初一数学上下册知识点总结与重点难点、公式总结
- 格式:doc
- 大小:178.50 KB
- 文档页数:15
七年级上下册重点知识点
一、数与式
1.自然数与整数
2.有理数
3.小数的四则运算
4.真分数与假分数
5.分数的四则运算
6.代数式的定义及常识
7.代数式的运算
二、方程与不等式
1.方程
2.一元一次方程
3.带绝对值的一元一次方程
4.两个未知数的一次方程组
5.不等式及不等式的解法
三、图形的认识
1.图形的分类
2.平面图形的性质及计算
3.立体图形的性质及计算
四、数形结合
1.比例及其性质
2.比例的应用
3.百分数及其计算
4.简单利率与复合利率
5.解决问题的方法
五、函数基本概念
1.函数的定义、记号及性质
2.解决函数的问题
3.函数的图象及应用
六、几何基础知识
1.角的概念及性质
2.角的度与弧度
3.角的平分线及数学图形中的角
4.三角形及其分类
5.相似三角形和勾股定理
七、统计与概率
1.统计学及其基本方法
2.概率的基本概念
3.事件与概率
4.求概率的方法
以上就是七年级上下册重点知识点的内容,希望能对您在学习
中有所帮助。
需要注意的是,要扎实基础,不断地练习,多做题,在掌握基本知识的基础上,发挥自己的思维能力,解决实际的问题。
第一册第一章有理数代数初步知识1. 代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“•”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“•”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2 ;a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b>0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是:-a2 .有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
初一数学重点难点总结初一数学的重点难点总结初一数学是学生们接触到的初中数学的起点,对于初一学生来说,数学知识的掌握和理解是非常重要的。
在初一数学中,有一些重点和难点知识点,下面我将针对这些知识点进行总结。
一、重点知识点1. 数的大小比较:数的大小比较是数学中最基础的知识点之一。
初一学生需要掌握比较两个数大小的方法,包括使用大小关系符号、找出数的相对大小等。
2. 小数的运算:小数的加减乘除是初一数学中的重点内容之一。
学生需要掌握小数加减乘除的计算方法,包括进位借位的处理、小数点的对齐、小数的乘法分配律和除法结合律等。
3. 数字的整除性和倍数关系:初一数学需要学生掌握数的整除性和倍数关系。
学生需要学会用因数分解法求一个数的因数和倍数,以及求最大公因数和最小公倍数的方法。
4. 分数的基本概念和运算规则:分数是初一数学中的重要内容,学生需要掌握分数的基本概念、分数的加减乘除法、分数的约分和通分方法等。
5. 简单方程和方程的解法:初一学生需要学会解一元一次方程,包括通过加减乘除等运算将方程化简为一般形式,然后应用等式的性质求解方程。
6. 图形的认识和运用:初一数学需要学生对各种图形进行认识和运用。
学生需要学会测量图形的面积和周长,以及解决与图形有关的问题。
二、难点知识点1. 百分数和比例:初一数学中的百分数和比例是难点知识点。
学生需要学会将百分数与十进制数、分数进行转换,同时要能够计算比例的值和求解与比例有关的问题。
2. 三角形的面积与勾股定理:初一学生需要学会计算三角形的面积,包括等腰三角形、直角三角形和任意三角形的面积计算公式。
此外,学生还需要学习勾股定理的应用,解决与直角三角形有关的问题。
3. 平面直角坐标系和二元一次方程:初一数学中的平面直角坐标系和二元一次方程也是难点知识点。
学生需要学会画出平面直角坐标系并进行坐标定位,同时要学会解二元一次方程,掌握方程的图象和解方程的方法。
4. 统计与概率:初一数学中的统计与概率是难点知识点之一。
七年级全册数学知识点归纳总结数学是一门基础学科,对于学生的学习和思维能力的培养具有重要意义。
作为七年级学生,掌握好数学知识点对于今后的学习起着决定性的作用。
下面将对七年级全册的数学知识点进行归纳总结,帮助同学们更好地复习和掌握。
1. 整数与有理数整数是由正整数、负整数和零组成,利用整数进行加减乘除运算,学会绝对值的概念并灵活运用。
有理数包括整数和分数,理解有理数的大小比较、绝对值、相反数等概念。
2. 代数式与方程代数式是由数字、字母和运算符号组成的表达式,学会化简代数式、代入数值求解等基础操作。
方程是等式的一种形式,学习通过变形等方法求解一元一次方程。
3. 直线与角学习直线的表示方法、平行线与垂直线的判定、角的概念与分类、顶角与对顶角的性质等。
掌握角度的度量单位及其转化。
4. 图形的认识与计算了解不同类型的图形,如点、线、线段、射线、角、面等的基本概念。
计算图形的周长、面积,并熟悉各种常见图形的特点和计算方法。
5. 分数与小数学习分数的基本概念、性质及常见分数的换算。
掌握小数的读写、大小比较、加减乘除等基本运算方法。
6. 比例与相似了解比例的含义与性质,熟练运用比例的相关公式进行计算。
理解相似的概念,学会判断和构造相似图形。
7. 数据的收集与统计学习数据的收集、整理、表达和分析方法,统计图表的制作与应用,掌握频数、频率、平均数等基本统计概念。
8. 平面直角坐标系学习平面直角坐标系的构成,了解坐标和坐标轴的关系,能够根据坐标进行图形的定位和表示。
以上是七年级全册数学知识点的归纳总结,希望同学们能够认真复习、理解和应用,打好数学基础,为今后的学习打下坚实的基础。
祝同学们在数学学习中取得好成绩!。
初一(七年级)上册数学知识点:一元一次方程1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3.条件:一元一次方程必须同时满足4个条件:(1)它是等式;(2)分母中不含有未知数;(3)未知数最高次项为1;(4)含未知数的项的系数不为0.4.等式的性质:等式的性质一:等式两边同时加一个数或减去同一个数或同一个整式,等式仍然成立。
等式的性质二:等式两边同时扩大或缩小相同的倍数(0除外),等式仍然成立。
等式的性质三:等式两边同时乘方(或开方),等式仍然成立。
解方程都是依据等式的这三个性质等式的性质一:等式两边同时加一个数或减同一个数,等式仍然成立。
5.合并同类项(1)依据:乘法分配律(2)把未知数相同且其次数也相同的相合并成一项;常数计算后合并成一项(3)合并时次数不变,只是系数相加减。
6.移项(1)含有未知数的项变号后都移到方程左边,把不含未知数的项移到右边。
(2)依据:等式的性质(3)把方程一边某项移到另一边时,一定要变号。
7.一元一次方程解法的一般步骤:使方程左右两边相等的未知数的值叫做方程的解。
一般解法:(1)去分母:在方程两边都乘以各分母的最小公倍数;(2)去括号:先去小括号,再去中括号,最后去大括号;(记住如括号外有减号的话一定要变号)(3)移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边;移项要变号(4)合并同类项:把方程化成ax=b(a≠0)的形式;(5)系数化成1:在方程两边都除以未知数的系数a,得到方程的解x=b/a.8.同解方程如果两个方程的解相同,那么这两个方程叫做同解方程。
9.方程的同解原理:(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容。
第一章有理数一.知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数。
正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数。
注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;(2)有理数的分类:①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线。
3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a、b互为相反数。
4。
绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;5。
有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数—小数>0,小数-大数<0。
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1⇔a、b互为倒数;若ab=—1⇔ a、b互为负倒数.7。
有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数。
8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b)。
10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac 。
2024初一数学知识点总结数学是一门系统性极强的学科,包含了广泛的知识点和应用。
以下是2024年初一数学知识点的总结:一、集合与运算1. 集合的概念和表示方法2. 元素与子集的关系3. 集合的并、交和差运算4. 集合的补运算二、数的整除与因数1. 整数的概念和分类2. 整数的绝对值和相反数3. 整数的加、减、乘、除运算4. 整数的整除关系和因数5. 最大公约数和最小公倍数的计算三、小数与分数1. 小数和分数的概念和表示方法2. 分数的加、减、乘、除运算3. 小数的四则运算4. 小数与分数的相互转化四、代数与方程1. 代数式的表示和化简2. 一元一次方程的解法3. 一元一次方程在实际问题中的应用4. 带有括号的一元一次方程的解法5. 一元一次方程组的解法五、平面几何1. 平面图形的分类和性质2. 直线、射线和线段的概念3. 角的概念和度量4. 三角形的分类和性质5. 三角形的周长和面积计算6. 平行线与转角定理的应用六、立体几何1. 空间图形的分类和性质2. 三棱柱和四棱柱的概念和计算3. 三角锥和四棱锥的概念和计算4. 立方体和正方体的概念和计算5. 圆柱体和圆锥体的概念和计算6. 球体的概念和计算七、统计与概率1. 数据的收集和整理方法2. 数据的图表表示和分析3. 数据的中心趋势和离散程度4. 事件的概念和样本空间5. 概率的计算和应用以上是2024年初一数学知识点的大致总结。
当然,具体课程安排和内容可能会因不同学校和地区而有所差异。
希望对你有所帮助!。
七年级数学(上)知识点人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章 有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc ); (3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n . 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
新初一数学的知识点及重点难点(上册)第一章有理数: 1.正数和负数2.有理数3.有理数的加减4.有理数的乘除5.有理数的乘方重点:数轴、相反数、绝对值、有理数计算、科学计数法、有效数字难点:绝对值. 易错点:绝对值、有理数计算. 中考必考:科学计数法、相反数(选择题)第二章整式的加减:1.整式 2.整式的加减重点:单项式与多项式的概念及系数和次数的确信、同类项、整式加减难点:单项式与多项式的系数和次数的确信、归并同类项易错点:归并同类项、计算失误、整数次数的确信中考必考:同类项、整数系数次数的确信、整式加减第三章一元一次方程: 1.从算式到方程 2.解一元一次方程——归并同类项与移项3.解一元一次方程——去括号去分母4.实际问题与一元一次方程重点:一元一次方程(概念、解法、应用)难点:一元一次方程的解法(步骤)易错点:去分母时,不含有分母项易漏乘、解应用题时,不明白如何找等量关系第四章图形熟悉实步 1.多姿多彩的图形 2.直线、射线、线段 3.角4.课题实习——设计制作长方形形状的包装纸盒重点:直线、射线、线段、角的熟悉、中点和角平分线的相关计算、余角和补角,方位角等难点:中点和角平分线的相关计算、余角和补角的应用易错点:等量关系可不能转化、审题不清新初一生如何做好数学衔接做好小升初衔接对以后初中学习大有帮忙,那么在没有进入初中之前,咱们要对其有一个可能的把握,第一从数学学习入手。
是一个整体。
初二的难点最多,初三的考点最多。
相对而言,初一数学知识点尽管很多,但都比较简单。
很多同窗在学校里的学习中感受不到压力,慢慢积存了很多小问题,这些问题在进入初二,碰到困难(如学科的增加、难度的加深)后,就凸现出来。
有一部份新同窗确实是对初一数学不够重视,在进入初二后,发觉跟不上教师的进度,感觉学习数学愈来愈费力,希望参加咱们的辅导班来弥补的。
那个问题究其缘故,主若是对初一数学的基础性,重视不够。
咱们那个地址先列举一下在初一数学学习中常常显现的几个问题:1、对知识点的明白得停留在一知半解的层次上;2、解题始终不能把握其中关键的数学技术,孤立的看待每一道题,缺乏触类旁通的能力;3、解题时,小错误太多,始终不能完整的解决问题;4、解题效率低,在规定的时刻内不能完成必然量的题目,不适应考试节拍;5、未养成总结归纳的适应,不能适应性的归纳所学的知识点;以上这些问题若是在初一时期不能专门好的解决,在初二的两极分化时期,同窗们可能就会显现成绩的滑坡。
第一册第一章有理数代数初步知识1. 代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“•”乘,或省略不写;(2)数与数相乘,仍应使用“×”乘,不用“•”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .3.几个重要的代数式:(m、n表示整数)(1)a与b的平方差是:a2-b2 ;a与b差的平方是:(a-b)2 ;(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b>0,则正数是:a2+b ,负数是:-a2-b ,非负数是:a2 ,非正数是:-a2 .有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
a-b=a+(-b)1.4有理数的乘除法1.4.1有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
两个数相乘,交换因数的位置,积相等。
ab=ba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a(b+c)=ab+ac数字与字母相乘的书写规范:⑴数字与字母相乘,乘号要省略,或用“”⑵数字与字母相乘,当系数是1或-1时,1要省略不写。
⑶带分数与字母相乘,带分数应当化成假分数。
用字母x表示任意一个有理数,2与x的乘积记为2x,3与x的乘积记为3x,则式子2x+3x 是2x与3x的和,2x与3x叫做这个式子的项,2和3分别是着两项的系数。
一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即ax+bx=(a+b)x上式中x是字母因数,a与b分别是ax与bx这两项的系数。
去括号法则:括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.4.2有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
a÷b=a• (b≠0)两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。
乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。
1.5有理数的乘方1.5.1乘方求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数,当an看作a的n次方的结果时,也可以读作a的n次幂。
负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何正整数次幂都是0。
有理数混合运算的运算顺序:⑴先乘方,再乘除,最后加减;⑵同级运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行1.5.2科学记数法把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学记数法。
用科学记数法表示一个n位整数,其中10的指数是n-1。
1.5.3近似数和有效数字接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a×10n,规定它的有效数字就是a中的有效数字。
第二章一元一次方程2.1从算式到方程2.1.1一元一次方程含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。
2.1.2等式的性质等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2从古老的代数书说起——一元一次方程的讨论⑴把等式一边的某项变号后移到另一边,叫做移项。
2.3从“买布问题”说起——一元一次方程的讨论⑵方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程主要依据等式的性质和运算律等。
去分母:⑴具体做法:方程两边都乘各分母的最小公倍数⑵依据:等式性质2⑶注意事项:①分子打上括号②不含分母的项也要乘2.4再探实际问题与一元一次方程第三章图形认识初步3.1多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。
3.1.1立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
长方形、正方形、三角形、圆等都是平面图形。
许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
3.1.2点、线、面、体几何体也简称体。
长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体。
包围着体的是面。
面有平的面和曲的面两种。
面和面相交的地方形成线。
线和线相交的地方是点。
几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。
3.2直线、射线、线段经过两点有一条直线,并且只有一条直线。
两点确定一条直线。
点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
类似的还有线段的三等分点、四等分点等。
直线桑一点和它一旁的部分叫做射线。
两点的所有连线中,线段最短。
简单说成:两点之间,线段最短。
3.3角的度量角也是一种基本的几何图形。
度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1;把1度的角60等分,每份叫做1分的角,记作1;把1分的角60等分,每份叫做1秒的角,记作1。
3.4角的比较与运算3.4.1角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
类似的,还有叫的三等分线。
3.4.2余角和补角如果两个角的和等于90(直角),就说这两个角互为余角。
如果两个角的和等于180(平角),就说这两个角互为补角。
等角的补角相等。
等角的余角相等。
本章知识结构图第四章数据的收集与整理收集、整理、描述和分析数据是数据处理的基本过程。
4.1喜爱哪种动物的同学最多——全面调查举例用划记法记录数据,“正”字的每一划(笔画)代表一个数据。
考察全体对象的调查属于全面调查。
4.2调查中小学生的视力情况——抽样调查举例抽样调查是从总体中抽取样本进行调查,根据样本来估计总体的一种调查。
统计调查是收集数据常用的方法,一般有全面调查和抽样调查两种,实际中常常采用抽样调查的方式。
调查时,可用不同的方法获得数据。
除问卷调查、访问调查等外,查阅文献资料和实验也是获得数据的有效方法。
利用表格整理数据,可以帮助我们找到数据的分布规律。
利用统计图表示经过整理的数据,能更直观地反映数据规律。
4.3课题学习调查“你怎样处理废电池?”调查活动主要包括以下五项步骤:一、设计调查问卷⑴设计调查问卷的步骤①确定调查目的;②选择调查对象;③设计调查问题⑵设计调查问卷时要注意:①提问不能涉及提问者的个人观点;②不要提问人们不愿意回答的问题;③提供的选择答案要尽可能全面;④问题应简明;⑤问卷应简短。
二、实施调查将调查问卷复制足够的份数,发给被调查对象。
实施调查时要注意:⑴向被调查者讲明哪些人是被调查的对象,以及他为什么成为被调查者;⑵告诉被调查者你收集数据的目的。