题目的已知条件、问题都有一定的差异性(特别是哪些“改头换面”题),所以在解题时一定要灵活运用上面介绍的方法。
鸡兔同笼公式公式1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数对应的二元方程操作:(s1*4-s2)/2公式2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的.只数=鸡的只数对应的二元方程操作:(s2-s1*2)/2以上两个公式与”本质解法“中用线性代数方法推算出来的公式完全相等。
公式3:总脚数÷鸡的脚数-总头数=兔的只数总只数-兔的只数=鸡的只数对应的二元方程操作:s2/2-s1公式4:兔脚数*X+鸡脚数(总数-X)=总脚数(X=兔,总数-X=鸡数。
也就是鸡兔同笼一元方程的标准形式)。
所有预设公式都是将二元方程右边的值进行初等变换后的结果直接相加减得到的结果。
鸡兔同笼的五种方法
鸡兔同笼问题是一个经典的数学逻辑问题,通常涉及到两种动物的数量及其腿数,需要通过解方程组来求解。
以下是五种解决鸡兔同笼问题的方法:
1. 列方程法:设鸡和兔的数量分别为x和y,根据题目所给出的条件列方程组,例如2x+4y=20和x+y=8,然后解方程求出x和y 的值。
2. 矩阵法:将方程组转化成矩阵形式,然后使用矩阵运算求解,这种方法适用于多元线性方程组的求解。
3. 图像法:在平面直角坐标系中画出鸡和兔的数量的图像,然后根据题目所给的条件确定交点的位置,从而求出鸡和兔的数量。
4. 枚举法:根据题目所给的总数量和总腿数,枚举不同的鸡和兔的组合方式,判断哪一种组合方式符合条件。
5. 巧用因式分解法:根据题目所给的总数量和总腿数,可以巧妙地利用因式分解的方法推导出鸡和兔的数量,这种方法适用于特定情况下的问题。
以上是解决鸡兔同笼问题的五种方法,不同的方法适用于不同的情况和水平的考生,可以选择最适合自己的方法进行求解。
“鸡兔同笼”讲解方法“鸡兔同龄”是一个经典的数学问题,是一个求解关于鸡和兔数量的问题。
在同一个笼子里,头数共计35,脚共计94、那么在这个问题中,我们需要找到一种方法来确定鸡和兔的数量。
以下是我为您准备的13种解决“鸡兔同龄”问题的方法:方法一:直接符号法设鸡的数量为x,兔的数量为y。
由题目可得,x+y=35,2x+4y=94,解此方程组即可得到鸡和兔的数量。
方法二:代数法设鸡的数量为x,兔的数量为y。
由题目可得,x+y=35,2x+4y=94,将第一个方程乘以2得到2x+2y=70,然后将第二个方程减去2x+2y=70,得到2y=24,即y=12、带入第一个方程可得x=23,即鸡的数量为23,兔的数量为12方法三:替换法设鸡的数量为x,兔的数量为y。
由题目可得,x+y=35,4x+2y=94,将第一个方程替换为x=35-y,得到4(35-y)+2y=94,解此方程可得y=12,带入x=35-y得到x=23方法四:消元法将方程组2x+4y=94的两边同时除以2,得到x+2y=47,然后将方程组x+y=35的两倍减去x+2y=47,得到y=12,带入第一个方程得到x=23方法五:奇偶性法由于鸡和兔的数量都是整数,所以他们的和和差必然都是偶数。
又因为鸡和兔的总数为35,所以鸡和兔的数量要么都是奇数,要么都是偶数。
而94是偶数,所以鸡和兔的数量都是偶数。
假设鸡的数量为2x,兔的数量为2y,即x+y=17,x+y=47,解此方程组可得鸡和兔的数量。
方法六:凑数法由于鸡和兔的总数为35,所以他们的数量一定是代数意义下的整数。
而在此问题中,如果鸡的数量少于等于23,则兔的数量为35-x,但是此时计算得到的兔的总脚数为4(35-x),不等于94,所以鸡的数量一定大于23、由于鸡的数量不能大于35,所以鸡的数量只能为24或者25,带入方程组求解即可得到鸡和兔的数量。
方法七:立体坐标法将方程2x+4y=94写成数轴上的直线方程,类似地,将方程x+y=35写成数轴上的直线方程。
鸡兔同笼的各种解法鸡兔同笼是一道经典的数学问题,也是一道常见的思维训练题。
这道题目的主要思路是通过已知条件,推导出未知数的值。
在这篇文章中,我们将探讨鸡兔同笼的各种解法。
一、代数解法代数解法是鸡兔同笼问题的一种常见解法。
我们可以设鸡的数量为x,兔的数量为y,根据题目中的条件,列出方程组:x + y = n(总数量)2x + 4y = m(总腿数)通过解方程组,可以得到鸡和兔的数量。
这种解法需要一定的代数知识,适合于数学基础较好的人。
二、图像解法图像解法是一种直观的解法,适合于数学基础较差的人。
我们可以画出一个鸡兔同笼的图像,用圆圈表示鸡和兔的数量,用线段表示它们的腿数。
通过观察图像,可以得到鸡和兔的数量。
三、逻辑解法逻辑解法是一种思维难度较高的解法,需要一定的逻辑思维能力。
我们可以通过分析题目中的条件,得出一些结论。
例如,鸡和兔的总数量是偶数,因为每只鸡和兔都是偶数。
又例如,如果鸡的数量是奇数,那么兔的数量一定是偶数,因为每只兔子带来的腿数都是偶数。
通过这些结论,可以得到鸡和兔的数量。
四、枚举解法枚举解法是一种比较简单的解法,适合于小规模的问题。
我们可以从1开始枚举鸡和兔的数量,计算它们的腿数,直到找到符合条件的解。
这种解法的缺点是效率低下,不适合于大规模的问题。
五、程序解法程序解法是一种计算机程序实现的解法,适合于大规模的问题。
我们可以编写一个程序,输入总数量和总腿数,输出鸡和兔的数量。
这种解法需要一定的编程知识,适合于计算机专业的人。
鸡兔同笼的各种解法各有优缺点,可以根据自己的情况选择适合自己的解法。
无论采用哪种解法,都需要耐心和细心,才能得到正确的答案。
“鸡兔同笼问题”的4种理解方法题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。
求笼中各有几只鸡和兔?01♪解法1站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。
那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。
那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)02♪解法2松绑法由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。
那么,兔子就成了2只脚。
则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。
现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)03♪解法3假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。
假设笼子里全是鸡,则应有脚70只。
而实际上多出的部分就是兔子替换了鸡所形成。
每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。
兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。
而实际上不足的部分就是鸡替换了兔子所形成。
每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。
将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。
将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。
由计算值可知,两种替代方法得出的答案完全一致,只是顺序不同。
由替代法的顺序不同可知,求鸡设兔,求兔设鸡,可以根据题目问题进行假设以减少计算步骤。
鸡兔同笼的五种解法鸡兔同笼问题是一个经典的数学问题。
在这个问题里,给定了笼子里的动物的总数和腿的总数,需要求出鸡和兔的数量。
这个问题可以用多种方法解决。
在这里,我们将介绍五种解题方法。
方法一:列方程假设鸡的数量是x,兔的数量是y,根据题意,我们可以得到以下方程组:x + y = 总数2x + 4y = 腿的总数根据这个方程组,我们可以解出x和y的值,从而得到鸡和兔的数量。
方法二:画图法我们可以画出一张鸡和兔的图,用数字表示每只鸡和兔的数量和腿的数量,然后用这张图来解题。
这种方法比较直观,适合孩子或初学者使用。
方法三:数学归纳法我们可以观察鸡兔同笼问题的特征,发现每增加一只动物,会增加两条腿。
因此,我们可以将问题转化为:有n 个动物,它们共有m条腿,求鸡和兔的数量。
然后使用数学归纳法来解决这个问题。
方法四:递归算法我们可以将问题分解为小问题,再利用递归算法来解决。
具体地,假设有n只动物,其中m只是鸡,n-m只是兔。
如果这些动物共有k条腿,我们可以先考虑只有一只动物的情况,然后逐步增加动物的数量,直到n只为止。
方法五:运用数学知识我们可以运用一些数学知识,如组合数学和二元一次方程等,来解决这个问题。
具体地,我们可以用组合数学的方法计算出在给定腿的数量下,鸡的数量和兔的数量的所有可能组合,然后用二元一次方程来验证哪种组合符合题意。
以上五种方法各有特点。
对于初学者来说,列方程和画图法比较易懂;对于高中学生或数学专业学生来说,数学归纳法和递归算法可能更加适合;而对于数学专业研究生或数学爱好者来说,运用数学知识的方法可能更为有趣和有挑战性。
不管采用哪种方法,解决鸡兔同笼问题都可以让人在玩乐中学习,锻炼数学思维能力。
鸡兔同笼问题的几种解法鸡兔同笼问题是我国古代著名趣题之一。
通过学习解鸡兔同笼问题,可以提高我们的分析问题、解决问题的能力。
下面我来介绍几种解鸡兔同笼问题的方法:大约一千五百年前,我国古代数学名著《孙子算经》中记载了一道数学趣题,这就是著名的“鸡兔同笼”问题。
书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”意思就是:笼子里有若干只鸡和兔,从上面数,有35个头,从下面数,有94只脚,问鸡和兔各有多少只?解法一:列表法列表法就是让我们列出表格,采用依次列举,逐步尝试的方法来解决这个问题。
详细过程见下表:解法二:抬腿法这是古人解题的方法,也就是《孙子算经》中采用的方法。
1、抬腿,即鸡“金鸡独立”,兔两个后腿着地,前腿抬起,腿的数量就为原来数量的一半。
94÷2=47只脚。
2、现在鸡有一只脚,兔有两只脚。
笼子里只要有一只兔子,脚数就比头数多1。
3、那么脚数与头数的差47-35=12就是兔子的只数。
4、最后用头数减去兔的只数35-12=23就得出鸡的只数。
所以,我们可以总结出这样的公式:兔子的只数=总腿数÷2-总只数。
解法三:假设法假设法是鸡兔同笼类问题最常用的方法之一。
假设这35个头都是兔子,那么腿数就应该是35×4=140,就比94还多,那么是哪里多的呢?当然是我们把两条腿的鸡看成了四条腿的兔子了。
我们都知道一只兔子比一只鸡多2条腿,多2条腿就有1只鸡,那么多的腿数当中有多少个2就有多少只鸡。
我们可以列式为:鸡的只数=(35×4-94)÷(4-2)。
总结公式为:鸡的只数=(兔的脚数×总只数-总腿数)÷(兔的腿数-鸡的腿数)。
当然我们也可以把这35个头都看成鸡的,那么腿数应该是35×2=70,就比94还少,相信不说你也明白为什么少了?对,因为我们把4条腿的兔子看成了2条腿的鸡,那么每少两条腿就有1只兔子。
鸡兔同笼的三种方法
鸡兔同笼问题的原型是已知鸡和兔子这两类动物的头、脚的总数量,求鸡和兔子分别多少只。
在考试中,题干内容往往会有所变化。
鸡兔同笼解法方法一:普通方程法设邮递员派送平邮X件,则派送的EMS有(14-X)件,根据补助构建等量关系,可得:7X+10(14-X)=119,解得X=7,选择A选项。
普通方程法是最容易想到的方法,对于思维的要求度不高,只需要设出未知数,列好等式求解即可。
方法二:假设法假设邮递员当天派送的全部是EMS,则可得的补助为
10×14=140元。
然而实际上邮递员的补助只有119元,差值为
140-119=21元。
因此平邮有21÷(10-7)=7件。
假设法是解决鸡兔同笼问题最常用的方法,跳过了普通方程设未知数、列方程等步骤,直接进入计算求解阶段,解题效果最明显。
在假设时,要根据题干的问法选择合适的假设条件来求解。
方法三:不定方程法设平邮X件,EMS 有Y件,则7X+10Y=119,由于7和119都能被7整除,根据整除特性可知Y=7,因此X=7(也可以通过尾数法判断7X的尾数为9,因此X=7)。
不定方程法只用了题干中的部分条件,结合选项就能快速判断求解了。
运用此方法对题目选项以及具体数值的要求较高,特别是对不定方程的解法要非常熟练才能快速判断求解。
数学名题:鸡兔同笼大约在1500年前,《孙子算经》中就记载了这个有趣的问题。
书中是这样叙述的:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。
问笼中各有多少只鸡和兔?
这一问题的本质是一种二元方程。
如果教学方法得当,可以让小学生初步地理解未知数和方程等概念,并锻炼从应用问题中抽象出数的能力。
一般在小学四到六年级时,配合一元一次方程等内容教授。
同一本书中还有一道变题:今有兽,六首四足;禽,四首二足,上有七十六首,下有四十六足。
问:禽、兽各几何?答曰:八兽、七禽。
题设条件包括了不同数量的头和不同数量的足。