multisim仿真反相比例放大器的电路
- 格式:docx
- 大小:3.44 KB
- 文档页数:3
multisim仿真反相比例放大器的电路反相比例放大器是一种常用的放大电路,可以将输入信号的幅度放大到更高的水平。
在本文中,我们将使用Multisim软件来模拟和分析一个反相比例放大器的电路。
让我们来了解一下反相比例放大器的基本原理。
反相比例放大器由一个运算放大器(Operational Amplifier,简称Op-Amp)和几个电阻构成。
Op-Amp是一种高增益、差分输入的电子放大器,它具有很多应用的潜力。
在反相比例放大器中,输入信号通过一个电阻连接到Op-Amp的负输入端,同时通过另一个电阻连接到Op-Amp的输出端。
输出信号则通过一个电阻连接到Op-Amp的负输入端,形成一个反馈回路。
通过调整输入电阻和反馈电阻的比例,可以实现对输入信号的放大或缩小。
在Multisim中,我们可以使用Op-Amp元件和电阻元件来建立一个反相比例放大器的电路。
首先,我们需要选择合适的Op-Amp元件,并将其拖放到工作区。
然后,我们需要添加电阻元件,并将它们连接到Op-Amp的合适引脚上。
在连接电路时,我们需要确保电阻的连接是正确的,以保证电路的正常工作。
在建立电路之后,我们可以通过设置输入信号的幅度和频率来模拟反相比例放大器的工作。
在Multisim的模拟设置中,我们可以设置输入信号的属性,如幅度、频率和波形类型。
通过观察输出信号的幅度和相位,我们可以了解到反相比例放大器对输入信号的放大效果。
除了模拟和分析电路的工作原理外,Multisim还提供了其他功能,如参数分析和频率响应分析。
通过参数分析,我们可以调整电路中的元件数值,并观察输出信号的变化。
通过频率响应分析,我们可以了解电路对不同频率信号的响应情况,从而优化电路的设计。
总的来说,Multisim是一款功能强大的仿真软件,可以帮助我们模拟和分析反相比例放大器的电路。
通过使用Multisim,我们可以更好地理解反相比例放大器的工作原理,并优化电路的设计。
第一章电子仿真软件Multisim 10简介1电子仿真软件Multisim 10基本界面教育版电子仿真软件Multisim 10的启动画面如图1所示,安装好电子仿真软件Multisim 10后,首次进入基本界面,如图2所示。
图Multisim 10启动界面图Multisim 10基本界面基本界面最上方是主菜单栏,共12项,它们的中文译意如图3所示:图主菜单栏主菜单栏下方是系统工具栏,共16项,如图4所示。
图 4 系统工具栏主菜单栏下方右侧是设计工具栏,共11项,都是一些快捷按钮,均包含在主菜单的下拉菜单中;往右是使用中的元件列表框和帮助按钮,如图5所示。
图 5 设计工具栏工具栏下方左侧是元件工具条,以元件库按钮形式集中了常用的大量仿真元器件。
其元件库按钮含义如图6所示。
图 6 元件库按钮说明工具栏下方右侧是仿真开关的运行/暂停/停止等按钮,主要用于单片机仿真,如图7所示。
图7 仿真开关基本界面左侧是默认打开的设计管理窗口:中间带网格点的白色图纸,用来组建仿真电路的“workspace”,也称为电子平台,共21个按钮,其中文意思为图8所示。
图8 虚拟仪器、仪表工具条2电子仿真软件Multisim 10基本界面调整和设置在基本界面上,关闭“设计工具窗口”、“仿真开关工具条”;用鼠标直接拉动“虚拟仪器、仪表工具条”到原“开关工具条”位置,经以上调整后,使基本界面上的电子平台图纸更宽阔,有利于在电子平台上组建仿真电路,调整后的基本界面部分如图9所示。
图9 调整后的基本界面上部分在调出元件组建仿真电路之前,需要对电子仿真软件Multisim10的基本界面进行设置,设置完成后可以将设置内容保存起来,以后再次打开软件可以不必再做设置。
该功能是通过主菜单“Options”的下拉菜单进行。
(1)单击主菜单“Options”,将出现其下拉菜单,如图10所示。
选中第一项“Global Preferences”,打开设置对话框,如图11所示。
1反相比例运算电路1.1 综述反相比例运算电路实际上是深度的电压并联负反馈电路。
在理想情况下,反相输入端的电位等于零,称为“虚地”。
因此加在集成运放输入端的共模电压很小。
输出电压与输入电压的幅值成正比,但相位相反,因此,电路实现了反相比例运算比例系数的数值决定于电阻RF与R1之比,而与集成运放内部各项参数无关。
只要和R1的阻值比较准RF 确和稳定,即可得到准确额比例运算关系。
比例系数的数值可以大于或等于1,也可以小于1。
由于引入了深度电压并联负反馈,因此电路的输入电阻不高,而输出电阻很低。
1.2 工作原理1.2.1 原理图说明如图所示,输入电压V1经电阻R1接到集成运放的反相输入端,运放的同相输入端经电阻R2接地。
输出电压经反馈电阻RF引回到反相输入端。
集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。
为使差分放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。
因此,通常选择R2的阻值为R2=R1// RF 经过分析可知,反相比例运算电路中反馈的组态是电压并联负反馈。
由于集成运放的开环差模增益很高,因此容易满足深度负反馈的条件,故可以认为集成运放工作在线性区。
所以,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反相比例运算电路的输出输入关系。
由于“虚断”,U+=0 又因“虚短”,可得U -=U+=0由于I -=0 ,则由图可见I I=l F即(U-U-) /R仁(U—U0)/RF上式中u=o,由此可求得反相比例运算电路的输出电压与输入电压的关系为U0=-RF • U I/R11.2.2元件表元件名称大小数量集成运算放大器7411直流电源1V1电阻 6.8K110K120K1 1.3 仿真结果分析图1.3.1仿真分析结果图由于输入电压为1V,所以根据公式可得输出电压为-1.997,符合理论2音频功率放大器综述功率放大器,简称“功放”。
(1)反相比例放大器:将输入加至反相端,同时将正相端子接地,由运放的虚短和虚断V U U 0==+-,又有102R U U R U U i -=---,得输出为:i U R RU 210-= 仿真电路为:取:Ω==k R R 2221,tV U sin 21=,得到输出结果为:tV U sin 40-=输出波形为:(2)电压跟随器:当同相比例放大器的增益为1时,可得到电压跟随器,其在两个电路的级联中具有隔离缓冲作用。
可消除两级电路间的相互影响。
其仿真波形为:取输入为4V,频率为1kHz的方波,得到输出结果为:(3)同相比例放大器:将INA133的2,5和1,3端子分别并联,以此运放作为基本放大器,反馈网络串联在输入回路中,且反馈电压正比于输入电压,引入串联电压负反馈。
反馈电压1211U R R R U f +=由运放的虚短和虚断,有输出电压为:1120)1(U R R U += 其仿真电路为:取tV U sin 21=,Ω==k R R 2212,得到结果为:tV U sin 60= 其输出波形为:(4)反相器:当方向比例放大器增益为1时可得到反相器电路,其仿真电路为:取:tV U sin 21=,输出结果为:tV U U sin 210-=-=仿真输出波形为:(5)同相相加器;将输入信号引至同相端,得到同相相加器由INA133内置电阻设计如下电路,得到输出结果为:210U U U += 仿真电路为:取tV U sin 21=,tV U sin 32=,由公式得到结果为:tV U sin 50= 仿真输出波形为:(6)相减器:将输入信号分别加在INA133的正相和反相输入端,可得到相减电路,其仿真电路如下: 其输出结果为:210U U U -=取tV U sin 51=,tV U sin 22=,计算输出结果为:tV U sin 30=其仿真输出波形为:(7)积分器:利用INA133及电容可构成反相积分器,仿真电路如下图,电阻2R 与运放构成积分器,电阻1R 可起到保护作用,防止低频信号增益过大。
运放电路——电压放大10倍运放电路的应用(用到一个“减法运算电路”和一个“同相比例运算器”)这里以具体事例加以说明:1.题目要求:要求在运放电路的在同相端输入端输入3V,在反相输入端输入2.5V,最终,输出结果为0.5V,接着再通过运放电路将0.5V扩大10倍后输出。
2.解题思路:既然放大器同相端、反相端都需要有输入值,且输出值变小,那么会想到减法运算电路;接着又要将得到的值放大10倍进行输出,说明就要用到比例运算器,这里使用的是同相比例运算器。
3.验证仿真:这里使用LM324N芯片、Multisim 12.0软件进行画图与仿真验证4.减法运算电路原理图(如图1):图1仿真图(如图2):图2说明:R1=R2=R3=RF=10K注意:注意:Ui输入端一定要选择直流DC_POWER模式,不能选VCC,这里对VCC 端的电压值要求不严格。
5.同相比例运算器原理图(如图3):图3仿真图(如图4):图4说明:这里根据公式U0=(1+RF/R1)*Ui,在Ui一定的情况下,只需要满足RF/R1=9即可,所以,这里令RF=9K,R1=1K。
注意:LM324N供电电源不一样,测得的值也不一样,如VCC接5V,测得值为3.566V;接12V测得值为6.002V,Ui输入一定要选择直流DC_POWER模式,不能选VCC,一般情况下VCC所接电压要大于放大后的输出端电压U0的值6.最终的电路及其仿真图(如图5所示):图5注意:LM324N供电电源不一样,测得的值也不一样,如VCC接5V,测得值为3.566V;接12V测得值为5.041V(上图标错了),Ui输入一定要选择直流DC_POWER 模式,不能选VCC,一般情况下VCC所接电压要大于放大后的输出端电压U0的值。
六号跑道2015-7-20。
实验一 反相运算放大电路的仿真姓名:谢朗 班级:电子信息工程112班 学号:7020911048 成绩:【实验目的】(1)熟悉并学会运用Multisim 软件,学会一些基本的仿真器件。
(2)学会运算放大器的工作原理,巩固运算放大器的知识。
【实验器材】(1)6只1K 电阻、1只10K 电阻、1只7.5K 电阻、1只20K 电阻。
(2)一个运算放大器、一个示波器、信号源(3)导线、1只1uF 电容【实验原理】一、理想运算放大器的基本特性(1) 开环增益A ud 等于无穷大。
(2) 输入阻抗无穷大。
(3) 输入阻抗等于0.(4) 带宽无穷大。
(5) v p =v n ,即虚短。
(6) i p =i n =0,即虚断。
二、反相比例放大电路1、基本电路电路如图所示,输入电压通过R1作用于运放的反相端,R2跨接在运放的输出端和反相端之间,同相端接地,由虚短和虚断的概念可知,通过R3的电流为零,所以反相输入端的电位接近于地电位,故称为虚地。
虚地的存在是反相放大电路在闭环工作状态下的重要特征。
2、反相端为虚地点,即v n =0,由虚断的概念可知,通过R1的电流等于通过R2的电流故有012i n nv v v v R R --=所以 R R v v A i u 120-== 上式表明,该电路的电压增益是电阻R1与R2的比值。
负号表明输出电压与输出电压相位相反。
3、输入电阻R iR i =R R v v i v i i i i 11== 三、反相积分电路电路假设电容器C 初始电压为0,根据虚断和虚短可知:010111I n I dt dt c c R dt RC v v v i v v -===-⎰⎰⎰上式表明,输出电压为输入电压对时间的积分,负号表示它们在相位上是相反的。
四、反相微分电路设t=0时,电容器的电压为0,当信号电压接入后,有101I In d C dtd R RCdt v i v v v i =-== 从而 0I d RC dt v v =-上式表明,输出电压正比于输入电压对时间的微商,负号表示它们在相位上是相反的。
multisim仿真反相比例放大器的电路反相比例放大器是一种常见的电路,可以将输入信号放大到更高的幅度。
本文将介绍如何使用Multisim仿真反相比例放大器的电路,并解释其原理和应用。
让我们来了解一下反相放大器的基本原理。
反相放大器由一个差动放大器和一个负反馈回路组成。
差动放大器有两个输入端口,一个是非反相输入端口,另一个是反相输入端口。
负反馈回路将从输出端口获取的信号与输入信号进行比较,并将差异信号返回到反相输入端口。
这样,反相放大器可以将输入信号反向放大,并输出一个放大后的信号。
在Multisim中,我们可以通过使用操作放大器来实现反相放大器。
操作放大器是一种高增益、差分输入的电路元件,常用于放大信号。
在Multisim中,我们可以选择合适的操作放大器模型,并使用它来构建反相放大器电路。
我们需要选择一个合适的操作放大器模型。
Multisim提供了多种操作放大器模型,如LM741、LTSpice等。
选择一个适合你的需求的模型,并将其放入电路中。
接下来,我们需要添加适当的电阻来构建差动放大器。
差动放大器通常由两个电阻组成,一个连接到非反相输入端口,另一个连接到反相输入端口。
这两个电阻的比例决定了放大器的放大倍数。
在Multisim中,我们可以选择合适的电阻值,并将其放入电路中。
然后,我们需要添加负反馈回路。
负反馈回路通常由一个电阻连接到放大器的输出端口,并将其连接到反相输入端口。
这样,输出信号将与输入信号进行比较,并将差异信号返回到反相输入端口。
在Multisim中,我们可以选择适当的电阻值,并将其放入电路中。
完成上述步骤后,我们可以通过设置输入信号的幅度和频率,并运行仿真来观察反相放大器的输出信号。
在Multisim中,我们可以设置输入信号的幅度和频率,并将其应用到电路中。
然后,我们可以运行仿真,并观察输出信号的波形和幅度变化。
通过仿真,我们可以观察到反相放大器的放大倍数和频率响应。
放大倍数是指输出信号与输入信号的幅度比值。
第13章Multisim模拟电路仿真本章Multisim10电路仿真软件,讲解使用Multisim进行模拟电路仿真的基本方法。
目录1. Multisim软件入门2. 二极管电路3. 基本放大电路4. 差分放大电路5. 负反馈放大电路6. 集成运放信号运算和处理电路7. 互补对称(OCL)功率放大电路8. 信号产生和转换电路9. 可调式三端集成直流稳压电源电路13.1 Multisim用户界面及基本操作13.1.1 Multisim用户界面在众多的EDA仿真软件中,Multisim软件界面友好、功能强大、易学易用,受到电类设计开发人员的青睐。
Multisim用软件方法虚拟电子元器件及仪器仪表,将元器件和仪器集合为一体,是原理图设计、电路测试的虚拟仿真软件。
Multisim来源于加拿大图像交互技术公司(Interactive Image Technologies,简称IIT公司)推出的以Windows为基础的仿真工具,原名EWB。
IIT公司于1988年推出一个用于电子电路仿真和设计的EDA工具软件Electronics Work Bench(电子工作台,简称EWB),以界面形象直观、操作方便、分析功能强大、易学易用而得到迅速推广使用。
1996年IIT推出了EWB5.0版本,在EWB5.x版本之后,从EWB6.0版本开始,IIT对EWB进行了较大变动,名称改为Multisim(多功能仿真软件)。
IIT后被美国国家仪器(NI,National Instruments)公司收购,软件更名为NI Multisim,Multisim经历了多个版本的升级,已经有Multisim2001、Multisim7、Multisim8、Multisim9 、Multisim10等版本,9版本之后增加了单片机和LabVIEW虚拟仪器的仿真和应用。
下面以Multisim10为例介绍其基本操作。
图13.1-1是Multisim10的用户界面,包括菜单栏、标准工具栏、主工具栏、虚拟仪器工具栏、元器件工具栏、仿真按钮、状态栏、电路图编辑区等组成部分。
1 反相比例运算电路1.1 综述反相比例运算电路实际上是深度的电压并联负反馈电路。
在理想情况下,反相输入端的电位等于零,称为“虚地”。
因此加在集成运放输入端的共模电压很小。
输出电压与输入电压的幅值成正比,但相位相反,因此,电路实现了反相比例运算。
比例系数的数值决定于电阻RF与R1之比,而与集成运放内部各项参数无关。
只要RF 和R1的阻值比较准确和稳定,即可得到准确额比例运算关系。
比例系数的数值可以大于或等于1,也可以小于1。
由于引入了深度电压并联负反馈,因此电路的输入电阻不高,而输出电阻很低。
1.2 工作原理1.2.1 原理图说明图1.2.1.1 反相比例运算电路如图所示,输入电压V1经电阻R1接到集成运放的反相输入端,运放的同相输入端经电阻R2接地。
输出电压经反馈电阻RF引回到反相输入端。
集成运放的反相输入端和同相输入端,实际上是运放内部输入级两个差分对管的基极。
为使差分放大电路的参数保持对称,应使两个差分对管基极对地的电阻尽量一致,以免静态基流流过这两个电阻时,在运放输入端产生附加的偏差电压。
因此,通常选择R2的阻值为R2=R1∥RF经过分析可知,反相比例运算电路中反馈的组态是电压并联负反馈。
由于集成运放的开环差模增益很高,因此容易满足深度负反馈的条件,故可以认为集成运放工作在线性区。
所以,可以利用理想运放工作在线性区时“虚短”和“虚断”的特点来分析反相比例运算电路的输出输入关系。
由于“虚断”,U+=0 又因“虚短”,可得 U-=U+=0由于 I-=0 , 则由图可见 I I=I F即(U I-U-)/R1=(U—U0)/RF上式中U-=0,由此可求得反相比例运算电路的输出电压与输入电压的关系为U0=-RF·U I/R11.2.2 元件表1.3 仿真结果分析图1.3.1 仿真分析结果图由于输入电压为1V,所以根据公式可得输出电压为-1.997,符合理论。
2 音频功率放大器2.1 综述功率放大器,简称“功放”。
基于Multisim 负反馈放大电路的仿真实验分析负反馈在放大电路中广泛应用,它对电路的性能指标有较大的影响。
根据反馈方式的不同,可分为电压串联型、电压并联型、电流串联型和电流并联型四种。
理论分析负反馈对放 大电路的影响较为抽象,采用Multisim 电路设计仿真软件进行仿真实验可直观地得出结果。
在放大电路中引入电压串联负反馈, 会导致电压放大倍数下降, 但输出电压的稳定性提高,非线性失真减少,通频带展宽,输入电阻增加,输出电阻减少。
下面借助于 Multisim电路设计仿真软件对电压串联负反馈放大电路进行仿真实验来验证这些影响。
1. 编辑实验电路1, R11、C3与R5组成负反馈网络。
电路中元件较多,2. 对放大倍数的影响在电路的输入、输出端接入交流电子电压表如图示 选择有无引入负反馈,观察两个电压表的读数。
编辑电压串联负反馈放大电路如图 2。
按计算机键盘 A 键改变开关J1电阻可采用虚拟电阻,便于改变其参数。
R12、R13分别设置为 45唏口 30% 图1电压串联负反馈电路RL图2测量电压放大倍数和稳定性以及非线性失真J1 断开,无负反馈:Ui=3.150mv ; Uo=1.335v; Kv=Uo/Ui=424。
J1闭合,有负反馈:Ui=3.299mv ;Uo=0.103v ;Kv=Uo/Ui=31。
可见引入负反馈后,电压放大倍数下降了。
3. 对输出电压稳定性的影响如图2按A键改变开关J1选择有无引入负反馈,按B改变开关J2选择有无接入RL,观察输出电压的变化。
J1断开,无负反馈:J2断开时,Uo=1.725v ;J2闭合时,Uo=1.335v。
相差0.390v。
J1闭合,有负反馈:J2断开时,Uo=0.106v ;J2闭合时,Uo=0.103v。
相差0.003 v。
可见引入电压负反馈后,输出电压的稳定性提高了。
4. 对非线性失真的影响在图2的输出端接入示波器XSC1可定性观察非线性失真的大小,接入失真度仪XDA1可定量分析失真系数。
课程:Multisim实验报告班级:10电信本2班姓名: 6 2 2学号:*********教师:***实验一 负反馈放大器电路一. 负反馈放大器电路工作原理图1 带有电压串联负反馈的两级阻容耦合放大器图1所示为带有负反馈的两级阻容耦合放大电路,在电路中通过R13把输出电压引回到输入端,加在晶体管Q1的发射极上,在发射极电阻R6上形成反馈电压。
根据反馈的判断法可知,它属于电压串联负反馈。
1. 闭环电压放大倍数056211243122(//)/71201010100%f f D S o X Y R f R R R C C C RC R R R R R r Vu DivR U KU U mA V V π=====≥=++=±+ 其中 uf 1u u uA A A F =+ 式中,u A 为基本放大器(无反馈)的电压放大倍数,既开环电压放大倍数;1u u A F +为反馈深度,其大小决定了负反馈对放大器性能改善的程度。
2. 反馈系数6u 136F R R R =+ 3. 输入电阻 (1)if u u i R A F R =+式中,i R 为基本放大器的输入电阻。
4. 输出电阻1o of uo uR R A F =+ 式中,o R 为基本放大器的输出电阻;uo A 为基本放大器L R =∞时的电压放大倍数。
二. 实验现象(a )无负反馈(b )有负反馈图2 负反馈对放大器失真的改善(a )中示波器输出信号失真较严重,通过开关Key=A 的闭合,(b )中输出波形失真得到很明显的改善。
图3 未加负反馈时放大电路的幅频特性图4 加入负反馈放大电路的幅频特性引入负反馈后,放大电路总得通频带得到了展宽。
实验二 射极跟随器一. 射极跟随器工作原理图1 射极跟随器原理图1. 输入电阻i R43(1)()i be R r R R β=+++2. 输出电阻o R//be be o E r r R R ββ=≈式中,34E R R R =+。
基于Multisim负反馈放大电路的仿真实验分析负反馈在放大电路中广泛应用,它对电路的性能指标有较大的影响。
根据反馈方式的不同,可分为电压串联型、电压并联型、电流串联型和电流并联型四种。
理论分析负反馈对放大电路的影响较为抽象,采用Multisim电路设计仿真软件进行仿真实验可直观地得出结果。
在放大电路中引入电压串联负反馈,会导致电压放大倍数下降,但输出电压的稳定性提高,非线性失真减少,通频带展宽,输入电阻增加,输出电阻减少。
下面借助于Multisim 电路设计仿真软件对电压串联负反馈放大电路进行仿真实验来验证这些影响。
1.编辑实验电路编辑电压串联负反馈放大电路如图1,R11、C3与R5组成负反馈网络。
电路中元件较多,电阻可采用虚拟电阻,便于改变其参数。
R12、R13分别设置为45%和30%。
图1 电压串联负反馈电路2.对放大倍数的影响在电路的输入、输出端接入交流电子电压表如图示2。
按计算机键盘A键改变开关J1选择有无引入负反馈,观察两个电压表的读数。
图2 测量电压放大倍数和稳定性以及非线性失真J1断开,无负反馈:Ui=3.150mv;Uo=1.335v;Kv=Uo/Ui=424。
J1闭合,有负反馈:Ui=3.299mv;Uo=0.103v;Kv=Uo/Ui=31。
可见引入负反馈后,电压放大倍数下降了。
3.对输出电压稳定性的影响如图2按A键改变开关J1选择有无引入负反馈,按B改变开关J2选择有无接入RL,观察输出电压的变化。
J1断开,无负反馈:J2断开时,Uo=1.725v;J2闭合时,Uo=1.335v。
相差0.390v。
J1闭合,有负反馈:J2断开时,Uo=0.106v;J2闭合时,Uo=0.103v。
相差0.003 v。
可见引入电压负反馈后,输出电压的稳定性提高了。
4.对非线性失真的影响在图2的输出端接入示波器XSC1可定性观察非线性失真的大小,接入失真度仪XDA1可定量分析失真系数。
如图2按A键改变开关J1选择有无引入负反馈,观察输出波形。
借助Multisim 10仿真的负反馈放大电路
本文借助MulTIsim 10的仿真平台,用MulTIsim仿真分析阻容耦合负反馈放大电路,研究加入负反馈后对放大电路放大倍数和电路参数的影响,比较幅频和相频的变化,对研究设计带负反馈的放大电路具有深远的现实意义。
1、MulTIsim仿真软件与特点
1.1、MulTIsim仿真软件
Multisim软件是加拿大图像交互技术公司IIT公司推出的专门用于电
路仿真和设计的电子设计自动化软件。
其前身是电子工作平台EWB,从EWB 6.0版本开始,公司对软件做了大规模的改动,升级后软件功能更为强大,被美国NI公司收购后,更名为NI Multisim,而V10.0是其(National Instruments,NI)最新推出的Multisim新版本。
相对于Protel等其他EDA软件,它具有更加形象直观的人机交互界面,特别是其仪器仪表库中的各仪器仪表与操作真实实验中的实际仪器仪表完全没有两样,但它对模/数电路的混合仿真功能却毫不逊色,几乎能够100%地仿真出真实电路的结果。
NANCHANG UNIVERSITY课程设计(年)题目:基于Multisim的反馈电路分析与仿真学院:信息工程学院系自动化专业:班级:学号:学生姓名:指导教师:完成日期:2.常用组态负反馈放大电路的仿真分析2.1 电压串联负反馈电路集成运放采用741,并用一个开关来控制电路有无负反馈的存在。
用示波器来观察反馈时的情况。
其中,输入信号V1是一个交流电压源信号。
示波器的A通道接输入信号,B通道接输出信号。
开关打向下边时,没有负反馈,输入、输出的信号波形如图所示。
上面A通道的波形是输入波形;下面B通道的电流串联负反馈电路波形为输出波形,可以看到,此时输出波形已经严重失真开关打向上边时,加入电压串联负反馈,输入、输出的信号波形如图所示,上面A通道的波形是输入波形,下面B通道的波形是输出波形。
可以看出,此时输出信号波形没有失真。
但输出信号的幅度减小了。
与理论上引入负反馈放大倍数降低了,减少非线性失真是相符合。
2.2电流串联负反馈电路集成运放采用LM307H,其中,输入信号V1是一个交流电流源信号。
示波器的A通道接输入信号,B通道接输出信号。
开关打向下边时,没有负反馈,输入、输出的信号波形如图所示。
下面A通道的波形是输入波形;上面B通道的波形为输出波形,可以看到,此时输出波形已经严重失真。
开关打向上边时,加入电压串联负反馈,输入、输出的信号波形如图所示,下面A通道的波形是输入波形上面B通道的波形是输出波形。
可以看出,此时输出信号波形没有失真。
但输出信号的幅度减小了。
与理论上引入负反馈放大倍数降低了,减少非线性失真是相符合的。
2.3电压并联负反馈电路集成运放采用741,并用一个开关来控制电路有无负反馈的存在。
用示波器来观察反馈时的情况。
其中,输入信号V1是一个交流电压源信号。
示波器的A通道接输出信号,B通道接输入信号。
开关打向下边时,没有负反馈,输入、输出的信号波形如图所示。
上面A通道的波形是输出波形;下面B通道的波形为输入波形,可以看到,此时输出波形已经严重失真。
multisim仿真反相比例放大器的电路
反相比例放大器是一种常见的基本放大电路,它可以将输入信号的幅度放大,并且输出信号的相位与输入信号相反。
本文将使用Multisim软件来仿真反相比例放大器的电路。
让我们来了解一下反相比例放大器的原理。
反相比例放大器由一个差分放大器和一个负反馈电阻组成。
差分放大器由两个输入端口和一个输出端口组成。
输入信号通过负反馈电阻连接到差分放大器的负输入端口,而输出信号则从差分放大器的输出端口获取。
在Multisim中,我们可以使用操作符库中的元件来构建反相比例放大器的电路。
首先,从元件库中选择一个操作放大器,例如LM741。
将它拖放到工作区中。
接下来,我们需要添加两个电阻来构建差分放大器的输入电路。
选择一个合适的电阻元件,并将其连接到操作放大器的正输入端口和负输入端口。
然后,添加一个反馈电阻,将其连接到操作放大器的输出端口和负输入端口。
现在,我们已经搭建好了反相比例放大器的电路。
接下来,我们需要设置输入信号和测量输出信号。
在Multisim中,我们可以使用函数发生器来生成输入信号。
从元件库中选择一个函数发生器,并将其连接到操作放大器的正输入端口。
我们可以设置函数发生器的幅度和频率来模拟不同的输入信号。
例如,我们可以将幅度设置为1V,频率设置为1kHz。
然后,我们需要添加一个示波器来测量输出信号。
从元件库中选择一个示波器,并将其连接到操作放大器的输出端口。
现在,我们已经完成了反相比例放大器的电路搭建和设置。
我们可以点击运行按钮来开始仿真。
在仿真结果中,我们可以观察到输入信号和输出信号的波形。
输入信号的幅度和频率可以通过函数发生器进行调节。
输出信号的幅度将根据输入信号的幅度和反馈电阻的比例进行放大,并且相位将与输入信号相反。
通过调节反馈电阻的阻值,我们可以改变放大器的放大倍数。
较大的反馈电阻将导致较大的放大倍数,而较小的反馈电阻将导致较小的放大倍数。
在实际应用中,反相比例放大器被广泛应用于信号处理和放大电路中。
它可以用于放大传感器信号、音频放大和仪器测量等领域。
总结起来,我们通过Multisim仿真软件成功搭建了一个反相比例放大器的电路,并且观察到了输入信号和输出信号的波形。
反相比例放大器是一种常见的基本放大电路,具有重要的应用价值。
通过调节反馈电阻的阻值,我们可以改变放大器的放大倍数。
在实际应用
中,反相比例放大器被广泛应用于各种电子设备和系统中,发挥着重要的作用。