煤自燃参数
- 格式:docx
- 大小:3.24 KB
- 文档页数:2
目前比较普遍的看法是:煤炭能在常温厂吸附空气中的氧而氧化,产生一定的热量。
若氧化生成的热量较少并能及时散失,则煤温不会升高;若氧化生成的热量大于向周围散失的热量,煤温将升高。
随着煤温的继续升高,氧比急剧加快,从而产生更多的热量,煤温也急剧上升,当煤温达到着火点(300~350℃)时,煤即自燃发火。
煤炭开始接触氧气到自燃,所经历的时间对不同的煤种是不一样的。
人们把煤炭接触氧气到自燃的时间叫做发火期。
我国煤层发火期最短的为1.5~3个月,长者可达15个月以上。
煤炭自燃是一个复杂的过程,受着多种因素的影响,但煤炭自燃必须具备以下条件:(1)煤有自燃倾向性,且以破碎状态存在;(2)有连续的供氧条件;(3)有积聚氧化热的环境;(4)上述三个条件持续足够的时间。
实践证明,具有同样自燃倾向性的煤层,在不同的生产技术条件下,有的煤能自燃,有的则不能;在同样的外部条件下,自燃倾向性也不一样。
这是因为煤炭自燃过程受着许多因素影响的缘故。
其影响的主要因素是:(1)煤的化学成分;(2)煤的物理性质;(3)煤层的地质条件;(4)开拓开采条件;(5)矿井通风条件【摘要】煤氧化自燃既是重大的事故隐患,也降低了煤的经济价值。
分析了煤堆自燃的原因,煤堆易发生自燃的部位,并提出防治措施。
煤炭长期堆积会因氧化作用,使煤的灰分升高,固定炭和热值下降,降低煤的质量。
煤炭自燃还会造成大量的煤白白烧掉。
如汕头电厂燃烧的烟煤,煤场经常贮有3个月以上的正常用量,因贮煤时间过长而经常发生自燃,有时同时几处发生自燃。
阴燃的煤被送到输送和研磨设备,会造成燃烧和爆炸事故。
煤自燃既是重大的隐患,也降低了煤的经济价值,因此,了解煤自燃的特性,防止煤自燃具有十分重要的意义。
1、煤堆自燃原因分析煤大体上由有机物和无机物组成,主要可燃元素是碳(约占65%~95%),其次是氢(约占1%~2%),并含少量氧(约占3%~5%,有时高达25%)、硫(约占10%),上述元素一起构成可燃化合物,称为煤的可燃质。
氧气浓度对煤氧化特性及自燃极限参数影响的实验研究王建利【摘要】为了研究不同氧气浓度情况下,煤的自燃特性和极限参数的变化规律.采用煤自燃程序升温实验对煤样在21%,14%,8%和4%这四种氧气浓度情况下氧化过程进行了测试.得到了煤氧化过程中的耗氧速率和放热强度,并计算得到煤的自燃极限参数.实验结果表明:降低氧气浓度会使煤氧化过程中的耗氧速率和放热强度出现显著的降低.煤的最小浮煤厚度随煤温的升高,呈现先升高后降低的趋势,而上限漏风强度变化趋势正好相反.最小浮煤厚度的最大值和上限漏风强度最小值出现温度与煤样的临界温度相近.降低氧气浓度会显著抑制煤的氧化放热,造成煤的最小浮煤厚度明显增加,下限漏风强度明显降低.【期刊名称】《陕西煤炭》【年(卷),期】2019(038)001【总页数】6页(P9-13,50)【关键词】煤;自燃特性;极限参数;放热特性【作者】王建利【作者单位】陕西陕煤韩城矿业有限公司通风管理部,陕西韩城715400【正文语种】中文【中图分类】TD752.20 引言煤自燃火灾是威胁我国矿井安全生产的主要灾害之一[1]。
煤自燃火灾不仅会造成严重的经济和财产损失,甚至造成严重的人员伤亡事故[2]。
在矿井生产过程中的煤自燃火灾主要是采空区中遗煤自燃引发的,具有隐蔽性、易复燃和防治难度大等特点[3]。
因此,采空区煤自燃隐患的预防是煤自燃火灾防治的重点[4]。
采空区中遗煤发生自燃是由煤自燃的内在属性和外在条件共同作用的结果[5-6]。
因此,针对采空区遗煤自燃的预防不仅要研究遗煤自燃特性,而且导致煤发生自燃的外在条件也是研究的重点之一[7]。
能导致煤自燃的外部条件的极限值称为煤自燃极限参数,包括:最小浮煤厚度、下限氧浓度、上限漏风强度[8]。
针对这些外在条件,学者研究得出了煤自燃极限参数的计算公式[9],并研究了不同变质程度[10]、粒度[11]、阻化剂[12]等条件下,煤自燃极限参数的变化规律。
同时学者们基于神经网络、支持向量机等方法研究得出煤自燃极限参数的预测方法,这些研究有力地促进了煤自燃火灾的防治[13]。
煤炭堆积过高自燃原理
煤炭是我们生产和生活中不可或缺的能源,但是煤炭堆积过高会引发自燃,给我们的生产和生活带来极大的危害。
那么,为什么煤炭堆积过高会自燃呢?
我们需要了解煤炭的自燃温度。
煤炭中的有机物质在高温下会发生氧化反应,产生大量的热量,这种现象称为自燃。
煤炭的自燃温度一般在60℃左右,当煤炭堆积过高时,堆积的煤炭会产生自身的压力,使得煤炭内部的温度升高,当温度达到自燃温度时,就会发生自燃。
煤炭的水分含量也是影响自燃的重要因素。
煤炭中的水分含量越高,煤炭的自燃温度就越低。
当煤炭堆积过高时,堆积的煤炭会受到外界环境的影响,如雨水、雪水等,这些水分会渗透到煤炭内部,使得煤炭的水分含量增加,从而降低了煤炭的自燃温度,增加了自燃的风险。
煤炭的质量也是影响自燃的因素之一。
煤炭的质量越差,煤炭中的杂质和有机物质含量就越高,这些杂质和有机物质在高温下容易发生氧化反应,产生大量的热量,从而引发自燃。
当煤炭堆积过高时,堆积的煤炭中的杂质和有机物质含量也会增加,增加了自燃的风险。
煤炭堆积过高会引发自燃,这是由于煤炭内部的压力、水分含量和质量等因素的影响。
为了避免煤炭自燃带来的危害,我们应该加强
煤炭的管理和储存,控制煤炭的堆积高度,保持煤炭的干燥,提高煤炭的质量,从而减少自燃的风险。
3#煤层自然发火标志气体及临界值确定王永敬【摘要】为做好综放工作面自然发火分级预警,以主采的3#煤层为研究对象,通过程序升温实验、现场测试及统计分析的方法,优选出煤层的自然发火标志气体和确定得到工作面采空区、回风隅角和回风流中CO指标临界值,并依此建立了工作面煤自然发火分级复合指标预警体系.结果表明:采空区、回风隅角和回风流中CO浓度临界值分别为242×10-6、59.6×10-6和20×10-6;各个区域建立绿(I级)、蓝(II 级)、橙(III级)和红(IV级)共4级预警响应.【期刊名称】《煤矿安全》【年(卷),期】2019(050)004【总页数】6页(P195-199,204)【关键词】综放工作面;自然发火;标志气体;临界值;预警体系【作者】王永敬【作者单位】煤炭科学研究总院,北京 100013;煤科集团沈阳研究院有限公司,辽宁沈阳 110016;煤矿安全技术国家重点实验室,辽宁抚顺 113122【正文语种】中文【中图分类】TD75+2.2煤自燃火灾是威胁煤矿安全生产的5大灾害之一[1-4],全国近80%的开采煤层具有自燃倾向性,国有重点煤矿开采的厚煤层大部分都存在煤自然发火问题[5-6]。
每年因煤火引起的灾害事故超过4 000起,造成了重大人员伤亡和财产损失。
工作面采空区煤自燃已严重威胁着矿井安全生产。
为此《煤矿安全规程》第二百六十一条及其执行情况说明规定:“开采容易自燃和自燃煤层时,必须开展自然发火监测工作,建立自然发火监测系统,确定煤层自然发火标志气体及临界值,健全自然发火预测预报及管理制度。
”近年来,自然发火标志气体优选和临界值大多通过实验室实验利用气体分析法获得[7-10]。
而CO产生受煤层本身性质、采掘条件等因素影响,仅靠实验获得其临界值已不能准确指导现场实际生产。
新疆哈密某矿主采3#煤层,吸氧量为0.99 cm3/g,属于容易自燃煤层,存在低温易氧化等特点。
煤自燃指标气体及极限参数实验研究摘要:为了掌握王洼二矿煤自然发火特征,采用西科大XKIII型煤自然发火实验台对1.5t煤进行了煤自燃全过程模拟实验,测试出该矿开采煤样实验发火期为25天,掌握了自燃过程中温度的变化及对应气体的变化规律,测算了开采煤层煤样的最小浮煤厚度、下限氧浓度、上限漏风强度等极限参数,为该矿煤自燃灾害的预防提供了依据。
关键词:煤自燃特征参数实验发火期最小浮煤厚度煤自燃发火期是预测井下煤自燃灾害发生的重要指标之一,实验自然发火期即为在实验条件下,使松散煤体从供风开始到冒青烟所经历的时间。
它反映实验条件下的最短自然发火期,其意义在于确定各类煤体相对自然发火性的强弱。
近二十年,世界各主要产煤国先后建立了静态模拟煤层自燃过程的大型自然发火实验台(其中法国的实验台装煤5t、美国的13t、前苏联的4t、英国的1t)。
根据实验结果,从煤自燃的氧化性和放热性两个方面对煤的自燃性进行了考察。
该实验采用我国最大的煤自然发火实验台(西安科技大学XKIII型)进行煤自然发火过程的实验研究,较好地模拟了煤实际条件下的自燃过程及特征参数,其测试的自燃性及自然发火期与实际情况基本相符。
1 实验原理及过程煤自然发火是由于煤与氧接触时发生化学吸附和化学反应放出热量,当放出热量大于散发的热量时,煤温上升而导致发火。
煤低温自然发火实验就是该过程的模拟,即在实验条件下,依靠煤自身氧化放热升温,考察其煤温、氧气消耗量、一氧化碳产生量以及其它气体的变化规律。
1.1 实验原理该实验装置主要采用西安科技大学XKIII型实验发火台,可以模拟现场散热情况、漏风状况及浮煤厚度,以井下温度(15~30℃)作为实验起始温度,利用煤氧化放热引起自然升温,连续检测实验炉内各点煤样的温度、气体变化情况,以研究煤的低温氧化放热特性,预测煤的自燃倾向性及自然发火期。
1.2 实验条件及过程在实验前从王洼二矿煤矿采集混煤2t,用塑料编织袋包装,运送到实验地点。
风化煤自燃极限参数研究李银艳; 宋申【期刊名称】《《山西煤炭》》【年(卷),期】2018(038)003【总页数】3页(P41-43)【关键词】煤自燃; 风化煤; 放热强度; 极限参数【作者】李银艳; 宋申【作者单位】吕梁学院矿业工程系山西吕梁 033000; 太原理工大学矿业工程学院太原 030024【正文语种】中文【中图分类】TD752.2在矿井实际生产过程中,广泛存在浅埋煤层风化煤开采老空区遗煤复采等现象,这些煤经历了预氧化过程,自燃特性已发生改变[1],煤自燃的发生和发展是一个极其复杂的动态物理化学变化过程。
目前,许多学者展开了关于煤自燃极限参数的研究。
徐精彩[2]基于热平衡法推导出煤自燃极限参数最小浮煤厚度、下限氧浓度、上限漏风强度;邓军[3]研究了水浸煤体自燃极限参数;张辛亥[4]研究了遗煤二次氧化过程中自燃极限参数变化规律。
但关于风化煤自燃极限参数的研究相对较少。
因此,笔者采用程序升温试验系统试验测试风化煤氧化自燃特征参数,测定产生的气体浓度,计算CO、CO2生成速率,放热强度,进而计算最小浮煤厚度、下限氧浓度、上限漏风强度,研究风化煤氧化自燃过程中自燃极限参数的变化规律,对露天矿井和浅埋煤层开采过程中风化煤自燃的防治和预防有一定的指导意义,为风化煤自燃的预测预报与防治奠定了基础。
1 实验1.1 实验煤样实验选择西山焦煤,现场取刚开采的新鲜煤样,装在真空袋内,运至实验室。
煤样的工业分析如表1所示。
表1 煤样的工业分析Table 1 Industrial analysis of coal samples煤样Mad/%Aad/%Vad/%FCad/% 西山焦煤0.426.5138.1283.111.2 实验装置程序升温实验装置和GC-950N型气相色谱仪。
1.3 实验过程实验前先剥去煤样表面氧化层,然后对其进行破碎并筛分出不同粒径:0.18 mm~1.00 mm、1.00 mm~2.00 mm、2.00 mm~3.35 mm、3.35 mm~4.00 mm、4.00 mm~4.75 mm共5种粒径的煤样,各粒径取200 g,制成混合煤样1 000 g作为实验煤样。
煤自燃参数
煤自燃是指煤在无外界火源的情况下,在一定条件下自行燃烧的现象。
煤自燃参数是指影响煤自燃过程的各种因素,包括煤的成分、含水率、粒度、储存方式等。
煤的成分对其自燃性能有着重要影响。
不同种类的煤具有不同的成分,其中含有的挥发分和固定碳含量是决定自燃性能的关键因素。
挥发分是指在加热过程中从煤中挥发出的气体和液体物质,而固定碳则是指在加热过程中残留的固体物质。
一般来说,挥发分含量高的煤更容易自燃,而固定碳含量高的煤则较难自燃。
煤的含水率也对其自燃性能有一定影响。
含水率较高的煤由于水分的存在,可以降低煤的自燃倾向。
因为水分具有降低煤的燃点和吸热效应的作用,从而减缓了煤的自燃速度。
而含水率较低的煤则容易发生自燃,因为水分的减少使得煤的易燃物质更易暴露在空气中。
煤的粒度也是影响煤自燃性能的重要参数。
煤的颗粒越细,其表面积就越大,与空气的接触面积也就越大,从而更容易发生自燃。
因此,细粒煤比粗粒煤更容易自燃。
储存方式也会对煤的自燃性能产生影响。
如果煤的堆放方式不当,容易导致煤堆内部的温度升高,进而引发自燃。
因此,在煤的储存过程中,应注意保持良好的通风条件,避免煤堆内部温度过高。
煤自燃参数包括煤的成分、含水率、粒度和储存方式等因素。
了解这些参数对煤的自燃性能的影响,可以帮助我们更好地预防和控制煤自燃事故的发生,确保煤的安全储存和使用。