高中数学人教版必修2 2.3.2 平面与平面垂直的判定 教案(系列三)
- 格式:doc
- 大小:389.50 KB
- 文档页数:12
2.3.2 平面与平面垂直的判定一、教材分析在空间平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的定义是通过二面角给出的,二面角是高考中的重点和难点.使学生掌握两个平面互相垂直的判定,提高学生空间想象能力,提高等价转化思想渗透的意识,进一步提高学生分析问题、解决问题的能力;使学生学会多角度分析、思考问题,培养学生的创新精神.二、教学目标1.知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在教学问题解决上的作用.2.过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理.3.情态、态度与价值观通过揭示概念的形成、发展和应有和过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力.三、教学重点与难点教学重点:平面与平面垂直判定.教学难点:平面与平面垂直判定和求二面角.四、课时安排1课时五、教学设计(一)复习两平面的位置关系:(1)如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.(2)如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1(二)导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝坚固耐用必须使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成一定的角度.为此,我们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角问题.(三)推进新课、新知探究、提出问题①二面角的有关概念、画法及表示方法.②二面角的平面角的概念.③两个平面垂直的定义.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常用直立式和平卧式两种画法:如图2(教师和学生共同动手).直立式:平卧式:(1) (2)图2二面角的表示方法:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角P-AB-Q.图3如果棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内分别作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4再取棱上另一点O′,在α和β内分别作l的垂线O′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB及∠A′O′B′的两边分别平行且方向相同,即∠AOB=∠A′O′B′.从上述结论说明了:按照上述方法作出的角的大小,与角的顶点在棱上的位置无关.由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.图中的∠AOB,∠A′O′B′都是二面角αlβ的平面角.③直二面角的定义.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念相类似,也是用它们所成的角为直角来定义,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直. 直二面角的画法:如图5.图5④两个平面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:⎭⎬⎫⊂⊥αβAB AB ⇒α⊥β.两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB ⊥β,AB ∩β=B ,ABα. 求证:α⊥β.分析:要证α⊥β,需证α和β构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD ,则由ABα,知AB 、CD 共面. ∵AB ⊥β,C Dβ,∴AB ⊥CD ,垂足为点B . 在平面β内过点B 作直线BE ⊥CD , 则∠ABE 是二面角αCDβ的平面角. 又AB ⊥BE ,即二面角αCDβ是直二面角, ∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.(四)应用示例思路1例1如图7,⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BCα,∴PA⊥BC.∵C为圆周上不同于A、B的任意一点,AB是⊙O的直径,∴BC⊥AC.又∵PA与AC是△PAC所在平面内的两条相交直线,∴BC⊥平面PAC.∵BC平面PBC,∴平面PAC⊥平面PBC.变式训练如图8,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC,图8(1)求证:平面ABD⊥平面ABC;(2)求二面角CBDA的余弦值.(1)证明:由题设,知AD=CD=BD,作DO⊥平面ABC,O为垂足,则OA=OB=OC.∴O是△ABC的外心,即AB的中点.∴O∈AB,即O∈平面ABD.∴OD平面ABD.∴平面ABD⊥平面ABC.(2)解:取BD的中点E,连接CE、OE、OC,∵△BCD 为正三角形,∴CE ⊥BD . 又△BOD 为等腰直角三角形,∴OE ⊥BD . ∴∠OEC 为二面角CBDA 的平面角. 同(1)可证OC ⊥平面ABD . ∴OC ⊥OE .∴△COE 为直角三角形. 设BC =a ,则CE =a 23,OE =a 21,∴cos ∠OEC =33=CE OE . 点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2 如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走到10 m 时人升高了多少?(精确到0.1 m )图9解:取CD 上一点E ,设CE =10 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.在河堤斜面内,作EF ⊥AB ,垂足为F ,并连接FG ,则FG ⊥AB ,即∠EFG 就是河堤斜面与水平面ABG 所成二面角的平面角, ∠EFG =60°,由此,得EG =EFsin60°=CEsin30°sin60°=10×2352321=⨯≈4.3(m ). 答:沿直道行走到10 m 时人升高约4.3 m . 变式训练已知二面角αABβ等于45°,CDα,D ∈AB ,∠CDB =45°.求CD 与平面β所成的角.解:如图10,作CO ⊥β交β于点O ,连接DO ,则∠CDO 为DC 与β所成的角.图10过点O 作OE ⊥AB 于E ,连接CE ,则CE ⊥AB . ∴∠CEO 为二面角αABβ的平面角, 即∠CEO =45°. 设CD =a ,则CE =a 22,∵CO ⊥OE ,OC =OE , ∴CO =a 21.∵CO ⊥DO ,∴sin ∠CDO =21 CD CO . ∴∠CDO =30°,即DC 与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常用的方法是:在一个半平面α内找一点C ,作另一个半平面β的垂线,垂足为O ,然后通过垂足O 作棱AB 的垂线,垂足为E ,连接AE ,则∠CEO 为二面角α-AB -β的平面角.这一过程要求学生熟记.思路2例1 如图11,ABCD 是菱形,PA ⊥平面ABCD ,PA =AD =2,∠BAD =60°.图11(1)求证:平面PBD ⊥平面PAC ; (2)求点A 到平面PBD 的距离; (3)求二面角APBD 的余弦值.(1)证明:设AC 与BD 交于点O ,连接PO , ∵底面ABCD 是菱形,∴BD ⊥AC .∵PA ⊥底面ABCD ,BD 平面ABCD ,∴的PA ⊥BD . 又PA ∩AC =A ,∴BD ⊥平面PAC .又∵BD 平面PBD ,∴平面PBD ⊥平面PAC .(2)解:作AE ⊥PO 于点E ,∵平面PBD ⊥平面PAC ,∴AE ⊥平面PBD . ∴AE 为点A 到平面PBD 的距离.在△PAO 中,PA =2,AO =2·cos30°=3,∠PAO =90°,∵PO =722=+AO PA ,∴AE =7212732==•PO AO PA . ∴点A 到平面PBD 的距离为7212. 3)解:作AF ⊥PB 于点F ,连接EF , ∵AE ⊥平面PBD ,∴AE ⊥PB . ∴PB ⊥平面AEF ,PB ⊥EF .∴∠AFE 为二面角APBD 的平面角. 在Rt △AEF 中,AE =7212,AF =2, ∴sin ∠AFE =742=AF AE ,cos ∠AFE =77)742(12=-. ∴二面角APBD 的余弦值为77. 变式训练如图12,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面PAD ; (2)求证:MN ⊥CD ;(3)若二面角PDCA =45°,求证:MN ⊥平面PDC .图12 图13证明:如图13所示,(1)取PD 的中点Q ,连接AQ 、NQ ,则QN 21DC ,AM 21DC , ∴QNAM .∴四边形AMNQ 是平行四边形.∴MN ∥AQ . 又∵MN 平面PAD ,AQ 平面PAD ,∴MN ∥平面PAD . (2)∵PA ⊥平面ABCD ,∴PA ⊥CD .又∵CD⊥AD,PA∩AD=A,∴CD⊥平面PAD.又∵AQ平面PAD,∴CD⊥AQ.又∵AQ∥MN,∴MN⊥CD.(3)由(2)知,CD⊥平面PAD,∴CD⊥AD,CD⊥PD.∴∠PDA是二面角PDCA的平面角.∴∠PDA=45°.又∵PA⊥平面ABCD,∴PA⊥AD.∴AQ⊥PD.又∵MN∥AQ,∴MN⊥CD.又∵MN⊥PD,∴MN⊥平面PDC.例2如图14,已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F 为棱BB1的中点,M为线段AC1的中点.图14(1)求证:直线MF∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1;(3)求平面AFC1与平面ABCD所成二面角的大小.(1)证明:延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又∵MF平面ABCD,AN平面ABCD,∴MF∥平面ABCD.(2)证明:连接BD,由直四棱柱ABCD—A1B1C1D1,可知AA1⊥平面ABCD,又∵BD平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC、A1A平面ACC1A1,∴BD ⊥平面ACC 1A 1.在四边形DANB 中,DA ∥BN 且DA =BN , ∴四边形DANB 为平行四边形. 故NA ∥BD ,∴NA ⊥平面ACC 1A 1. 又∵NA 平面AFC 1, ∴平面AFC 1⊥平面ACC 1A 1.(3)解:由(2),知BD ⊥平面ACC 1A 1,又AC 1平面ACC 1A 1,∴BD ⊥AC 1. ∵BD ∥NA ,∴AC 1⊥NA . 又由BD ⊥AC ,可知NA ⊥AC ,∴∠C 1AC 就是平面AFC 1与平面ABCD 所成二面角的平面角或补角. 在Rt △C 1AC 中,tan ∠C 1AC =311CA C C ,故∠C 1AC =30°. ∴平面AFC 1与平面ABCD 所成二面角的大小为30°或150°. 变式训练如图15所示,在四棱锥S —ABCD 中,底面ABCD 是矩形,侧面SDC ⊥底面ABCD ,且AB =2,SC =SD =2.图15(1)求证:平面SAD ⊥平面SBC ;(2)设BC =x ,BD 与平面SBC 所成的角为α,求sinα的取值范围. (1)证明:在△SDC 中,∵SC =SD =2,CD =AB =2, ∴∠DSC =90°,即DS ⊥SC . ∵底面ABCD 是矩形,∴BC ⊥CD .又∵平面SDC ⊥平面ABCD ,∴BC ⊥面SDC . ∴DS ⊥BC .∴DS ⊥平面SBC .∵DS 平面SAD ,∴平面SAD ⊥平面SBC .(2)解:由(1),知DS ⊥平面SBC ,∴SB 是DB 在平面SBC 上的射影.∴∠DBS 就是BD 与平面SBC 所成的角,即∠DBS =α.那么sinα=DBDS . ∵BC =x ,CD =2⇒DB =24x +,∴sinα=242x +.由0<x <+∞,得0<sinα<22.(五)知能训练课本本节练习.(六)拓展提升 如图16,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD =60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点.图16(1)求证:EN ∥平面PCD ;(2)求证:平面PBC ⊥平面ADMN ;(3)求平面PAB 与平面ABCD 所成二面角的正切值.(1)证明:∵AD ∥BC ,BC 面PBC ,AD 面PBC ,∴AD ∥面PBC .又面ADN ∩面PBC =MN ,∴AD ∥MN .∴MN ∥BC .∴点M 为PC 的中点.∴MN 21BC . 又E 为AD 的中点,∴四边形DENM 为平行四边形.∴EN ∥DM .∴EN ∥面PDC .(2)证明:连接PE 、BE ,∵四边形ABCD 为边长为2的菱形,且∠BAD =60°, ∴BE ⊥AD .又∵PE ⊥AD ,∴AD ⊥面PBE .∴AD ⊥PB .又∵PA =AB 且N 为PB 的中点,∴AN ⊥PB .∴PB ⊥面ADMN .∴平面PBC ⊥平面ADMN .(3)解:作EF ⊥AB ,连接PF ,∵PE ⊥平面ABCD ,∴AB ⊥PF .∴∠PFE 就是平面PAB 与平面ABCD 所成二面角的平面角.又在Rt △AEB 中,BE =3,AE =1,AB =2,∴EF =23. 又∵PE =3,∴tan ∠PFE =233 EF PE =2,即平面PAB 与平面ABCD 所成的二面角的正切值为2.(七)课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业课本习题2.3 A 组1、2、3.。
2.3.2平面和平面垂直的判定和性质一、教学目标(一)核心素养(1)通过本节教学,提高学生空间想象能力.(2)通过问题解决,提高等价转化思想渗透的意识.(3)进一步提高学生分析问题、解决问题的能力.(二)学习目标(1)两个平面互相垂直的判定.(2)两个平面互相垂直的性质.(三)学习重点两个平面垂直的判定、性质.(四)学习难点(1)两个平面垂直的判定定理、性质定理运用.(2)正确作出符合题意的空间图形.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第67页到第69页,填空:二面角的定义:平面内的一条直线把平面分为两部分,其中的每一部分都叫做半平面,从一条直线出发的两个半平面所组成的图形叫做二面角;以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(2)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(3)判定定理与性质定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直⎭⎬⎫l⊥αl⊂β⇒α⊥β性质定理如果两个平面互相垂直,则在一个平面内垂直于它们交线的直线垂直于另一个平面⎭⎬⎫α⊥βα∩β=al⊥al⊂β⇒l⊥α1.直线a⊥直线b,a⊥平面β,则b与β的位置关系是()A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β【解题过程】由垂直和平行的有关性质可知b⊂β或b∥β,故选D.【答案】D2.设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解题过程】若α⊥β,因为α∩β=m,b⊂β,b⊥m,所以根据两个平面垂直的性质定理可得b⊥α,又a⊂α,所以a⊥b;反过来,当a∥m时,因为b⊥m,且a,m共面,一定有b⊥a,但不能保证b⊥α,所以不能推出α⊥β.故选A.【答案】A3.设m、n是两条不同的直线,α、β是两个不同的平面()A.若m⊥n,n∥α,则m⊥α.B.若m∥β,β⊥α,则m⊥α.C.若m⊥β,n⊥β,n⊥α,则m⊥α.D.若m⊥n,n⊥β,β⊥α,则m⊥α.【解题过程】A中,由m⊥n,n∥α可得m∥α或m与α相交或m⊂α,错误;B中,由m∥β,β⊥α可得m∥α或m与α相交或m⊂α,错误;C中,由m⊥β,n⊥β可得m∥n,又n⊥α,所以m⊥α,正确;D中,由m⊥n,n⊥β,β⊥α可得m∥α或m与α相交或m⊂α,错误.【答案】C(二)课堂设计1.知识回顾(1)直线和平面垂直的判定定理文字语言图形语言符号语言判定定理如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎪⎬⎪⎫l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α(2)直线和平面垂直的判定的另外一种判定方法文字语言图形语言符号语言判定方法如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.ba//,α⊥a.则α⊥b(3)直线和平面垂直的性质定理性质定理如果两条直线垂直于同一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒a∥b2.问题探究探究一实例引领,认识平面和平面垂直的概念★●活动①简单类比,引出定义两个平面互相垂直是两个平面相交的特殊情形.教室的墙面与地面、一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念类似,也是用它们所成的角为直角来定义的.请同学思考两个平面互相垂直的定义.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直.那么两个互相垂直的平面画其直观图时,应把直立平面的边画成和水平平面的横边垂直,如下图.平面α和β垂直,记作α⊥β.●活动②实例引领,思维激活实例:如图,检查工件的相邻两个平面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动,观察尺边是否和这个面密合就可以了,这是为什么?曲尺的一边在一面内转动即为形成一个平面,而另一边与此平面垂直,且又紧靠在另一平面上,即垂线在另一平面内.所以我们得到面面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.)下面我们一起给出分析,证明:已知:AB⊥β,AB∩β=B,AB⊂α.【解题过程】要证α⊥β,需证α 和β 构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD,则由AB⊂α知,AB、CD共面.∵AB⊥β,CD⊂β,∴AB⊥CD,垂足为点B.在平面β内过点B作直线BE⊥CD.则∠ABE是二面角α-CD-β的平面角.又AB⊥BE,即二面角α-CD-β是直二面角.∴α⊥β.现在同学们明确了面面垂直的判定定理,请思考:建筑工人在砌墙时,常用一段系有铅锤的线来检查所砌墙面是否和水平面垂直,依据是什么?[学生]依据是两个平面垂直的判定定理,一面经过另一面的一条垂线.[老师]从转化的角度来看,两个平面垂直的判定定理可简述为:线面垂直⇒面面垂直请同学们接着思考如下问题:在所给正方体中,下式是否正确:①平面ADD1A1⊥平面ABCD;②D1A⊥AB;③D1A⊥面ABCD.[学生]①∵AB⊥面ADD1A1,AB⊂面ABCD.∴平面ABCD⊥平面ADD1A1.②∵AB⊥面ADD1A1,D1A⊂面ADD1A1∴AB⊥D1A③∵AA1⊥面ABCD,∴AD1与平面ABCD不垂直.平面ADD1A1⊥面ABCD,平面ADD1A1∩平面ABCD=AD,A是平面ADD1A1内一点.过点A可以在平面ADD1A1内作无数条直线,而这些直线满足什么条件就可以使之与平面垂直?判定定理解决两个平面如何垂直,性质定理可以解决上述线面垂直.从转化的角度可表述为:面面垂直,则线面垂直.也给了我们以后证明问题的一种思想方法.下面我们一起来完成证明.证明过程如下:已知:α⊥β、α∩β=a,AB⊂α,AB⊥a于B.【解题过程】:在平面β内作BE⊥a垂足为B,则∠ABE就是二面角α-a-β的平面角.由α⊥β可知,AB⊥BE.又AB⊥a,BE与a是β内两条相交直线,∴AB⊥β.证明的难点在于“作BE⊥a”.为什么要做这一步?主要是由两面垂直的关系,去找其二面角的平面角来决定的.【设计意图】构造二面角的平面角过程可以体现学生的创新精神、转化能力.【答案】见解题过程.探究二层层深化,掌握平面和平面垂直的判定定理和性质定理.●活动①互动交流,初步实践例1 求证:(1)如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直;(2)如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直.【知识点】平面和平面垂直的判定.【数学思想】化归思想.【解题过程】(1)已知:l∥α,l⊥β,求证:α⊥β.证明:在平面α内任取一点P.∵l ∥α,∴P ∉l .P 、l 可确定一平面γ.设α∩γ=l ′则l ∥l ′.⎪⎭⎪⎬⎫⊂'⊥'⇒⎭⎬⎫'⊥αββl l l l l //⇒α⊥β[该题目难在构造既符合题,又能使问题得证的立体图形.] (2)已知:α⊥β,β∥γ.求证:α⊥γ证明:过β 内一点P 作直线l ,使l ⊥α则l ⊂β. l 与γ内任一点Q 确定平面δ,设δ∩γ=l ′,则l ∥l ′. l ′⊥α,因此γ⊥α.【思路点拨】题目较抽象,构造图形,创造条件,使问题转化为可利用已有定理来解决.由此我们又多了两个判断面面垂直的结论. 【答案】见解题过程. ●活动②巩固基础,检查反馈例2 如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上异于A 、B 的任意一点,求证:平面P AC ⊥平面PBC .【知识点】平面和平面垂直的判定 【数学思想】化归思想【解题过程】证明:因为AB 是⊙O 的直径,C 是圆周上的点,所以有BC ⊥AC ①.因为P A ⊥平面ABC ,BC ⊂平面ABC ,则P A ⊥BC ②. 由①②及AC ∩PA =A ,得BC ⊥平面P AC .因为BC⊂平面PBC,有平面P AC⊥平面PBC.【思路点拨】低一级的垂直关系是判定高一级垂直关系的依据,根据条件,由线线垂直⇒线面垂直⇒面面垂直.通过这个例题展示了空间直线与平面的位置关系的内在联系,垂直关系的判定和性质共同构成了一个完整的知识体系.【答案】见解题过程.例3 如图,P是△ABC所在平面外的一点,且P A⊥平面ABC,平面P AC⊥平面PBC,求证:BC⊥AC.【知识点】平面和平面垂直的判断和性质.【数学思想】转化思想.【解题过程】证明:在平面P AC内作AD⊥PC,交PC于D.因为平面P AC⊥平面PBC于PC,AD⊂平面P AC,且AD⊥PC,所以AD⊥平面PBC.又因为BC⊂平面PBC,于是有AD⊥BC①.另外P A⊥平面ABC,BC⊂平面ABC,所以P A ⊥BC.由①②及AC∩PA=A,可知BC⊥平面P AC.因为AC⊂平面P AC,所以BC⊥AC.【思路点拨】在空间图形中,高一级的垂直关系中蕴含着低一级的垂直关系,通过本题可以看到,面面垂直⇒线面垂直⇒线线垂直.本题是利用直线和平面垂直的定义及判定定理等知识来解答的问题.解答此类问题必须作到:概念清楚、问题理解透彻、相关知识能灵活运用.【答案】见解题过程.例4 P为120°角α-a-β内一点,P到α和β的距离均为10,求点P到棱a的距离.【知识点】二面角的概念,距离.【数学思想】化归思想.【解题过程】如图,过点P 作P A ⊥α于A ,PB ⊥β于B ,设相交直线P A 、PB 确定的平面为γ,a ∩γ=O ,则α∩γ=OA ,β∩γ=OB 连结PO ,则AP =BP =10∵P A ⊥α,PB ⊥β,∴a ⊥γ,而PO ⊂平面γ,∴a ⊥PO , ∴PO 的长即为点P 到直线a 的距离. 又∵a ⊥γ,γ⊂OA ,γ⊂OB∴∠AOB 是二面角α-a -β的平面角,即∠AOB =120°.而四边形AOBP 为一圆内接四边形,且PO 为该四边形的外接圆直径. ∵四边形AOBP 的外接圆半径等于由A 、B 、O 、P 中任意三点确定的三角形的外接圆半径,因此求PO 的长可利用△APB . 在△APB 中,AP =BP =10,∠APB =60°,∴AB =10. 由正弦定理:332060sin 2=︒==AB R PO . 【思路点拨】(1)该题寻找120°的二面角的平面角,所采取的方法即为垂面法,由此可见,若题目可找到与棱垂直的平面,用“垂面法”确定二面角的平面角也是一种可取的方法.(2)充分借助于四边形P AOB 为一圆内接四边形,∵P A ⊥OA ,PB ⊥OB ,∵PO 即为其外接圆直径,然后借助于四边形的外接圆直径等于其中任一三角形的外接圆直径进行转移,由正弦定理帮助解决了问题.【答案】.3320活动③ 强化提升,灵活应用例5.过点S 引三条不共面的直线SA 、SB 、SC ,如图,∠BSC =90°,∠ASC =∠ASB =60°,若截取SA =SB =SC =a .(1)求证:平面ABC ⊥平面BSC ; (2)求S 到平面ABC 的距离.【知识点】面面垂直的证明,距离. 【数学思想】化归思想【解题过程】(1)证明:∵SA =SB =SC =a , 又∠ASC =∠ASB =60°,∴△ASB 和△ASC 都是等边三角形,∴AB =AC =a , 取BC 的中点H ,连结AH ,∴AH ⊥BC . 在Rt △BSC 中,BS =CS =a , ∴SH ⊥BC ,a BC 2=,∴2)22(222222a a a CH AC AH =-=-=,∴222a SH =. 在△SHA 中,∴222a AH =,222a SH =,22a SA =, ∴222HA SH SA +=,∴AH ⊥SH ,∴AH ⊥平面SBC .∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC . 或:∵SA =AC =AB ,∴顶点A 在平面BSC 内的射影H 为△BSC 的外心, 又△BSC 为Rt △,∴H 在斜边BC 上,又△BSC 为等腰直角三角形,∴H 为BC 的中点,∴AH ⊥平面BSC . ∵AH ⊂平面ABC ,∴平面ABC ⊥平面BSC .(2)由前所证:SH ⊥AH ,SH ⊥BC ,∴SH ⊥平面ABC ,∴SH 的长即为点S 到平面ABC 的距离,a BC SH 222==,∴点S到平面ABC的距离为a22.【思路点拨】(1)要证明平面ABC⊥平面BSC,根据面面垂直的判定定理,须在平面ABC或平面BSC内找到一条与另一个平面垂直的直线;(2)外心为三角形外接圆的圆心,即三条中垂线的交点.【答案】(1)见解题过程;(2)a22.同类训练如图,在三棱台ABC-DEF中,CF⊥平面DEF,AB⊥B C.(1)设平面ACE∩平面DEF=a,求证:DF∥a;(2)若EF=CF=2BC,试问在线段BE上是否存在点G,使得平面DFG⊥平面CDE?若存在,请确定G点的位置;若不存在,请说明理由.【知识点】线面平行的判定,面面垂直的证明.【解题过程】(1)证明:在三棱台ABC-DEF中,AC∥DF,AC⊂平面ACE,DF 平面ACE,∴DF∥平面ACE.又∵DF⊂平面DEF,平面ACE∩平面DEF=a,∴DF∥a.(2)线段BE上存在点G,且BG=13BE,使得平面DFG⊥平面CDE.证明如下:取CE的中点O,连接FO并延长交BE于点G,连接GD、GF,∵CF=EF,∴GF⊥CE.在三棱台ABC-DEF中,AB⊥BC⇒DE⊥EF.由CF⊥平面DEF⇒CF⊥DE.又CF ∩EF =F ,∴DE ⊥平面BEF ,∴DE ⊥GF .GF CE GF DE GF CDE CE DE E ⎫⎪⇒⎬⎪⎭⊥⊥⊥平面=.又GF ⊂平面DFG ,∴平面DFG ⊥平面CDE .此时,如平面图所示,∵O 为CE 的中点,EF =CF =2BC ,由平面几何知识易证△HOC ≌△FOE ,∴HB =BC =12EF .由△HGB ∽△FGE 可知12BG GE =,即13BG BE =. 【思路点拨】“探索性问题”的规律方法:一般是先探求点的位置,多为线段的中点或某个三等分点,然后给出符合要求的证明.【答案】(1)见解题过程;(2)线段BE 上存在点G ,且13BG BE =,使得平面DFG ⊥平面CDE .3. 课堂总结知识梳理(1)证明面面垂直的方法(2)重难点归纳空间中直线与直线垂直、直线与平面垂直、平面与平面垂直三者之间可以相互转化,每一种垂直的判定都是从某种垂直开始转向另一种垂直最终达到目的,其转化关系为在证明两平面垂直时一般先从现有的直线中寻找平面的垂线,若这样的直线图中不存在,则可通过作辅助线来解决.(三)课后作业基础型 自主突破一、选择题1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.【思路点拨】由题意,画出满足条件的图形,依据面面垂直的性质以及线面平行的性质等知识解答.【答案】D.2.设a是空间中的一条直线,α是空间中的一个平面,则下列说法正确的是()A.过a一定存在平面β,使得β∥αB.过a一定存在平面β,使得β⊥αC.在平面α内一定不存在直线b,使得a⊥bD.在平面α内一定不存在直线b,使得a∥b【知识点】线面平行的判定,面面垂直的证明.【解题过程】当a与α相交时,不存在过a的平面β,使得β∥α,故A错误;直线a与其在平面α内的投影所确定的平面β满足β⊥α,故选B;平面α内的直线b只要垂直于直线a在平面α内的投影,则就必然垂直于直线a,故C错误;当a与α平行时,在平面α内存在直线b,使得a∥b,故D错误.【思路点拨】A.根据面面平行的定义和性质判断;B.利用面面垂直的性质和定义判断;C.根据线面垂直的性质判断;D.根据线面平行的性质判断.【答案】B.3.设直线l⊥平面α,直线m⊂平面β,()A.若m∥α,则l∥m B.若α∥β,则l⊥mC.若l⊥m,则α∥β D.若α⊥β,则l∥m【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中直线l与m互相垂直,不正确;B中根据两个平面平行的性质知是正确的;C中的α与β也可能相交;D中l与m也可能异面,也可能相交,故选B.【思路点拨】通过线面平行的性质定理和线面垂直的性质定理即可判断A;由一直线垂直于两个平行平面中的一个,也垂直于另一个,结合线面垂直的性质定理即可判断B;举反例,由线面垂直的性质定理即可判断C;举反例,结合线面垂直和面面垂直的性质定理即可判断D.【答案】B.4.设a、b是两条不同的直线,α、β是两个不同的平面,则能得出a⊥b的是() A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β【知识点】线面平行的判定,面面垂直的证明.【解题过程】A中,两直线可以平行、相交或异面,故不正确;B中,两直线平行,故不正确;C中,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故正确;D 中,两直线可以平行,相交或异面,故不正确.【思路点拨】通过线面垂直的性质定理判断A;通过面面平行的性质和线面垂直的性质判断B;通过面面平行的性质和线面垂直的定义判断C;由线面平行的性质和面面垂直的性质判断D.【答案】C.5.如图,在四面体D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列正确的是()A .平面ABC ⊥平面ABDB .平面ABD ⊥平面BDCC .平面ABC ⊥平面BDE ,且平面ADC ⊥平面BDED .平面ABC ⊥平面ADC ,且平面ADC ⊥平面BDE【知识点】面面垂直的判定.【解题过程】因为AB =CB ,且E 是AC 的中点,所以BE ⊥AC ,同理有DE ⊥AC ,于是AC ⊥平面BDE .因为AC ⊂平面ABC ,所以平面ABC ⊥平面BDE .又由于AC ⊂平面ACD ,所以平面ACD ⊥平面BDE ,所以选C.【思路点拨】缺少【答案】C.6.在平面几何里,有勾股定理:“设△ABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确结论是:“设三棱锥A -BCD 的三个侧面ABC 、ACD 、ADB 两两相互垂直”,则______.【解题过程】此题是突破以往高考命题模式的又一典范,丰富的想象和联想是增强创新意识的利器,本题如果能联想构造一长方体,用一平面去截长方体易得满足条件的棱锥A -BCD ,进而易证结论:“2222ABC ACD ADB BCD SS S S ++=.” 【答案】2222ABC ACD ADB BCD S S S S ++=.7.如图,在四棱锥P -ABCD 中,P A ⊥底面ABCD ,且底面各边都相等,M 是PC 上的一动点,当点M 满足________时,平面MBD ⊥平面PCD (只要填写一个你认为正确的条件即可).【知识点】线面平行的判定,面面垂直的证明.【解题过程】∵PC在底面ABCD上的射影为AC,且AC⊥BD,∴BD⊥P C.∴当DM⊥PC(或BM⊥PC)时,即有PC⊥平面MBD,而PC⊂平面PCD,∴平面MBD ⊥平面PC D.【答案】DM⊥PC(或BM⊥PC)8.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD =DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.【知识点】线面平行的判定,面面垂直的证明。
课题:平面与平面垂直的判定(新授课)
1.教学任务分析:通过教学活动,
(1)使学生了解、感受二面角的概念,感受到生活中处处有数学、数学用途广泛,增强学数学的兴趣.
(2)在二面角的概念教学中,让学生体会以下几点:
a.二面角的大小是用平面角来度量的.
b.二面角的平面角的大小由二面角的两个面的位置唯一确定.
c.平面角的两边分别在二面角的两个平面内,且两边都与二面角的棱垂直,由这个角所
确定的平面和二面角的棱垂直.
(3)了解平面与平面垂直的定义,通过探究掌握平面与平面垂直的判定定理.
(4)通过例题教学,探究确定二面角的平面角的方法,会求特殊二面角的大小.
2.教学难点、重点:
(1)重点:
确定二面角,面面垂直判定定理的应用.
(2)难点:
各种情景下确定二面角的平面角.
3.教学方式与手段:
采用“启发式”、“探究式”、“讲练结合”法.
借助多媒体电脑平台.
4.教学基本流程(总体设计):
从生活实例让学生感性认识二面角
↓
二面角的概念
↓
二面角的平面角
↓
定义两平面垂直
↓
面面垂直的判定
↓
应用、探究
↓
课堂小结、作业
5.页面设计(相应内容逐步演示):
课题:平面与平面垂直的判定
1.二面角概念
2.确定二面角的平面角的方法
3.平面与平面垂直的定义
4.平面与平面垂直的判定定理
5.应用举例
6.小结与作业。
《平面与平面垂直的判定定理》教学设计一、本节内容分析本节内容按照直线与直线垂直、直线与平面垂直、平面与平面垂直的研究过程展开.对于直线与直线的垂直,首先定义异面直线所成的角,两条直线垂直包括共面垂直与异面垂直对于直线与平面的垂直、平面与平面的垂直主要研究它们的判定定理和性质定理.直线与平面垂直的判定定理是指一条直线与构成该平面的基本元素—直线满足什么条件才能使此直线与该平面垂直,而平面与平面垂直的判定定理是指构成其中一个平面的直线与另平面或这个平面内的直线具备什么条件才能使两个平面垂直,实际上是在寻找平面与平面垂直的充分条件.性质是指直线与平面垂直、平面与平面垂直时,其基本构成要素具有怎样的确定不变的关系,实际上是必要条件,性质和判定之间具有互逆的关系,这也是我们研究问题的一个自然的起点.本节内容的处理继续遵循“直观感知—操作确认—思辨论证”的认识过程展开.通过本节课的学习与研究,可进步完善学生的知识结构,更好地培养学生观察记忆、空间想象及推测解释能力,使其体会由特殊到一般、类比、归纳、猜想、化归等数学思想,提升直观想象、数学运算和逻辑推理核心素养.本节包含的核心知识和体现的核心素养如下:二、学情整体分析上一节,我们研究了空间直线与直线、直线与平面、平面与平面的平行关系,本节在上一节基础上研究空间直线、平面间的另一特殊位置关系——垂直.由于学生的知识积累、解决问题的方法都已较为丰富,所以本节内容的学习既要继续加强从“一般观念”上的引导,让学生明确“什么是空间直线、平面的垂直”以及“空间直线、平面垂直时,其要素(直线、平面)有什么确定的不变关系”;又要充分类比对空间直线、平面平行关系的研究方式,引导学生研究空间直线、平面之间的垂直关系.研究的对象尽量由学生去提出,研究的内容要学生去确定,研究的方法启发学生去寻找.学情补充:____________________________________________________________________ _________________________________________________________________________________ 三、教学活动准备【任务专题设计】1.平面与平面垂直【教学目标设计】1.通过实例直观感知“二面角”概念的形成过程,理解二面角的概念,掌握二面角的作法,理解并掌握两个平面互相垂直的概念,两个平面垂直的判定定理及其应用方法.2.发展学生的推测解释能力、观察记忆能力和空间想象力,培养学生的质疑思辨、创新的精神.【教学策略设计】1.在平面与平面垂直的实际教学中,建议采用启发引导、分组合作、讲练结合的教学方法,使学生形成“直观感知—操作确认—数学抽象—归纳猜想—严谨证明—灵活应用”的探究式学习方法,从而达到以学生为主体、教师为主导、师生共同发展的课堂教学效果.【教学方法建议】启发教学法、探究教学法、情境教学法,还有________________________________【教学重点难点】重点1.直观感知、操作确认,概括出平面与平面垂直的判定定理难点3.平面与平面垂直的判定定理的应用.【教学材料准备】1.常用材料:多媒体课件、计算机、实物模型、__________________________________2.其他材料:_____________________________________________________________四、教学活动设计教学导入探究1 平面与平面垂直的判定定理师:在工程建设中,建筑工人用一端系有铅锤的线来检查墙面与地面是否垂直,如果系有铅锤的细线紧贴墙面,则确定墙面与地面垂直,否则不垂直.为什么线要紧贴墙面?生:为了说明细线在墙面内,细线与地面垂直,墙面就和地面垂直.师:满足什么条件的时候,才能使平面与平面互相垂直?【师生活动】教师组织学生思考、讨论,归纳出下面的结论.生:如果一个平面内有一条直线垂直于另一个平面,则这两个平面垂直.师:如何用图形语言和符号语言描述平面与平面垂直的判定定理.【师生活动】教师指导学生画出图形并将文字语言转化成符号语言,并出示多媒体.【推测解释能力】通过对实际问题观察和理解,使学生形成面面垂直的判定定理,通过学生交流讨论,把实际问题抽象成数学符号的表达方式,培养学生严谨的数学思维习惯【要点知识】平面与平面垂直的判定定理⊥⎫lα【教师总结】这个定理说明,可以由直线与平面垂直,证明平面与平面垂直.师:门所在平面与地面始终垂直吗?大家将课本打开,直立放在桌面上,每页纸张与桌面是否垂直?为什么?【师生活动】教师组织学生讨论、交流,用面面垂直判定定理来解释现象.师:下面请看如何利用平面与平面垂直的判定定理来解决实际问题.【活动学习】通过用判定定理解释生活中的常见现象,让学生意识到数学来源于生活,服务于生活,也体现了从特殊到一般,再到特殊的知识认知过程,促进学生数学思想方法的形成,引导学生确实掌握“降维”的转化与化归的数学思想方法【说明论证能力】通过学生尝试用定理解决问题,从而加强对面面垂直判定定理的理解和掌握,巩固所学知识,进一步体会由证明面面垂直转化为证明线面垂直,提升学生的逻辑思维和分析问题、解决问題的说明论证能力【典型例题】平面与平面垂直的判定定理的应用例1 如图,在正方体ABCD-A'B'C'D'中,求证:平面A'BD⊥平面ACC'A'【师生活动】教师出示多媒体并读题,引导学生分析题意,梳理解题思路,得到要用面面垂直的判定定理证明两个平面垂直,关键是找到一个平面内有一条直线垂直于另一个平面.学生独立完成例题证明,教师巡视课堂,并适时给予学生指导,教师出示规范解答.【典例解析】平面与平面垂直的判定定理的应用分析:要证平面A'BD ⊥平面ACC'A',根据两个平面垂直的判定定理,只需证明平面A'BD 经过平面ACC'A'的一条垂线即可.这需要利用AC,BD 是正方形ABCD 的对角线.证明:ABCD-A'B'C'D'是正方体,AA'⊥平面ABCD ,AA'BD ⊥又BD AC ⊥,AA'AC=A ⋂,∴BD ⊥平面ACC'A',又BD ⊂平面A'BD ,平面A'BD ⊥平面ACC'A'.师:请看下一道例题.【意义学习】通过教师对证明过程进行规范、完整的板书,引导学生注意证明过程的规范性和严谨性,帮助学生养成良好的学习习惯【典型例题】平面与平面垂直的判定定理的应用例2 如图,AB 是O 的直径,PA 垂直于O 所在的平面,C 是圆周上不同于,A B 的任意一点.求证:平面PAC ⊥平面PBC .【师生活动】教师引导学生分析解题思路,鼓励学生交流、讨论,并请学生做板演,教师对学生的解答过程做评价,随后教师给出规范性解答.【典例解析】平面与平面垂直的判定定理的应用分析:要证明两个平面垂直,根据两个平面垂直的判定定理,只需证明其中一个平面内的一条直线垂直于另一个平面,而由直线和平面垂直的判定定理,还需证明这条直线和另一个平面内的两条相交直线垂直.在本题中,由题意可知BC AC ⊥,,BC PA AC PA A ⊥⋂=,从而BC ⊥平面PAC ,进而平面PAC ⊥平面PBC .证明:∵PA ⊥平面,ABC BC ⊂平面,ABC PA BC ∴⊥.∵点C 是圆周上不同于,A B 的任意一点,AB 是O 的直径,∴90BCA ∠=︒,即BC AC ⊥. 又∵,PA AC A PA ⋂=⊂平面,PAC AC ⊂平面,PAC BC ∴⊥平面PAC .又∵BC ⊂平面,PBC ∴平面PAC ⊥平面PBC .【深度学习】通过教师引导学生分析解题思路,使学生掌握判断面面垂直有两种方法:一种是定义法(证二面角的平面角是直角),一种是判定定理法(证一个平面过另个平面的一条垂线),深化学生对两种方法的掌握能力【说明论证能力】通过例题巩固所学知识,使学生能够熟练应用知识解决说明论证的问题【教师总结】从本节的讨论可以看到,由直线与直线垂直可以判定直线与平面垂直由直线与平面垂直的定义可以得到直线与直线垂直;由直线与平面垂直可以判定平面与平面垂直;而由平面与平面垂直的性质可以得到直线与平面垂直,这进一步揭示了直线平面之间的位置关系可以相互转化.师:通过这节课的学习,同学们都学到了哪些知识?【师生活动】教师引导学生归纳总结、完善本节课所学知识.【整体学习】引导学生学习直线与平面、平面与平面垂直的判定定理和性质定理之间的相互联系,进一步体会空间中直线与平面的位置关系之间的相互转化,培养学生对转化与化归数学思想方法的理解,发展学生的逻辑推理学科核心素养【课堂小结】平面与平面垂直1.判定平面与平面垂直的方法有哪些?判定平面与平面垂直的方法体现了什么数学思想?2.平面与平面垂直的判定定理是什么?能够解决哪些问题?3.如何实现空间垂直关系的相互转化?请指出下面图中空间垂直关系转化的依据.【设计意图】通过理解和掌握面面垂直的判定和性质,能够证明面面垂直和线面垂直,培养学生的推测解释、说明论证能力,提升逻辑推理核心素养【课后作业】教材P235练习3、4题教学评价垂直关系的相互转化:线线垂直、线面垂直、面面垂直是相互联系的,能够相互转化,转化的纽带是对应的定义、判定定理和性质定理在解决问题时,可以从条件入手,分析已有的垂直关系,再从结论探求所需的关系,从而架起条件与结论的桥梁.空间平行、垂直关系之间的转化:【设计意图】引导学生对线线垂直、线面垂直、面面垂直的判定和性质探究分析,帮助学生体会知识的生成、发展、完善的过程.通过具体知识点的演练,让学生在运用课程教学过程中所学到的学科能力(概括理解、推理解释、说明论证、猜想探究等)分析问题、解决问题,从而达到直观想象、逻辑推理、数学抽象核心素养目标要求【以学定教】根据学情,因材施教,以人为本,以生为本,根据学生逐步掌握的知识点和定理,依据生活实例和模型,采取不同探究式教学法,让学生逐步掌握线线垂直、线面垂直、面面垂直的知识教学反思本节的知识(直线与直线的垂直关系、直线与平面的垂直关系、平面与平面的垂直关系)与学生学习的生活联系密切,教师一方面引导学生从生活实际出发,把知识与周围的事物联系起来;另一方面,教师引导学生经历从现实的生活空间中抽象出空间图形的过程,注重探索空间图形位置关系的判定与性质的过程本节课教师特别注重数学中的文字语言与符号语言的相互转化,将空间问题向平面问题转化,有效地体现了转化与化归的数学思想.在判定定理的教学中,遵循了“直观感知、操作确认、归纳总结、初步运用”的认知过程,学生通过观察分析、自主探究,在教师的引导下,进行适当推理而归纳出判定定理关于判定和性质定理的应用,教师没有简单直接讲解,而是由学生先行自主探究,教师适时点拨,以增强学生自主学习的意识,再通过实物投影,来规范学生的解答过程,提高学生数学表达能力.【以学论教】对教学活动整个过程的学习情况进行追踪,根据学生实际学习情况和课堂效果使学生通过观察分析、自主探究学习和掌握空间线面的垂直关系。
课题:平面与平面垂直的判定(新授课)
1.教学任务分析:通过教学活动,
(1)使学生了解、感受二面角的概念,感受到生活中处处有数学、数学用途广泛,增强学数学的兴趣.
(2)在二面角的概念教学中,让学生体会以下几点:
a.二面角的大小是用平面角来度量的.
b.二面角的平面角的大小由二面角的两个面的位置唯一确定.
c.平面角的两边分别在二面角的两个平面内,且两边都与二面角的棱垂直,由这个角所
确定的平面和二面角的棱垂直.
(3)了解平面与平面垂直的定义,通过探究掌握平面与平面垂直的判定定理.
(4)通过例题教学,探究确定二面角的平面角的方法,会求特殊二面角的大小.
2.教学难点、重点:
(1)重点:
确定二面角,面面垂直判定定理的应用.
(2)难点:
各种情景下确定二面角的平面角.
3.教学方式与手段:
采用“启发式”、“探究式”、“讲练结合”法.
借助多媒体电脑平台.
4.教学基本流程(总体设计):
从生活实例让学生感性认识二面角
↓
二面角的概念
↓
二面角的平面角
↓
定义两平面垂直
↓
面面垂直的判定
↓
应用、探究
↓
课堂小结、作业
5.页面设计(相应内容逐步演示):
课题:平面与平面垂直的判定
1.二面角概念
2.确定二面角的平面角的方法
3.平面与平面垂直的定义
4.平面与平面垂直的判定定理
5.应用举例
6.小结与作业。
格一课堂教学方案章节:2.3.2 1 课时: 备课人: 二次备课人: ,m n β=,n αβ⊥⊥表示三个平面,给出下列四个命题:l 在β内的射影,精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
平面与平面垂直的判定教案教学目标:1. 理解平面的概念及性质,掌握平面与平面垂直的判定方法。
2. 能运用平面与平面垂直的判定方法解决实际问题,提高空间想象能力和逻辑推理能力。
3. 通过对平面与平面垂直的判定方法的学习,培养学生数学思想和方法的应用意识。
教学重、难点:1. 教学重点:平面与平面垂直的判定方法及其应用。
2. 教学难点:如何灵活运用平面与平面垂直的判定方法解决实际问题。
教学准备:1. 多媒体课件:包含判定定理的证明过程、图形示例等内容的PPT 或视频资料。
2. 几何画板:学生可利用几何画板进行自主探究和实践,绘制相关图形,加深理解。
3. 白板讲解:利用白板或黑板进行现场讲解和互动问答,提高教学效果。
4. 学生练习册:根据教学目标和内容,设计相应的练习册或习题集,供学生练习使用。
教学方法和手段:1. 课堂讲解:教师精讲判定定理及其应用,注意逻辑清晰,表达准确。
2. 小组讨论:学生针对课堂练习或实际问题的讨论,促进互相学习和交流。
3. 互动问答:教师鼓励学生提问,通过回答问题了解学生对知识的掌握情况,并及时调整教学策略。
4. 多媒体辅助:使用多媒体课件展示图形和实例,增强视觉效果,帮助学生更好地理解。
5. 工具应用:引导学生使用几何画板等工具进行自主探究和实践,提高教学效率。
教学过程:1.概念讲解教师引导学生复习平面的概念及性质,强调平面的基本属性,为后续学习做好铺垫。
2. 定理介绍教师介绍平面与平面垂直的判定方法,即“一面四点两线”判定定理。
指出定理的现代形式如下:如果一个平面内的四条直线与另一个平面内的四条直线对应平行,那么这两个平面垂直。
并深入讲解该定理的证明过程及应用范围。
3. 范例分析教师通过实例讲解如何运用判定方法解决实际问题。
如:通过观察教室墙面和地面的关系,引导学生用判定方法判断两个平面是否垂直,并指导学生在练习本上画出相应的图形,锻炼学生的实际应用能力。
4. 课堂练习教师布置与课堂内容同步的作业,学生完成后进行展示和交流。
平面与平面垂直的判定教学目的:1.理解二面角及其平面角的概念,能确认图形中的已知角是否为二面角的平面角.2.掌握二面角的平面角的一般作法,会求简单的二面角的平面角:3.掌握两个平面互相垂直的概念,能用定义和定理判定面面垂直。
教学重点:二面角的概念和二面角的平面角的作法,面面垂直的判定教学难点:二面角的平面角的一般作法及面面垂直的判定教学过程:一、创设情景,揭示课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。
二、研探新知1、二面角的有关概念及其记法与表示老师展示一X纸面,并对折让学生观察其形状,然后引导学生用数学思维思考,并将它与角进行类比,归纳出二面角的概念及记法与表示.从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle)。
这条直线叫二面角的棱,这两个半平面叫做二面角的面。
棱为AB,面分别为α,β的二面角记作二面角α-AB-β。
有时为了方便,也可在α,β内(棱以外的半平面部分)分别取点P,Q,将这个二面角记作二面角P-AB-Q。
如果棱记作l,那么这个二面角记作二面角α―l―β或P―l―Q。
2、二面角的度量提出问题:二面角的大小反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二面角的大小呢?师生活动:师生共同做一个小实验(预先准备好的二面角的模型),在其棱上取一点为顶点,在两个半平面内各作一射线,通过实验操作,研探二面角大小的度量方法——二面角的平面角。
在二面角α―l―β的棱l上任取一点O,以点O为垂足,在半平面α和β内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的∠AOB叫做二面角的平面角。
§2.3.2 平面与平面垂直的判定教学分析教学目标:1. 经历二面角、面面垂直有关概念的产生过程,掌握并会应用两个平面垂直的判定定理。
2. 体会用转化的思维方法将二面角转化为平面角问题,利用类比的方法理解二面角的平面角定义,用演绎的数学方法理解并掌握两个平面垂直的定义,进一步培养学生的空间想象能力和分析解决问题的能力。
3. 让学生观察归纳、动手实践、开展讨论,共同研究二面角、面面垂直的问题,使学生提高思维能力和分享合作学习的成果。
教学重难点:重点:二面角的平面角的概念;两个平面垂直的判定及其应用难点:二面角的平面角的产生和理解教学设计教学准备:教师准备投影仪、多媒体课件、二面角教具;学生准备卡纸(矩形或三角形)、白纸、小黑板教学方法:采用启发引导和合作探究的方式教学导图:教学过程知识与问题师生活动设计意图1.二面角概念的引入和构建二面角的有关概念(1)观看视频,直观感知二面角。
-------2’视频①:发射人造地球卫星时,根据需要,卫星的轨道平面和地球的赤道平面形成一定的角度。
视频②:修筑水坝时,为了使水坝更坚固耐久,水坝面与水平面形成适当的角度。
【提出思考】:日常生活或科技生产中,还没有类似的现象?【预设回答】:安装太阳能热水器时,为了使日照时间更久,也要考虑集热管面和地面形成合理的角度;使用笔记本电脑时,为了使用更舒适,打开的两面也形成相对的角度等等(2)根据角的定义,类比定义出二面角的概念----2’(3)学生两人小组合作,一人用卡纸折出一个二面角,任意摆从人类生产实践的需要出发,直观感知二面角的有关概念;并意识到数学来源于生活,应用于生活。
通过类比分析,形象理解二面角的定义。
通过简单易行的二人小组合作,使学生能亲自动手实践,并快速有效地掌从人类生产实践的需要引入二面角的有关概念构建二面角的平面角的概念平面与平面垂直的判定定理的应用探究平面与平面垂直的判定方法课堂小结、作业布置放,另一人在白纸上快速画出相应的二面角的直观图;教师巡堂,并选出作品展示,简单总结画法----2’(4)在自己的二面角作品上标注字母,给二面角命名,即掌握二面角的表示方法---- 1’新知1:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫二面角的棱,这两个半平面叫二面角的面. 握二面角画法和表示方法。
2.3.2 平面与平面垂直的判定一、教材分析在空间平面与平面之间的位置关系中,垂直是一种非常重要的位置关系,它不仅应用较多,而且是空间问题平面化的典范.空间中平面与平面垂直的定义是通过二面角给出的,二面角是高考中的重点和难点.使学生掌握两个平面互相垂直的判定,提高学生空间想象能力,提高等价转化思想渗透的意识,进一步提高学生分析问题、解决问题的能力;使学生学会多角度分析、思考问题,培养学生的创新精神.二、教学目标1.知识与技能(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平面互相垂直”的概念;(2)使学生掌握两个平面垂直的判定定理及其简单的应用;(3)使学生理会“类比归纳”思想在教学问题解决上的作用.2.过程与方法(1)通过实例让学生直观感知“二面角”概念的形成过程;(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理.3.情态、态度与价值观通过揭示概念的形成、发展和应有和过程,使学生理会教学存在于观实生活周围,从中激发学生积极思维,培养学生的观察、分析、解决问题能力.三、教学重点与难点教学重点:平面与平面垂直判定.教学难点:平面与平面垂直判定和求二面角.四、课时安排1课时五、教学设计(一)复习两平面的位置关系:(1)如果两个平面没有公共点,则两平面平行⇔若α∩β=∅,则α∥β.(2)如果两个平面有一条公共直线,则两平面相交⇔若α∩β=AB,则α与β相交.两平面平行与相交的图形表示如图1.图1(二)导入新课思路1.(情境导入)为了解决实际问题,人们需要研究两个平面所成的角.修筑水坝时,为了使水坝坚固耐用必须使水坝面与水平面成适当的角度;发射人造地球卫星时,使卫星轨道平面与地球赤道平面成一定的角度.为此,我们引入二面角的概念,研究两个平面所成的角.思路2.(直接导入)前边举过门和墙所在平面的关系,随着门的开启,其所在平面与墙所在平面的相交程度在变,怎样描述这种变化呢?今天我们一起来探究两个平面所成角问题.(三)推进新课、新知探究、提出问题①二面角的有关概念、画法及表示方法.②二面角的平面角的概念.③两个平面垂直的定义.④用三种语言描述平面与平面垂直的判定定理,并给出证明.⑤应用面面垂直的判定定理难点在哪里?讨论结果:①二面角的有关概念.二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫二面角的棱,这两个半平面叫二面角的面.二面角常用直立式和平卧式两种画法:如图2(教师和学生共同动手).直立式:平卧式:(1) (2)图2二面角的表示方法:如图3中,棱为AB,面为α、β的二面角,记作二面角α-AB-β.有时为了方便也可在α、β内(棱以外的半平面部分)分别取点P、Q,将这个二面角记作二面角P-AB-Q.图3如果棱为l,则这个二面角记作αlβ或PlQ.②二面角的平面角的概念.如图4,在二面角αlβ的棱上任取点O,以O为垂足,在半平面α和β内分别作垂直于棱的射线OA和OB,则射线OA和OB组成∠AOB.图4再取棱上另一点O′,在α和β内分别作l的垂线O′A′和O′B′,则它们组成角∠A′O′B′.因为OA∥O′A′,OB∥O′B′,所以∠AOB及∠A′O′B′的两边分别平行且方向相同,即∠AOB=∠A′O′B′.从上述结论说明了:按照上述方法作出的角的大小,与角的顶点在棱上的位置无关.由此结果引出二面角的平面角概念:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.图中的∠AOB,∠A′O′B′都是二面角αlβ的平面角.③直二面角的定义.二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说二面角是多少度.平面角是直角的二面角叫做直二面角.教室的墙面与地面,一个正方体中每相邻的两个面、课桌的侧面与地面都是互相垂直的.两个平面互相垂直的概念和平面几何里两条直线互相垂直的概念相类似,也是用它们所成的角为直角来定义,二面角既可以为锐角,也可以为钝角,特殊情形又可以为直角.两个平面互相垂直的定义可表述为:如果两个相交平面所成的二面角为直二面角,那么这两个平面互相垂直. 直二面角的画法:如图5.图5④两个平面垂直的判定定理.如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.两个平面垂直的判定定理符号表述为:⎭⎬⎫⊂⊥αβAB AB ⇒α⊥β.两个平面垂直的判定定理图形表述为:如图6.图6证明如下:已知AB ⊥β,AB ∩β=B ,ABα. 求证:α⊥β.分析:要证α⊥β,需证α和β构成的二面角是直二面角,而要证明一个二面角是直二面角,需找到其中一个平面角,并证明这个二面角的平面角是直角.证明:设α∩β=CD ,则由ABα,知AB 、CD 共面. ∵AB ⊥β,C Dβ,∴AB ⊥CD ,垂足为点B . 在平面β内过点B 作直线BE ⊥CD , 则∠ABE 是二面角αCDβ的平面角. 又AB ⊥BE ,即二面角αCDβ是直二面角, ∴α⊥β.⑤应用面面垂直的判定定理难点在于:在一个平面内找到另一个平面的垂线,即要证面面垂直转化为证线线垂直.(四)应用示例思路1例1如图7,⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点.图7求证:平面PAC⊥平面PBC.证明:设⊙O所在平面为α,由已知条件,PA⊥α,BCα,∴PA⊥BC.∵C为圆周上不同于A、B的任意一点,AB是⊙O的直径,∴BC⊥AC.又∵PA与AC是△PAC所在平面内的两条相交直线,∴BC⊥平面PAC.∵BC平面PBC,∴平面PAC⊥平面PBC.变式训练如图8,把等腰Rt△ABC沿斜边AB旋转至△ABD的位置,使CD=AC,图8(1)求证:平面ABD⊥平面ABC;(2)求二面角CBDA的余弦值.(1)证明:由题设,知AD=CD=BD,作DO⊥平面ABC,O为垂足,则OA=OB=OC.∴O是△ABC的外心,即AB的中点.∴O∈AB,即O∈平面ABD.∴OD平面ABD.∴平面ABD⊥平面ABC.(2)解:取BD的中点E,连接CE、OE、OC,∵△BCD 为正三角形,∴CE ⊥BD . 又△BOD 为等腰直角三角形,∴OE ⊥BD . ∴∠OEC 为二面角CBDA 的平面角. 同(1)可证OC ⊥平面ABD . ∴OC ⊥OE .∴△COE 为直角三角形. 设BC =a ,则CE =a 23,OE =a 21,∴cos ∠OEC =33=CE OE . 点评:欲证面面垂直关键在于在一个平面内找到另一个平面的垂线.例2 如图9所示,河堤斜面与水平面所成二面角为60°,堤面上有一条直道CD ,它与堤角的水平线AB 的夹角为30°,沿这条直道从堤脚向上行走到10 m 时人升高了多少?(精确到0.1 m )图9解:取CD 上一点E ,设CE =10 m ,过点E 作直线AB 所在的水平面的垂线EG ,垂足为G ,则线段EG 的长就是所求的高度.在河堤斜面内,作EF ⊥AB ,垂足为F ,并连接FG ,则FG ⊥AB ,即∠EFG 就是河堤斜面与水平面ABG 所成二面角的平面角, ∠EFG =60°,由此,得EG =EFsin60°=CEsin30°sin60°=10×2352321=⨯≈4.3(m ). 答:沿直道行走到10 m 时人升高约4.3 m . 变式训练已知二面角αABβ等于45°,CDα,D ∈AB ,∠CDB =45°.求CD 与平面β所成的角.解:如图10,作CO ⊥β交β于点O ,连接DO ,则∠CDO 为DC 与β所成的角.图10过点O 作OE ⊥AB 于E ,连接CE ,则CE ⊥AB . ∴∠CEO 为二面角αABβ的平面角, 即∠CEO =45°. 设CD =a ,则CE =a 22,∵CO ⊥OE ,OC =OE , ∴CO =a 21.∵CO ⊥DO ,∴sin ∠CDO =21 CD CO . ∴∠CDO =30°,即DC 与β成30°角.点评:二面角是本节的另一个重点,作二面角的平面角最常用的方法是:在一个半平面α内找一点C ,作另一个半平面β的垂线,垂足为O ,然后通过垂足O 作棱AB 的垂线,垂足为E ,连接AE ,则∠CEO 为二面角α-AB -β的平面角.这一过程要求学生熟记.思路2例1 如图11,ABCD 是菱形,PA ⊥平面ABCD ,PA =AD =2,∠BAD =60°.图11(1)求证:平面PBD ⊥平面PAC ; (2)求点A 到平面PBD 的距离; (3)求二面角APBD 的余弦值.(1)证明:设AC 与BD 交于点O ,连接PO , ∵底面ABCD 是菱形,∴BD ⊥AC .∵PA ⊥底面ABCD ,BD 平面ABCD ,∴的PA ⊥BD . 又PA ∩AC =A ,∴BD ⊥平面PAC .又∵BD 平面PBD ,∴平面PBD ⊥平面PAC .(2)解:作AE ⊥PO 于点E ,∵平面PBD ⊥平面PAC ,∴AE ⊥平面PBD . ∴AE 为点A 到平面PBD 的距离.在△PAO 中,PA =2,AO =2·cos30°=3,∠PAO =90°,∵PO =722=+AO PA ,∴AE =7212732==∙PO AO PA . ∴点A 到平面PBD 的距离为7212. 3)解:作AF ⊥PB 于点F ,连接EF , ∵AE ⊥平面PBD ,∴AE ⊥PB . ∴PB ⊥平面AEF ,PB ⊥EF .∴∠AFE 为二面角APBD 的平面角. 在Rt △AEF 中,AE =7212,AF =2, ∴sin ∠AFE =742=AF AE ,cos ∠AFE =77)742(12=-. ∴二面角APBD 的余弦值为77. 变式训练如图12,PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点.(1)求证:MN ∥平面PAD ; (2)求证:MN ⊥CD ;(3)若二面角PDCA =45°,求证:MN ⊥平面PDC .图12 图13证明:如图13所示,(1)取PD 的中点Q ,连接AQ 、NQ ,则QN 21DC ,AM 21DC , ∴QNAM .∴四边形AMNQ 是平行四边形.∴MN ∥AQ . 又∵MN 平面PAD ,AQ 平面PAD ,∴MN ∥平面PAD . (2)∵PA ⊥平面ABCD ,∴PA ⊥CD .又∵CD⊥AD,PA∩AD=A,∴CD⊥平面PAD.又∵AQ平面PAD,∴CD⊥AQ.又∵AQ∥MN,∴MN⊥CD.(3)由(2)知,CD⊥平面PAD,∴CD⊥AD,CD⊥PD.∴∠PDA是二面角PDCA的平面角.∴∠PDA=45°.又∵PA⊥平面ABCD,∴PA⊥AD.∴AQ⊥PD.又∵MN∥AQ,∴MN⊥CD.又∵MN⊥PD,∴MN⊥平面PDC.例2如图14,已知直四棱柱ABCD—A1B1C1D1的底面是菱形,且∠DAB=60°,AD=AA1,F为棱BB1的中点,M为线段AC1的中点.图14(1)求证:直线MF∥平面ABCD;(2)求证:平面AFC1⊥平面ACC1A1;(3)求平面AFC1与平面ABCD所成二面角的大小.(1)证明:延长C1F交CB的延长线于点N,连接AN.∵F是BB1的中点,∴F为C1N的中点,B为CN的中点.又M是线段AC1的中点,故MF∥AN.又∵MF平面ABCD,AN平面ABCD,∴MF∥平面ABCD.(2)证明:连接BD,由直四棱柱ABCD—A1B1C1D1,可知AA1⊥平面ABCD,又∵BD平面ABCD,∴A1A⊥BD.∵四边形ABCD为菱形,∴AC⊥BD.又∵AC∩A1A=A,AC、A1A平面ACC1A1,∴BD ⊥平面ACC 1A 1.在四边形DANB 中,DA ∥BN 且DA =BN , ∴四边形DANB 为平行四边形. 故NA ∥BD ,∴NA ⊥平面ACC 1A 1. 又∵NA 平面AFC 1, ∴平面AFC 1⊥平面ACC 1A 1.(3)解:由(2),知BD ⊥平面ACC 1A 1,又AC 1平面ACC 1A 1,∴BD ⊥AC 1. ∵BD ∥NA ,∴AC 1⊥NA . 又由BD ⊥AC ,可知NA ⊥AC ,∴∠C 1AC 就是平面AFC 1与平面ABCD 所成二面角的平面角或补角. 在Rt △C 1AC 中,tan ∠C 1AC =311CA C C ,故∠C 1AC =30°. ∴平面AFC 1与平面ABCD 所成二面角的大小为30°或150°. 变式训练如图15所示,在四棱锥S —ABCD 中,底面ABCD 是矩形,侧面SDC ⊥底面ABCD ,且AB =2,SC =SD =2.图15(1)求证:平面SAD ⊥平面SBC ;(2)设BC =x ,BD 与平面SBC 所成的角为α,求sinα的取值范围. (1)证明:在△SDC 中,∵SC =SD =2,CD =AB =2, ∴∠DSC =90°,即DS ⊥SC . ∵底面ABCD 是矩形,∴BC ⊥CD .又∵平面SDC ⊥平面ABCD ,∴BC ⊥面SDC . ∴DS ⊥BC .∴DS ⊥平面SBC .∵DS 平面SAD ,∴平面SAD ⊥平面SBC .(2)解:由(1),知DS ⊥平面SBC ,∴SB 是DB 在平面SBC 上的射影.∴∠DBS 就是BD 与平面SBC 所成的角,即∠DBS =α.那么sinα=DBDS . ∵BC =x ,CD =2⇒DB =24x +,∴sinα=242x +.由0<x <+∞,得0<sinα<22.(五)知能训练课本本节练习.(六)拓展提升 如图16,在四棱锥P —ABCD 中,侧面PAD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD =60°,N 是PB 中点,过A 、D 、N 三点的平面交PC 于M ,E 为AD 的中点.图16(1)求证:EN ∥平面PCD ;(2)求证:平面PBC ⊥平面ADMN ;(3)求平面PAB 与平面ABCD 所成二面角的正切值.(1)证明:∵AD ∥BC ,BC 面PBC ,AD 面PBC ,∴AD ∥面PBC .又面ADN ∩面PBC =MN ,∴AD ∥MN .∴MN ∥BC .∴点M 为PC 的中点.∴MN 21BC . 又E 为AD 的中点,∴四边形DENM 为平行四边形.∴EN ∥DM .∴EN ∥面PDC .(2)证明:连接PE 、BE ,∵四边形ABCD 为边长为2的菱形,且∠BAD =60°,∴BE ⊥AD .又∵PE ⊥AD ,∴AD ⊥面PBE .∴AD ⊥PB .又∵PA =AB 且N 为PB 的中点,∴AN ⊥PB .∴PB ⊥面ADMN .∴平面PBC ⊥平面ADMN .(3)解:作EF ⊥AB ,连接PF ,∵PE ⊥平面ABCD ,∴AB ⊥PF .∴∠PFE 就是平面PAB 与平面ABCD 所成二面角的平面角.又在Rt △AEB 中,BE =3,AE =1,AB =2,∴EF =23. 又∵PE =3,∴tan ∠PFE =233 EF PE =2,即平面PAB 与平面ABCD 所成的二面角的正切值为2.(七)课堂小结知识总结:利用面面垂直的判定定理找出平面的垂线,然后解决证明垂直问题、平行问题、求角问题、求距离问题等.思想方法总结:转化思想,即把面面关系转化为线面关系,把空间问题转化为平面问题.(八)作业课本习题2.3 A 组1、2、3.。