大学物理上复习资料
- 格式:doc
- 大小:928.50 KB
- 文档页数:16
大学物理上期末知识点总结关键信息:1、力学部分知识点质点运动学牛顿运动定律动量守恒定律和能量守恒定律刚体定轴转动2、热学部分知识点气体动理论热力学基础3、电磁学部分知识点静电场恒定磁场电磁感应电磁场和电磁波11 力学部分111 质点运动学位置矢量、位移、速度、加速度的定义和计算。
运动方程的表达式和求解。
曲线运动中的切向加速度和法向加速度。
相对运动的概念和计算。
112 牛顿运动定律牛顿第一定律、第二定律、第三定律的内容和应用。
常见力的分析,如重力、弹力、摩擦力等。
牛顿定律在质点和质点系中的应用。
113 动量守恒定律和能量守恒定律动量、冲量的定义和计算。
动量守恒定律的条件和应用。
功、功率的计算。
动能定理、势能的概念和计算。
机械能守恒定律的条件和应用。
114 刚体定轴转动刚体定轴转动的运动学描述,如角速度、角加速度等。
转动惯量的计算和影响因素。
刚体定轴转动定律的应用。
力矩的功、转动动能、机械能守恒在刚体定轴转动中的应用。
12 热学部分121 气体动理论理想气体的微观模型和假设。
理想气体压强和温度的微观解释。
能量均分定理和理想气体内能的计算。
麦克斯韦速率分布律。
122 热力学基础热力学第一定律的内容和应用。
热力学过程,如等容、等压、等温、绝热过程的特点和计算。
循环过程和热机效率。
热力学第二定律的两种表述和微观意义。
13 电磁学部分131 静电场库仑定律、电场强度的定义和计算。
电场强度的叠加原理。
电通量、高斯定理的应用。
静电场的环路定理、电势的定义和计算。
等势面、电场强度与电势的关系。
132 恒定磁场毕奥萨伐尔定律、磁感应强度的定义和计算。
磁感应强度的叠加原理。
磁通量、安培环路定理的应用。
安培力、洛伦兹力的计算。
133 电磁感应法拉第电磁感应定律的应用。
动生电动势和感生电动势的计算。
自感和互感的概念和计算。
磁场能量的计算。
134 电磁场和电磁波位移电流的概念。
麦克斯韦方程组的积分形式和微分形式。
电磁波的产生和传播特性。
第1章(上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt)m,y=10sin(0.5πt)m,则质点运动方程的矢量式为r= ,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v= ,加速度 = ,速度的大小为,加速度的大小为,切向加速度的大小为0 ,法向加速度的大小为。
2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI)。
它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。
3、某质点做直线运动规律为x= t2-4t+2(m),在(SI)单位制下,则质点在前5s内通过的平均速度和路程为( C )A、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5mE、2m﹒s-1,13m4、某质点的运动规律为d v/dt=-k v2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是(C )A、v=½k t2+ v0B、v=-½k t2+ v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =k t2∕2- v05、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。
在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?第4章(P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r= cos wt i+b sin wt j,式中 、b、w为正的常量。
大学物理复习资料### 大学物理复习资料#### 一、经典力学基础1. 牛顿运动定律- 描述物体运动的基本规律- 惯性、力与加速度的关系2. 功和能量- 功的定义与计算- 动能定理和势能3. 动量守恒定律- 动量的定义- 碰撞问题的处理4. 角动量守恒定律- 角动量的概念- 旋转物体的稳定性分析5. 简谐振动- 振动的周期性- 共振现象#### 二、热力学与统计物理1. 热力学第一定律- 能量守恒- 热量与功的转换2. 热力学第二定律- 熵的概念- 热机效率3. 理想气体定律- 气体状态方程- 温度、压力、体积的关系4. 相变与相平衡- 相变的条件- 相图的解读5. 统计物理基础- 微观状态与宏观性质的联系 - 玻尔兹曼分布#### 三、电磁学1. 电场与电势- 电场强度- 电势差与电势能2. 电流与电阻- 欧姆定律- 电路的基本组成3. 磁场与磁力- 磁场的产生- 洛伦兹力4. 电磁感应- 法拉第电磁感应定律- 感应电流的产生5. 麦克斯韦方程组- 电磁场的基本方程- 电磁波的传播#### 四、量子力学简介1. 波函数与薛定谔方程- 波函数的概率解释- 量子态的演化2. 量子态的叠加与测量- 叠加原理- 测量问题3. 能级与光谱线- 原子的能级结构- 光谱线的产生4. 不确定性原理- 位置与动量的不确定性关系5. 量子纠缠与量子信息- 量子纠缠现象- 量子计算与量子通信#### 五、相对论基础1. 狭义相对论- 时间膨胀与长度收缩- 质能等价原理2. 广义相对论- 引力的几何解释- 弯曲时空的概念3. 宇宙学与黑洞- 大爆炸理论- 黑洞的物理特性#### 六、现代物理实验方法1. 粒子加速器- 加速器的工作原理- 粒子探测技术2. 量子纠缠实验- 实验设计- 纠缠态的验证3. 引力波探测- 引力波的产生与传播- 探测器的工作原理通过上述内容的复习,可以全面地掌握大学物理的核心概念和原理。
在复习过程中,建议结合实际例题和实验操作,以加深理解和应用能力。
第1章<上册P40)1、某质点的运动方程分量式为x=10cos(0.5πt>m,y=10sin(0.5πt>m,则质点运动方程的矢量式为r=,运动轨道方程为,运动轨道的形状为圆,任意时刻t的速度v=,加速度=,速度的大小为,加速度的大小为,切向加速度的大小为0,法向加速度的大小为。
2、一质点做圆周运动的角量运动方程为θ=2+3t+4t2 (SI>。
它在2s末的角坐标为;在第3s内的角位移为,角速度为;在第2s 末的角速度为,角加速度为;在第3s内的角加速度为;质点做运动。
b5E2RGbCAP3、某质点做直线运动规律为x=t2-4t+2(m>,在(SI>单位制下,则质点在前5s内通过的平均速度和路程为< C )p1EanqFDPwA、1m﹒s-1,5mB、3m﹒s-1,13mC、1m﹒s-1,13mD、3m﹒s-1,5m E、2m﹒s-1,13mDXDiTa9E3d4、某质点的运动规律为dv/dt=-kv2,式中k为常量,当t=0时,初速度为v0,则速率v随时间t的函数关系是< C )RTCrpUDGiTA、v=½ kt2+v0B、v=-½ kt2+v0C、1∕v =kt+1∕v0D、1∕v =-kt+1∕v0E、1∕v =kt2∕2-v05PCzVD7HxA5、已知某一质点沿X轴座直线运动,其运动方程为x=5+18t-2t2,取t=0,x=x0为坐标原点。
在国际单位制中,试求:①第1s末及第4s末的位置矢量;②第2s内的位移;③第2s内的平均速度;④第3s末的速度;⑤第3s末的加速度;⑥质点做什么类型的运动?jLBHrnAILg6、一物体沿半径R=0.10m的圆周运动,其运动方程为θ=2+4t3,在国际单位制中,试问:①在t=2s时,它的切向加速度和法向加速度各是多大?②当切向加速度的大小恰好为总加速度大小的一半时,θ的值为多少?③在哪一时刻,切向加速度的大小等于法向加速度的大小?xHAQX74J0X第4章<P122)1、一质量为m的质点,在OXY平面上运动,其位置矢量为r=coswti+bsinwtj,式中、b、w为正的常量。
刚体复习重点(一)要点质点运动位置矢量(运动方程) r = r (t ) = x (t )i + y (t )j + z (t )k ,速度v = d r/d t = (d x /d t )i +(d y /d t )j + (d z /d t )k ,动量 P=m v加速度 a=d v/d t=(d v x /d t )i +(d v y /d t )j +(d v z /d t )k曲线运动切向加速度 a t = d v /d t , 法向加速度 a n = v 2/r .圆周运动及刚体定轴转动的角量描述 θ=θ(t ), ω=d θ/d t , β= d ω/d t =d 2θ/d t 2,角量与线量的关系 △l=r △θ, v=r ω (v= ω×r ),a t =r β, a n =r ω2力矩 M r F 转动惯量 2i i J r m =∆∑, 2d mJ r m =⎰ 转动定律 t d L M =M J α= 角动量: 质点p r L ⨯= 刚体L=J ω;角动量定理 ⎰tt 0d M =L -L 0角动量守恒 M=0时, L=恒量; 转动动能2k E J ω= (二) 试题一 选择题(每题3分)1.一轻绳跨过一具有水平光滑轴、质量为M 的定滑轮,绳的两端分别悬有质量为m 1和m 2的物体(m 1<m 2),如图.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(答案:C )(A) 处处相等. (B) 左边大于右边.(C) 右边大于左边. (D) 哪边大无法判断. 2.将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m 的重物,飞轮的角加速度为β.如果以拉力2mg 代替重物拉绳时,飞轮的角加速度将 (答案:C )(A) 小于β. (B) 大于β,小于2 β. (C) 大于2 β. (D) 等于2 β.3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖立位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小. (答案:A )(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大.4. 关于刚体对轴的转动惯量,下列说法中正确的是(答案:C )(A) 只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B) 取决于刚体的质量和质量的空间分布,与轴的位置无关.(C) 取决于刚体的质量,质量的空间分布和轴的位置.(D) 只取决于转轴的位置,与刚体的质量和质量的空间分布无关.5. 花样滑冰运动员绕通过自身的竖直轴转动,开始时两臂伸开,转动惯量为J 0,角速度为ω0.然后她将两臂收回,使转动惯量减少为J 0/3.这时她转动的角速度变为(答案:D )(A) ω0/3. (B) ()3/1 ω0. (C) 3 ω0. (D) 3ω0.二、填空题1.(本题4分)一飞轮作匀减速运动,在5s 内角速度由40π rad/s 减少到10π rad/s ,则飞轮在这5s内总共转过了 圈,飞轮再经 的时间才能停止转动。
大学物理学复习资料第一章 质点运动学 主要公式:1.笛卡尔直角坐标系位失r=x i +y j +z k,质点运动方程(位矢方程):k t z j t y i t x t r)()()()(++=参数方程:。
t t z z t y y t x x 得轨迹方程消去→⎪⎩⎪⎨⎧===)()()(2.速度:dt r d v =3.加速度:dt vd a =4.平均速度:trv ∆∆=5.平均加速度:t va ∆∆=6.角速度:dt d θω=7.角加速度:dtd ωα=8.线速度与角速度关系:ωR v = 9.切向加速度:ατR dtdva ==10.法向加速度:Rv R a n 22==ω11.总加速度:22n a a a +=τ第二章 牛顿定律 主要公式:1.牛顿第一定律:当0=合外F时,恒矢量=v。
2.牛顿第二定律:dtP d dt v d m a m F=== 3.牛顿第三定律(作用力与反作用力定律):F F '-=第三章 动量与能量守恒定律 主要公式:1.动量定理:P v v m v m dt F I t t∆=-=∆=⋅=⎰)(12212.动量守恒定律:0,0=∆=P F合外力当合外力3、 动能定理:)(21212221v v m E dx F W x x k -=∆=⋅=⎰合 4.机械能守恒定律:当只有保守内力做功时,0=∆E 第五章 机械振动 主要公式:1.)cos(ϕω+=t A x Tπω2= 弹簧振子:mk=ω,k m T π2=单摆:lg =ω,g lT π2=2.能量守恒:动能:221mv E k =势能:221kx E p =机械能:221kA E E E Pk =+= 3.两个同方向、同频率简谐振动得合成:仍为简谐振动:)cos(ϕω+=t A x 其中:⎪⎩⎪⎨⎧++=∆++=22112211212221cos cos sin sin cos 2ϕϕϕϕϕϕA A A A arctg A A A A Aa. 同相,当相位差满足:πϕk 2±=∆时,振动加强,21A A A MAX +=;b. 反相,当相位差满足:πϕ)12(+±=∆k 时,振动减弱,21A A A MIN -=。
大学物理复习资料(超全)(一)引言概述:大学物理是大学阶段的一门重要课程,涵盖了广泛的物理知识和原理。
本文档旨在为大学物理的复习提供全面的资料,帮助学生回顾和巩固知识,以便更好地应对考试。
本文档将分为五个大点来详细讲解各个方面的内容。
一、力学1. 牛顿力学的基本原理:包括牛顿三定律和作用力的概念。
2. 运动学的基本概念:包括位移、速度和加速度的定义,以及运动的基本方程。
3. 物体的受力分析:重点介绍平衡、力的合成和分解、摩擦力等。
4. 物体的平衡和动力学:详细解析物体在平衡和运动状态下所受的力和力矩。
5. 力学定律的应用:举例说明力学定律在各种实际问题中的应用,如斜面、弹力等。
二、热学和热力学1. 理想气体的性质:通过理想气体方程和状态方程介绍气体的基本性质。
2. 热量和温度:解释热量和温度的概念,并介绍温标的种类。
3. 热传导和热辐射:详细讲解热传导和热辐射的机制和规律。
4. 热力学定律:介绍热力学第一定律和第二定律,并解析它们的应用。
5. 热力学循环和热效率:介绍热力学循环的种类和热效率的计算方法,以及它们在实际应用中的意义。
三、电学和磁学1. 电荷、电场和电势:介绍电荷的基本性质、电场的概念,以及电势的计算方法。
2. 电场和电势的分析:详细解析电场和电势在不同形状电荷分布下的计算方法。
3. 电流和电路:讲解电流的概念和电路中的串联和并联规律。
4. 磁场和电磁感应:介绍磁场的基本性质和电磁感应的原理。
5. 麦克斯韦方程组:简要介绍麦克斯韦方程组的四个方程,解释它们的意义和应用。
四、光学1. 光的传播和光的性质:解释光的传播方式和光的特性,如反射和折射。
2. 光的干涉和衍射:详细讲解光的干涉和衍射现象的产生机制和规律。
3. 光的色散和偏振:介绍光的色散现象和光的偏振现象的产生原因。
4. 光的透镜和成像:讲解透镜的类型和成像规律,包括凸透镜和凹透镜。
5. 光的波粒二象性和相干性:介绍光的波粒二象性和相干性的基本概念和实验现象。
内容提要位矢:k t z j t y i t x t r r)()()()(位移:k z j y i x t r t t r r)()(一般情况,r r速度:k z j y i x k dtdz j dtdy i dt dx dt r d t r t•••0lim加速度:k z j y i x k dtz d j dt y d i dt x d dtr d dt d t a t•••••• 222222220lim圆周运动角速度:•dtd角加速度:•• 22dtd dt d (或用 表示角加速度) 线加速度:t n a a a法向加速度:22R Ra n 指向圆心切向加速度:R dtd a t沿切线方向 线速率: R弧长: R s内容提要动量:m p 冲量:21t t dt F I动量定理: 21t t dt F p d 210t t dt F p p动量守恒定律:若0 ii F F ,则常矢量 ii p p力矩:F r M质点的角动量(动量矩):r m p r L角动量定理:dtLd M外力角动量守恒定律:若0 外力外力M M,则常矢量 ii L L功:r d F dW•• BAAB r d F W 一般地 BAB AB Az z z y y y x x x AB dz F dy F dx F W动能:221m E k动能定理:质点, 222121AB AB m m W质点系,0k k E E W W 内力外力保守力:做功与路程无关的力。
保守内力的功:p p p E E E W )(12保守内力 功能原理:p k E E W W 非保守内力外力机械能守恒:若0 非保守内力外力W W ,则00p k p k E E E E内容提要转动惯量:离散系统,2ii r m J连续系统,dm r J 2平行轴定理:2md J J C刚体定轴转动的角动量: J L 刚体定轴转动的转动定律:dtdL J M 刚体定轴转动的角动量定理:021L L Mdt t t力矩的功:Md W力矩的功率: M dt dWP 转动动能:221 J E k刚体定轴转动的动能定理:2221210J J Md内容提要库仑定律:r e r q q F221041电场强度:0q FE带电体的场强:r ii e r dq E E204静电场的高斯定理:•iSqS d E 01静电场的环路定理: •Ll d E 0电势:•pp l d E V带电体的电势:rdq V V i 04导体静电平衡:电场,○1导体内场强处处为零;○2导体表面处场强垂直表面 电势,○1导体是等势体;○2导体表面是等势面 电介质中的高斯定理: •i Sq S d D各向同性电介质:E E D r0 电容:UQ C电容器的能量:22212121CU QU C Q W内容提要毕奥-萨伐尔定律:204r e l Id B d r磁场高斯定理: •SS d B 0安培环路定理: •i I l d B 0载流长直导线的磁场:)cos (cos 4210r IB 无限长直导线的磁场:rIB 20载流长直螺线管的磁场:)cos (cos 2210nIB无限长直螺线管的磁场:nI B 0洛仑兹力:B q F安培力:B l Id F d磁介质中的高斯定理: •SS d B 0磁介质中的环路定理:•iLIl d H各向同性磁介质:H H B r 0内容提要法拉第电磁感应定律:dtd动生电动势: • l d B)(感生电动势: • • S k S d dtBl d E自感:LI ,dtdIL L 自感磁能:221LI W m互感:12MI ,dtdI M12 磁能密度:BH H B w m 21212122题7.4:若电荷Q 均匀地分布在长为L 的细棒上。
求证:(1)在棒的延长线,且离棒中心为r 处的电场强度为22041L r QE(2)在棒的垂直平分线上,离棒为r 处的电场强度为220421L r r QE若棒为无限长(即 L ),试将结果与无限长均匀带电直线的电场强度相比较。
题7.4分析:这是计算连续分布电荷的电场强度。
此时棒的长度不能忽略,因而不能将棒当作点电荷处理。
但带电细棒上的电荷可看作均匀分布在一维的长直线上。
如图所示,在长直线上任意取一线元,其电荷为d q = Q d x /L ,它在点P 的电场强度为r r qe E 20d 41d整个带电体在点P 的电场强度E E d接着针对具体问题来处理这个矢量积分。
(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,Li E E d(2) 若点P 在棒的垂直平分线上,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是 LLj j E E E d sin d y证:(1)延长线上一点P 的电场强度 L r qE 24d ,利用几何关系x r r 统一积分变量,则2200222-041212141)(d 41L r QL r L r L x r L x Q E L L P电场强度的方向沿x 轴。
(3) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为L r qE 24d sin利用几何关系22,sin x r r r r 统一积分变量,则 22023222-0412)(d 41rL r Qr x L x rQ E L L当棒长 L 时,若棒单位长度所带电荷为 常量,则P 点电场强度rL r LQ r E L 022024121lim此结果与无限长带电直线周围的电场强度分布相同。
这说明只要满足122 L r ,带电长直细棒可视为无限长带电直线。
题7.5:一半径为R 的半圆细环上均匀分布电荷Q ,求环心处的电场强度题7.5分析:在求环心处的电场强度时,不能将带电半圆环视作点电荷。
现将其抽象为带电半圆弧线。
在弧线上取线元d l ,其电荷此电荷元可视为点电荷l RQq d d ,它在点O 的电场强度r 20d 41d e E r q。
因圆环上电荷对y 轴呈对称性分布,电场分布也是轴对称的,则有LE 0d x ,点O 的合电场强度j E LE y d ,统一积分变量可求得E 。
解:由上述分析,点O 的电场强度l R QR E L d sin 4120O由几何关系 d d R l ,统一积分变量后,有 20200O 2d sin 41R Q E 方向沿y 轴负方向。
题7.6:用电场强度叠加原理求证:无限大均匀带电板外一点的电场强度大小为02E (提示:把无限大带电平板分解成一个个圆环或一条条细长线,然后进行积分叠加)题7.6分析:求点P 的电场强度可采用两种方法处理,将无限大平板分别视为由无数同心的细圆环或无数平行细长线元组成,它们的电荷分别为y r r q d d d 2d 或 求出它们在轴线上一点P 的电场强度d E 后,再叠加积分,即可求得点P 的电场强度了。
证1:如图所示,在带电板上取同心细圆环为微元,由于带电平面上同心圆环在点P 激发的电场强度d E 的方向均相同,因而P 处的电场强度i i i E E 023220232202)(4d 2)(d 41dx r rxr x r q x电场强度E 的方向为带电平板外法线方向。
证2:如图所示,取无限长带电细线为微元,各微元在点P 激发的电场强度d E 在Oxy 平面内且对x 轴对称,因此,电场在y 轴和z 轴方向上的分量之和,即E y 、E z 均为零,则点P 的电场强度应为i ii E 220x d 2cos d xy y x E E积分得i E 02电场强度E 的方向为带电平板外法线方向。
上述讨论表明,虽然微元割取的方法不同,但结果是相同的。
题7.10:设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。
解:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理01d 0q SS E这表明穿过闭合曲面的净通量为零,穿入平面S 的电场强度通量在数值上等于穿出半球面S 的电场强度通量。
因而S SΦS E S E d d依照约定取闭合曲面的外法线方向为面元d S 的方向, E R R E Φ22cos题7.13:设在半径为R 的球体内,其电荷为对称分布,电荷体密度为 Rr Rr kr 00k 为一常量。
试用高斯定理求电场强度E 与r 的函数关系。
解:因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定律V Sd 1d 0S E 得球体内)0(R r4202d 414)(r k r r kr r r E rr kr r e E 024)(球体外(r >R ) 4202d 414)(R k r r kr r r E Rr r kR r e E 2044)(题7.14:一无限大均匀带电薄平板,电荷面密度为 ,在平板中部有一半径为r 的小圆孔。
求圆孔中心轴线上与平板相距为x 的一点P 的电场强度。
题7.14分析:用补偿法求解利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场。
本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布。
若把小圆孔看作由等量的正、负电荷重叠而成、挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度 )的圆盘。
这样中心轴线上的电场强度等效于平板和圆盘各自独立在该处激发的电场的矢量和。
解:在带电平面附近n 012e En e 为沿平面外法线的单位矢量;圆盘激发的电场n 220212e Er x x它们的合电场强度为n 220212e E E E r x x。
在圆孔中心处x = 0,则 E = 0 在距离圆孔较远时x >>r ,则 n 0n 2202112e e Ex r上述结果表明,在x >>r 时。
带电平板上小圆孔对电场分布的影响可以忽略不计。
题7.15:一无限长、半径为R 的圆柱体上电荷均匀分布。
圆柱体单位长度的电荷为 ,用高斯定理求圆柱体内距轴线距离为r 处的电场强度。
题7.15分析:无限长圆柱体的电荷具有轴对称分布,电场强度也为轴对称分布,且沿径矢方向。
取同轴往面为高斯面,电场强度在圆柱侧面上大小相等,且与柱面正交。
在圆柱的两个底面上,电场强度与底面平行,0d S E 对电场强度通量贡献为零。
整个高斯面的电场强度通量为rL E 2d S E由于,圆柱体电荷均匀分布,电荷体密度2R ,处于高斯面内的总电荷L rq 2由高斯定理0d q S E 可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得L r R L r rL E 2202012202R r E题7.16:一个内外半径分别R 1为R 2和的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为 R 3的均匀带电球面,球面带电荷为Q 2。