电子元器件封装介绍
- 格式:doc
- 大小:35.53 KB
- 文档页数:6
电子元器件的封装与尺寸要求电子元器件的封装和尺寸要求是电子工程师在设计和制造电路板时必须考虑的重要因素。
本文将详细介绍电子元器件封装的概念和尺寸要求,并列举一些常见的封装类型和尺寸标准。
总之,本文旨在为读者提供对电子元器件封装与尺寸要求的全面了解。
一、电子元器件封装的概念和重要性(200字)1.1 封装的定义:封装是指将功能相同或相近的电子元器件封装在同一个外壳中,以便于安装和使用。
1.2 封装的重要性:良好的封装设计能够保护电子元器件免受外部环境的影响、提高元器件的稳定性和可靠性、降低成本、便于制造和维修等。
二、电子元器件封装的类型(400字)2.1 DIP封装:Dual In-line Package(双列直插封装)是一种常见的传统封装类型,尺寸小巧,易于插入电路板。
适用于较低功率和低密度的应用。
2.2 SMT封装:Surface Mount Technology(表面贴装技术)是目前广泛应用的封装类型。
它可以提供更好的制造和可靠性,并能适应更高功率和高密度的应用。
2.3 BGA封装:Ball Grid Array(球栅阵列封装)是一种高密度封装,适用于高性能和高功率要求的电子元器件。
其特点是引脚通常被连接到底部的小球上,便于焊接和散热。
2.4 QFN封装:Quad Flat No-leads(扁平无引脚封装)是一种集成度较高、尺寸较小的封装,适用于紧凑和高密度的电路设计。
常用于集成电路芯片和无线通信模块等应用。
三、电子元器件尺寸要求(400字)3.1 尺寸的定义:尺寸是指元器件外观的长、宽、高等尺度。
不同的尺寸要求可以满足不同的应用需求。
3.2 尺寸的标准化:为了方便设计和制造,电子工程师使用一些标准的尺寸参数。
常见的标准有英寸和毫米两种,例如0805尺寸表示封装尺寸是0.08英寸×0.05英寸。
3.3 尺寸的影响因素:元器件尺寸的选择受到多种因素的影响,包括功率要求、热管理、板间距、可靠性等。
电子元器件封装介绍电子元器件封装介绍电阻:RES1,RES2,RES3,RES4;封装属性为AXIAL系列无极性电容:CAP;封装属性为RAD-0.1到RAD-0.4电解电容:ELECTROI;封装属性为RB.2/.4到RB.5/1.0电位器:POT1,POT2;封装属性为VR-1到VR-5二极管:封装属性为DIODE-0.4(小功率)DIODE-0.7(大功率)三极管:常见的封装属性为TO-18(普通三极管)TO-22(大功率三极管)TO-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有TO126H和TO126V整流桥:BRIDGE1,BRIDGE2:封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7其中0.3-0.7指电阻的长度,一般用AXIAL0.3瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470uF 用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40,其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说如下:02011/20W04021/16W06031/10W08051/8W12061/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0mmx0.5mm0603=1.6mmx0.8mm0805=2.0mmx1.2mm1206=3.2mmx1.6mm1210=3.2mmx2.5mm1812=4.5mmx3.2mm2225=5.6mmx6.5mm零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。
修改者:林子木电子元件封装大全及封装常识一、什么叫封装封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接.封装形式是指安装半导体集成电路芯片用的外壳。
它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。
因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。
另一方面,封装后的芯片也更便于安装和运输。
由于封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。
衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1 越好。
封装时主要考虑的因素:1、芯片面积与封装面积之比为提高封装效率,尽量接近1:1;2、引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能;3、基于散热的要求,封装越薄越好。
封装主要分为DIP 双列直插和SMD 贴片封装两种。
从结构方面,封装经历了最早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP公司开发出了SOP 小外型封装,以后逐渐派生出SOJ(J 型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。
从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作条件需求的电路如军工和宇航级别仍有大量的金属封装。
封装大致经过了如下发展进程:结构方面:TO->DIP->PLCC->QFP->BGA ->CSP;材料方面:金属、陶瓷->陶瓷、塑料->塑料;引脚形状:长引线直插->短引线或无引线贴装->球状凸点;装配方式:通孔插装->表面组装->直接安装二、具体的封装形式1、SOP/SOIC 封装SOP 是英文Small Outline Package 的缩写,即小外形封装。
电子行业常见电子元件的封装引言在电子行业中,常用的电子元件可以分为许多不同的类型,它们在电子产品的设计与制造中起着至关重要的作用。
其中一个重要的方面就是元件的封装,即将电子元件嵌入到适当的封装中,以便于安装、使用和维护。
本文将介绍几种电子行业中常见的电子元件的封装类型,并说明它们的特点和应用场景。
1. DIP封装(Dual Inline Package)DIP封装是电子行业中最基本和最常见的封装类型之一。
它是一种通过两个平行的排针将元件与电路板连接的封装形式。
DIP封装通常用于集成电路(IC)和二极管等小型元件上,其较大的封装尺寸使得它易于手动安装和维修。
DIP封装的主要特点是易于制造和低成本,但其体积较大,不适用于高密度的电路板设计。
2. SMD封装(Surface Mount Device)SMD封装是一种在电子行业中越来越流行的封装类型。
相比于DIP封装,SMD封装更小巧、体积更小,适用于高密度电路板的设计。
SMD封装使用焊盘来连结元件和电路板,减少了排针的使用,因此可以实现更高的集成度和更好的电路性能。
SMD封装的另一个优点是它可以通过自动化设备进行快速的贴片焊接,提高了生产效率。
SMD封装有许多不同的类型,其中最常见的包括:•SOP封装(Small Outline Package):SOP封装是一种带有平行引脚的表面贴装元件封装。
SOP封装广泛应用于各种集成电路和传感器上。
它的特点是小型尺寸和较低的体积,适合于紧凑型电路板设计。
•QFP封装(Quad Flat Package):QFP封装是一种四边平行引脚的表面贴装封装,广泛应用于计算机和通信设备等高密度电子产品中。
QFP封装具有较高的引脚密度和较小的封装间距,可实现更高的集成度和更好的电路性能。
•BGA封装(Ball Grid Array):BGA封装是一种使用焊球连接元件和电路板的表面贴装封装。
BGA封装具有更高的引脚密度和更好的热性能,适用于需求更高性能和更高可靠性的电子产品。
元器件封装定义及分类
元器件封装是指将电子元器件放置在特定的封装材料中,以保护元器件并使其更易于安装和使用的过程。
根据元器件的不同类型和功能,元器件封装被分为多种类型和分类。
以下是常见的元器件封装类型和分类:
一、贴片封装
贴片封装是将电子元器件直接粘贴在PCB板上的一种封装方式。
它可以大大缩小电路板的体积,提高电路板的集成度,同时也可以提高生产效率。
二、插件式封装
插件式封装是指将元器件通过引线插入到PCB板上的一种封装
方式。
它适用于高功率元器件,如变压器、继电器等。
三、球栅阵列封装
球栅阵列封装是一种新型的封装方式,它将电子元器件集成在小型芯片上,并将这些芯片封装在球栅阵列封装中。
它适用于高速和多功能的电路板。
四、双列直插封装
双列直插封装是将元器件通过引脚插入到PCB板上的一种封装
方式。
它适用于高密度的电路板。
五、表面贴装封装
表面贴装封装是将电子元器件粘贴在PCB板的表面上的一种封
装方式。
它适用于小型和轻量级电路板。
六、无人机封装
无人机封装是一种针对飞行器领域设计的封装方式。
它包括多种类型的封装,如航空插件、光电封装、防水封装等。
它旨在提供高质量的保护和可靠性。
以上是一些常见的元器件封装类型和分类,每种封装方式都有其独特的优点和应用场景。
在设计和生产电子设备时,应根据实际需求和要求选择最适合的封装方式。
电子元器件封装技术手册封装技术在电子元器件固定、保护和连接方面起着至关重要的作用。
本手册将介绍常见的电子元器件封装技术,包括贴片封装、插件封装、球栅阵列(BGA)封装以及最新的3D封装技术。
以下是各种封装技术的详细介绍。
1. 贴片封装贴片封装是一种常见且广泛应用的封装技术。
这种封装方式将电子元器件直接粘贴在PCB上,采用表面贴装技术(SMT)进行焊接。
贴片封装具有体积小、重量轻、适应高密度集成等优点。
它在现代电子产品中得到广泛应用,如手机、电视等消费电子产品。
2. 插件封装插件封装是一种传统的封装技术,将电子元器件通过引脚插入到PCB的孔中,再进行焊接。
这种封装方式适用于一些对可靠性要求较高,体积较大的元器件,如继电器、开关等。
插件封装的优势在于可更换性强,易于维修。
3. 球栅阵列(BGA)封装BGA封装是一种先进的封装技术,特点是在PCB上焊接一块带有多个焊球的封装芯片。
这种封装方式使得电子元器件的引脚更加集中和紧凑,有助于提高信号传输速度和可靠性。
BGA封装适用于高功率、高密度的集成电路,如处理器和图形芯片。
4. 3D封装技术随着电子产品的小型化和集成度的提高,3D封装技术应运而生。
这种封装方式通过垂直堆叠多层封装芯片,实现更高的集成度和更小的体积。
3D封装技术可以充分利用垂直空间,提高电路板的布线效率,并且减少电路之间的互相干扰。
总结电子元器件封装技术在现代电子行业中起着至关重要的作用。
贴片封装、插件封装、BGA封装以及3D封装技术各有其特点和适用范围。
我们需要根据实际需求和应用环境选择合适的封装技术。
随着技术的不断进步,封装技术也在不断演进和创新,为电子产品的发展提供更好的支持。
这本电子元器件封装技术手册旨在为工程师和技术人员提供基础知识和指导,帮助他们在设计和生产过程中选择合适的封装技术。
掌握好封装技术,可以提高产品的性能和可靠性,降低制造成本,同时也为我们的电子产品创新提供更大的空间。
什么是电子元件的封装类型如何选择适当的封装类型电子元件是现代电子技术中不可或缺的基本组成部分,封装类型的选择对于电子设备的性能和可靠性具有重要影响。
本文将介绍电子元件的封装类型和选择适当封装类型的方法。
一、电子元件的封装类型1. DIP封装(Dual in-line package)DIP封装是一种传统的电子元件封装类型,常见于集成电路、二极管等元件。
DIP封装的特点是引脚通过直线排列,两侧有一定间距,方便手动插入和焊接。
然而,DIP封装的引脚数量有限,不适用于高密度、大功率的应用场景。
2. SOP封装(Small-outline package)SOP封装是一种小型化的封装类型,广泛应用于各种集成电路。
SOP封装的特点是引脚数量较多,密集排列,适用于高密度电路板的布局设计。
此外,SOP封装还具有良好的热散性能和良好的焊接可靠性。
3. BGA封装(Ball grid array)BGA封装是一种先进的电子元件封装类型,常见于微处理器、芯片组等高性能产品。
BGA封装的特点是引脚以球形焊珠的形式存在于封装底部,通过焊珠与电路板焊接,具有较高的引脚密度和可靠性。
BGA封装还可以提供较好的散热性能,适用于高功率应用。
4. QFN封装(Quad flat no-lead)QFN封装是一种无引脚的封装类型,适用于高密度和小尺寸的电子元件。
QFN封装的特点是引脚位于封装底部,通过焊盘与电路板连接。
QFN封装具有较好的散热性能和较小的封装占地面积,常用于集成电路和射频模块等应用。
二、选择适当的封装类型选择适当的封装类型需要综合考虑以下几个方面:1. 环境要求根据电子元件所处的环境需求,选择具备相应性能的封装类型。
如在高温环境下工作的元件,应选择具有良好热散性能的封装类型,如BGA封装。
2. 功能需求根据电子元件的功能需求,选择适当的封装类型。
如高密度、小尺寸的元件可选择QFN封装,而大功率应用可选择具有良好散热性能的封装类型。
电子元器件的封装与封装技术进展随着电子科技的不断发展,电子元器件在现代社会中起着关键的作用。
而电子元器件的封装和封装技术则是保证其正常运行和长期可靠性的重要环节。
本文将介绍电子元器件封装的概念、封装技术的发展以及未来的趋势。
一、电子元器件封装的概念电子元器件封装是指将裸露的电子器件(如芯片、晶体管等)进行包装,并加入保护层,以充分保护元器件的性能、提高连接可靠性,并便于安装和维护。
合理的封装设计能够保护电子器件不受外界环境的影响,同时提高电子器件在电磁环境中的工作稳定性。
二、封装技术的进展随着电子技术的不断创新和发展,电子元器件的封装技术也在不断进步。
以下是一些主要的封装技术进展:1. 芯片封装技术芯片封装技术是将芯片包装在塑料、陶瓷或金属封装中。
近年来,微型封装技术的发展使得芯片的封装更加紧凑,能够将更多的功能集成在一个芯片中,从而提高了元器件的性能和可靠性。
2. 表面贴装技术(SMT)表面贴装技术是指将元器件直接通过焊接或贴合等方式固定在印刷电路板表面的技术。
与传统的插针连接方式相比,SMT可以提高元器件的连接可靠性,同时减小了电路板的尺寸。
3. 多芯片封装(MCP)多芯片封装是将多个芯片封装在同一个封装体中。
通过这种方式,可以将不同功能的芯片集成在一个封装中,同时减少了电路板上元器件的数量,提高了整体系统的紧凑性和可靠性。
4. 三维封装技术三维封装技术是将多个芯片层叠在一起,并通过微连接技术进行连接。
这种封装方式大大提高了元器件的集成度和性能,同时减小了系统的体积。
三、未来的趋势随着电子技术的不断发展,电子元器件封装技术也将朝着以下几个方向发展:1. 进一步集成化未来的电子元器件封装技术将会更加注重集成化,将更多的功能集成在一个封装中。
这样可以提高整体系统的紧凑性,减小系统的体积,并提供更高性能的元器件。
2. 更高的可靠性和稳定性未来的封装技术将注重提高元器件的可靠性和稳定性。
通过采用先进的封装材料和工艺,可以提高元器件在极端环境下的工作性能,如高温、高湿等。
一、什么叫封装封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接.封装形式是指安装半导体集成电路芯片用的外壳。
它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。
因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降.另一方面,封装后的芯片也更便于安装和运输。
由于封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的PCB(印制电路板)的设计和制造,因此它是至关重要的。
衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。
封装时主要考虑的因素:1、芯片面积与封装面积之比为提高封装效率,尽量接近1:1;2、引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能;3、基于散热的要求,封装越薄越好。
封装主要分为DIP双列直插和SMD贴片封装两种。
从结构方面,封装经历了最早期的晶体管TO(如TO-89、TO92)封装发展到了双列直插封装,随后由PHILIP公司开发出了SOP小外型封装,以后逐渐派生出SOJ(J型引脚小外形封装)、TSOP(薄小外形封装)、VSOP(甚小外形封装)、SSOP(缩小型SOP)、TSSOP(薄的缩小型SOP)及SOT(小外形晶体管)、SOIC(小外形集成电路)等。
从材料介质方面,包括金属、陶瓷、塑料、塑料,目前很多高强度工作条件需求的电路如军工和宇航级别仍有大量的金属封装.封装大致经过了如下发展进程:结构方面:TO->DIP->PLCC-〉QFP-〉BGA -〉CSP;材料方面:金属、陶瓷-〉陶瓷、塑料->塑料;引脚形状:长引线直插-〉短引线或无引线贴装->球状凸点;装配方式:通孔插装-〉表面组装-〉直接安装二、具体的封装形式1、 SOP/SOIC封装SOP是英文Small Outline Package 的缩写,即小外形封装。
电子元器件封装标准封装是电子元器件在生产过程中最关键的环节之一,它直接关系到电子产品的品质和可靠性。
为了实现电子元器件的封装标准化,降低生产成本,提高产品的一致性和可靠性,制定和遵守电子元器件封装标准显得尤为重要。
本文将从封装的定义、封装的分类、封装标准的重要性以及封装标准的制定等方面展开论述。
一、封装的定义电子元器件封装是指将裸露的电子器件(如芯片、晶体管等)进行包装,并连接到相应的引脚上,形成独立的实体,以方便与其他电路板或设备进行连接和使用。
封装的目的是保护器件免受外界环境的影响,提供连接和散热功能。
二、封装的分类根据不同的封装形式和尺寸,电子元器件的封装可以分为多种类型,包括贴片封装、插件封装、裸露芯片封装等。
贴片封装是目前最常用的封装形式,它可以分为表面贴片封装(SMT)和无引脚贴片封装(CSP)。
插件封装主要用于较大、较复杂的元器件,如芯片、电阻、电容等。
裸露芯片封装指的是将芯片直接封装或封装后切割成单个元器件。
三、封装标准的重要性1. 完善供应链:制定统一的封装标准可以降低产品设计和制造的门槛,缩短产品的研发周期,提高产品的市场竞争力。
同时,封装标准也可以实现不同供应商之间的互换性,降低供应链的风险和变化带来的不确定性。
2. 提高产品可靠性:封装标准的统一可以降低制造过程中的误差和不一致性,提高产品的可靠性和一致性。
统一的封装标准可以确保产品在不同环境下的稳定性和可靠性,提高产品的寿命和质量。
3. 降低生产成本:制定和遵守封装标准可以降低生产过程中的成本和风险。
统一的封装标准可以提高生产效率,降低生产设备和工艺的复杂性,减少生产过程中的缺陷和废品率,从而降低生产成本。
四、封装标准的制定制定电子元器件封装标准需要考虑多方面因素,包括元器件的尺寸、引脚数量、耐热性能、耐寒性能、防尘、防水等特性。
制定封装标准需要参考国际性的标准和规范,如JEDEC、IPC和IEC等组织制定的相关标准。
在制定封装标准的过程中,需要充分考虑市场需求、技术发展趋势和产业链的变化。
电子元器件封装介绍电阻:RES1,RES2,RES3,RES4;封装属性为AXIAL系列无极性电容:CAP;封装属性为RAD-0.1到RAD-0.4电解电容:ELECTROI;封装属性为RB.2/.4到RB.5/1.0电位器:POT1,POT2;封装属性为VR-1到VR-5二极管:封装属性为DIODE-0.4(小功率)DIODE-0.7(大功率)三极管:常见的封装属性为TO-18(普通三极管)TO-22(大功率三极管)TO-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有TO126H和TO126V整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7 其中0.3-0.7指电阻的长度,一般用AXIAL0.3瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系,但封装尺寸与功率有关通常来说如下:0201 1/20W0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0mmx0.5mm0603=1.6mmx0.8mm0805=2.0mmx1.2mm1206=3.2mmx1.6mm1210=3.2mmx2.5mm1812=4.5mmx3.2mm2225=5.6mmx6.5mm零件封装是指实际零件焊接到电路板时所指示的外观和焊点的位置。
是纯粹的空间概念因此不同的元件可共用同一零件封装,同种元件也可有不同的零件封装。
像电阻,有传统的针插式,这种元件体积较大,电路板必须钻孔才能安置元件,完成钻孔后,插入元件,再过锡炉或喷锡(也可手焊),成本较高,较新的设计都是采用体积小的表面贴片式元件(SMD)这种元件不必钻孔,用钢膜将半熔状锡膏倒入电路板,再把SMD元件放上,即可焊接在电路板上了。
关于零件封装我们在前面说过,除了DEVICE。
LIB库中的元件外,其它库的元件都已经有了固定的元件封装,这是因为这个库中的元件都有多种形式:以晶体管为例说明一下:晶体管是我们常用的的元件之一,在DEVICE。
LIB库中,简简单单的只有NPN与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N3054,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化。
还有一个就是电阻,在DEVICE库中,它也是简单地把它们称为RES1和RES2,不管它是100Ω还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W和甚至1/2W的电阻,都可以用AXIAL0.3元件封装,而功率数大一点的话,可用XIAL0.4,AXIAL0.5等等。
现将常用的元件封装整理如下:电阻类及无极性双端元件AXIAL0.3-AXIAL1.0;/无极性电容RAD0.1-RAD0.4/有极性电容RB.2/.4-RB.5/1.0/二极管DIODE0.4及 DIODE0.7/石英晶体振荡器XTAL1/晶体管、FET、UJT TO-xxx(TO-3,TO-5)/ 可变电阻(POT1、POT2)VR1-VR5.当然,我们也可以打开C:\Client98\PCB98\library\advpcb.lib库来查找所用零件的对应封装.这些常用的元件封装,大家最好能把它背下来,这些元件封装,大家可以把它拆分成两部分来记如电阻AXIAL0.3可拆成AXIAL和0.3,AXIAL翻译成中文就是轴状的,0.3则是该电阻在印刷电路板上的焊盘间的距离也就是300mil(因为在电机领域里,是以英制单位为主的。
同样的,对于无极性的电容,RAD0.1-RAD0.4也是一样;对有极性的电容如电解电容,其封装为RB.2/.4,RB.3/.6等,其中“.2”为焊盘间距,“.4”为电容圆筒的外径。
对于晶体管,那就直接看它的外形及功率,大功率的晶体管,就用TO—3,中功率的晶体管,如果是扁平的,就用TO-220,如果是金属壳的,就用TO-66,小功率的晶体管,就用TO-5,TO-46,TO-92A等都可以,反正它的管脚也长,弯一下也可以。
对于常用的集成IC电路,有DIPxx,就是双列直插的元件封装,DIP8就是双排,每排有4个引脚,两排间距离是300mil,焊盘间的距离是100mil。
SIPxx就是单排的封装。
等等。
值得我们注意的是晶体管与可变电阻,它们的包装才是最令人头痛的,同样的包装,其管脚可不一定一样。
例如,对于TO-92B之类的包装,通常是1脚为E(发射极),而2脚有可能是B极(基极),也可能是C(集电极);同样的,3脚有可能是C,也有可能是B,具体是那个,只有拿到了元件才能确定。
因此,电路软件不敢硬性定义焊盘名称(管脚名称),同样的,场效应管,MOS管也可以用跟晶体管一样的封装,它可以通用于三个引脚的元件。
Q1-B,在PCB里,加载这种网络表的时候,就会找不到节点(对不上)。
在可变电阻上也同样会出现类似的问题;在原理图中,可变电阻的管脚分别为1、W、及2,所产生的网络表,就是1、2和W,在PCB电路板中,焊盘就是1,2,3。
当电路中有这两种元件时,就要修改PCB与SCH之间的差异最快的方法是在产生网络表后,直接在网络表中,将晶体管管脚改为1,2,3;将可变电阻的改成与电路板元件外形一样的1,2,3即可。
封装的处理是个没有多大学问但是颇费功夫的“琐事”,举个简单的例子:DIP8很简单吧,但是有的库用DIP-8,有的就是DIP8. 即使对同一封装结构,在各公司的产品Datasheet上描述差异就很大(不同的文件名体系、不同的名字称谓等);还有同一型号器件,而管脚排序不一样的情况,等等。
对老器件,例如你说的电感,是有不同规格(电感量、电流)和不同的设计要求(插装/SMD)。
真个是谁也帮不了谁,想帮也帮不上,大多数情况下还是靠自己的积累。
这对,特别是刚开始使用这类软件的人都是感到很困惑的问题,往往很难有把握地找到(或者说确认)资料中对应的footprint就一定正确-- 心中没数!其实很正常。
我觉得现成“全能“的库不多;根据电路设计确定选型、找到产品资料,认真核对封装,必要时自己建库(元件)。
这些都是使用这类软件完成设计的必要的信息积累。
这个过程谁也多不开的。
如果得以坚持,估计只需要一两个产品设计,就会熟练的。
所谓“老手”也大多是这么“熬“过来的,甚至是作为“看家”东西的。
这个“熬”不是很轻松的,但是必要。
电阻类及无极性双端元件AXIAL0.3-AXIAL1.0无极性电容RAD0.1-RAD0.4有极性电容RB.2/.4-RB.5/1.0二极管DIODE0.4及 DIODE0.7石英晶体振荡器XTAL1晶体管、FET、UJT TO-xxx(TO-3,TO-5)可变电阻(POT1、POT2)VR1-VR5电阻 AXIAL无极性电容 RAD电解电容 RB-电位器 VR二极管 DIODE三极管 TO电源稳压块78和79系列 TO-126H和TO-126V场效应管和三极管一样整流桥 D-44 D-37 D-46单排多针插座 CON SIP双列直插元件 DIP晶振 XTAL1电阻:RES1,RES2,RES3,RES4;封装属性为axial系列无极性电容:cap;封装属性为RAD-0.1到rad-0.4电解电容:electroi;封装属性为rb.2/.4到rb.5/1.0电位器:pot1,pot2;封装属性为vr-1到vr-5二极管:封装属性为diode-0.4(小功率)diode-0.7(大功率)三极管:常见的封装属性为to-18(普通三极管)to-22(大功率三极管)to-3(大功率达林顿管)电源稳压块有78和79系列;78系列如7805,7812,7820等79系列有7905,7912,7920等常见的封装属性有to126h和to126v整流桥:BRIDGE1,BRIDGE2: 封装属性为D系列(D-44,D-37,D-46)电阻:AXIAL0.3-AXIAL0.7 其中0.4-0.7指电阻的长度,一般用AXIAL0.4瓷片电容:RAD0.1-RAD0.3。
其中0.1-0.3指电容大小,一般用RAD0.1电解电容:RB.1/.2-RB.4/.8 其中.1/.2-.4/.8指电容大小。
一般<100uF用RB.1/.2,100uF-470uF用RB.2/.4,>470uF用RB.3/.6二极管:DIODE0.4-DIODE0.7 其中0.4-0.7指二极管长短,一般用DIODE0.4发光二极管:RB.1/.2集成块:DIP8-DIP40, 其中8-40指有多少脚,8脚的就是DIP8贴片电阻0603表示的是封装尺寸与具体阻值没有关系但封装尺寸与功率有关通常来说0201 1/20W0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0x0.50603=1.6x0.80805=2.0x1.21206=3.2x1.61210=3.2x2.51812=4.5x3.22225=5.6x6.5关于零件封装我们在前面说过,除了DEVICE.LIB库中的元件外,其它库的元件都已经有了固定的元件封装,这是因为这个库中的元件都有多种形式:以晶体管为例说明一下:晶体管是我们常用的的元件之一,在DEVICE.LIB库中,简简单单的只有NPN与PNP之分,但实际上,如果它是NPN的2N3055那它有可能是铁壳子的TO—3,如果它是NPN的2N3054,则有可能是铁壳的TO-66或TO-5,而学用的CS9013,有TO-92A,TO-92B,还有TO-5,TO-46,TO-52等等,千变万化。
还有一个就是电阻,在DEVICE库中,它也是简单地把它们称为RES1和RES2,不管它是100Ω还是470KΩ都一样,对电路板而言,它与欧姆数根本不相关,完全是按该电阻的功率数来决定的我们选用的1/4W和甚至1/2W的电阻,都可以用AXIAL0.3元件封装,而功率数大一点的话,可用AXIAL0.4,AXIAL0.5等等。