直线与双曲线位置关系(1)学案
- 格式:doc
- 大小:85.00 KB
- 文档页数:4
2.2.2 双曲线的简单几何性质学习目标:1.掌握直线与双曲线的位置关系.2.掌握与直线、双曲线有关的弦长、中点等问题.学习重点:直线与双曲线的位置关系.学习难点:直线、双曲线有关的弦长、中点等问题.课内探究案新课导学:探究点一直线与双曲线的位置关系研究直线与双曲线的位置关系,一般通过直线方程与双曲线方程所组成的方程组{y=kx+m,①x2a2-y2b2=1②的解的个数进行判断.①代入②得(b2-a2k2)x2-2a2mkx-a2m2-a2b2=0.当b2-a2k2=0,即k=±ba,直线与双曲线的渐近线平行时,直线与双曲线交于一点.当b2-a2k2≠0,即k≠±ba时,Δ=(-2a2mk)2-4(b2-a2k2)(-a2m2-a2b2).Δ>0⇔直线与双曲线有两个交点,称直线与双曲线相交;Δ=0⇔直线与双曲线有一个交点,称直线与双曲线相切;Δ<0⇔直线与双曲线没有交点,称直线与双曲线相离.注意:直线与双曲线相切时,它们只有一个公共点,但当直线与双曲线只有一个公共点时,它们不一定相切,这时它们还可以相交.例1 若直线y=2x+m与双曲线x2-y2=4相切,则实数m的值为.探究点二根据双曲线标准方程研究几何性质由双曲线的方程,求双曲线的相关性质的步骤为:先将双曲线方程化为标准形式x 2a2−y2b2=1(或y2 a2-x2b2=1),再根据它确定a,b的值(注意分母分别为a2,b2,而不是a,b),进而求出c;再对照双曲线的几何性质得到相应的答案.画近似图形,要先画双曲线的两条渐近线(即以2a,2b为两条邻边的矩形的对角线所在直线)和两个顶点,然后根据双曲线的变化趋势,就可画出双曲线的近似图形.例2 求双曲线144x2-25y2=-3 600的实轴长和虚轴长,焦点坐标,顶点坐标,离心率,渐近线方程.探究点三根据双曲线的几何性质求标准方程1.根据双曲线几何性质求标准方程时,常用方法是先定型(焦点在哪个轴上),再定量(确定a2,b2的值).要特别注意a2+b2=c2的应用,并注意不要与椭圆中的关系相混淆.2.如果已知双曲线的方程为标准形式,但不知焦点所处的位置,也可把双曲线方程设为mx2-ny2=1(m,n同号),然后由条件求m,n.3.与双曲线x2a2−y2b2=1具有共同渐近线的双曲线的标准方程可设为x2a2−y2b2=λ(λ≠0),然后再结合其他条件求出λ的值即可得到双曲线方程.例3 根据下列条件,求双曲线的标准方程:(1)与双曲线x2-2y2=2有共同渐近线,且过点M(2,-2);(2)过点P(3,-√2),离心率为√52.当堂检测1.双曲线2x 2-y 2=8的实轴长是 ( )A .2B .2 2C .4D .422.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1B.y 24-x 24=1C.y 24-x 28=1D.x 28-y 24=13.已知双曲线x 2a 2-y 25=1的右焦点为(3,0),则该双曲线的离心率等于( ) A.31414 B.324 C.32 D.434.椭圆x 24+y 2a =1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是________.四、课后反思课后训练案1.已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,双曲线的方程应是()A.x 212-y 24=1B.x 24-y 212=1C .-x 212+y 24=1D .-x 24+y 212=12.焦点为(0,±6)且与双曲线x 22-y 2=1有相同渐近线的双曲线方程是( )A.x 212-y 224=1 B.y 212-x 224=1C.y 224-x 212=1 D.x224-y 212=13.若0<k <a ,则双曲线x 2a 2-k 2-y 2b 2+k 2=1与x 2a 2-y 2b 2=1有( )A .相同的实轴B .相同的虚轴C .相同的焦点D .相同的渐近线4.中心在坐标原点,离心率为53的双曲线的焦点在y 轴上,则它的渐近线方程为( )A .y =±54x B .y =±45xC .y =±43x D .y =±34x5.双曲线x 24+y 2b=1的离心率e ∈(1,2),则b 的取值范围是________. 6.椭圆x 24+y 2a 2=1与双曲线x 2a 2-y 2=1焦点相同,则a =________.7.已知动圆与⊙C 1:(x +3)2+y 2=9外切,且与⊙C 2:(x -3)2+y 2=1内切,求动圆圆心M 的轨迹方程.8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)过点A (14,5),且点A 到双曲线的两条渐近线的距离的积为43.求此双曲线方程.答 案新课导学探究点一 直线与双曲线的位置关系例1 【解析】联立方程组{y =2x +m ,x 2-y 2=4,则3x 2+4mx+m 2+4=0,由题意知Δ=(4m )2-12(m 2+4)=0,解得m=±2√3.【答案】±2√3探究点二 根据双曲线标准方程研究几何性质例2 【答案】 解:把双曲线方程化成标准方程为y 2144−x 225=1,则a 2=144,b 2=25,∴c 2=a 2+b 2=169. ∴a=12,b=5,c=13.由此可知,该双曲线的实轴长2a=24,虚轴长2b=10,焦点坐标为(0,-13),(0,13),顶点坐标为(0,-12),(0,12),离心率e=1312,渐近线方程为y=±125x.探究点三 根据双曲线的几何性质求标准方程例3 【答案】 解:(1)设与双曲线x 22-y 2=1有公共渐近线的双曲线方程为x 22-y 2=k (k ≠0), 将点(2,-2)代入,得k=222-(-2)2=-2,故双曲线的标准方程为y 22−x 24=1.当堂检测1.【解析】双曲线方程可变形为x 24-y 28=1,所以a 2=4,a =2,2a =4.故选C. 【答案】C2.【解析】2a +2b =22c ,即a +b =2c ,又a =2,且a 2+b 2=c 2,∴a =2,b =2.【答案】B3.【解析】根据离心率的定义求解.由双曲线中a ,b ,c 的关系c 2=a 2+b 2,得32=a 2+5,∴a 2=4,∴e =c a =32. 【答案】C4.【解析】∵a >0,∴焦点在x 轴上,∴4-a =a +2,∴a =1.【答案】1课后训练案1.【答案】 C【解析】 ∵椭圆x 29+y 225=1的焦点为(0,±4),离心率e =45, ∴双曲线的焦点为(0,±4),离心率为145-45=105=2, ∴双曲线方程为:y 24-x 212=1. 2.【答案】 B【解析】 与双曲线x 22-y 2=1有共同渐近线的双曲线方程可设为x 22-y 2=λ(λ≠0), 又因为双曲线的焦点在y 轴上,∴方程可写为y 2-λ-x 2-2λ=1. 又∵双曲线方程的焦点为(0,±6),∴-λ-2λ=36.∴λ=-12.∴双曲线方程为y 212-x 224=1. 3.【答案】 C【解析】 ∵0<k <a ,∴a 2-k 2>0.∴c 2=(a 2-k 2)+(b 2+k 2)=a 2+b 2.4.【答案】 D【解析】 ∵c a =53,∴c 2a 2=a 2+b 2a 2=259,∴b 2a 2=169, ∴b a =43,∴a b =34. 又∵双曲线的焦点在y 轴上,∴双曲线的渐近线方程为y =±a bx , ∴所求双曲线的渐近线方程为y =±34x . 5.【答案】 -12<b <0【解析】 ∵b <0,∴离心率e =4-b 2∈(1,2), ∴-12<b <0.6.【答案】 62 【解析】 由题意得4-a 2=a 2+1,∴2a 2=3,a =62. 7.【答案】解:设动圆圆心M 的坐标为(x ,y ),半径为r , 则|MC 1|=r +3,|MC 2|=r -1,∴|MC 1|-|MC 2|=r +3-r +1=4<|C 1C 2|=6,由双曲线的定义知,点M 的轨迹是以C 1、C 2为焦点的双曲线的右支,且2a =4,a =2,双曲线的方程为:x 24-y 25=1(x ≥2). 8.【答案】解:双曲线x 2a 2-y 2b2=1的两渐近线的方程为bx ±ay =0. 点A 到两渐近线的距离分别为d 1=|14b +5a |a 2+b 2,d 2=|14b -5a |a 2+b 2已知d 1d 2=43,故|14b 2-5a 2|a 2+b 2=43(ⅰ) 又A 在双曲线上,则14b 2-5a 2=a 2b 2(ⅱ)(ⅱ)代入(ⅰ),得3a 2b 2=4a 2+4b 2(ⅲ)联立(ⅱ)、(ⅲ)解得b 2=2,a 2=4.故所求双曲线方程为x 24-y 22=1.。
专题47双曲线(教学案)1.了解双曲线的定义、几何图形和标准方程及简单性质.2.了解双曲线的实际背景及双曲线的简单应用.3.理解数形结合的思想.1.双曲线的定义平面内动点与两个定点F1,F2(|F1F2|=2c>0)的距离差的绝对值等于常数(小于|F1F2|大于零),则点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c,其中a,c为常数且a>0,c>0:(1)若a<c时,则集合P为双曲线;(2)若a=c时,则集合P为两条射线;(3)若a>c时,则集合P为空集.2.双曲线的标准方程和几何性质高频考点一 双曲线的定义及应用【例1】(1)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为e ,过F 2的直线与双曲线的右支交于A ,B 两点,若△F 1AB 是以B 为直角顶点的等腰直角三角形,则e 2=( ) A.1+2 2 B.4-2 2 C.5-2 2D.3+2 2(2)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A (0,66),当△APF 周长最小时,该三角形的面积为________.解析 (1)如图所示,因为|AF 1|-|AF 2|=2a ,|BF 1|-|BF 2|=2a ,|BF 1|=|AF 2|+|BF 2|,∴|PF |=2+|PF 1|,△APF 的周长为|AF |+|AP |+|PF |=|AF |+|AP |+2+|PF 1|,△APF 周长最小即为|AP |+|PF 1|最小,当A ,P ,F 1在一条直线时最小,过AF 1的直线方程为x -3+y66=1. 与x 2-y 28=1联立,解得P 点坐标为(-2,26),此时S =S △AF 1F -S △F 1PF =12 6. 答案 (1)C (2)12 6【变式探究】(1)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为__________________.(2)设椭圆C 1的离心率为513,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为________. 答案 (1)x 24-y 2=1 (2)x 216-y 29=1故曲线C 2的标准方程为x 242-y 232=1.即x 216-y 29=1. 【变式探究】(1)设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左、右焦点,若|PF 1|=9,则|PF 2|=( )A .1B .17C .1或17D .以上答案均不对(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|PA |的最小值为( )A .5B .5+4 3C .7D .9解析 (1)由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.(2)如图所示,设双曲线的右焦点为E ,则E (4,0).由双曲线的定义及标准方程得|PF |-|PE |=4,则|PF |+|PA |=4+|PE |+|PA |.由图可得,当A ,P ,E 三点共线时,(|PE |+|PA |)min =|AE |=5,从而|PF |+|PA |的最小值为9.答案 (1)B (2)D高频考点二 双曲线的标准方程【例2】(1)(2016·全国Ⅱ卷)已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3D.2(2)(2016·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y=0垂直,则双曲线的方程为( ) A.x 24-y 2=1B.x 2-y 24=1C.3x 220-3y25=1 D.3x 25-3y220=1(2)由题意得c =5,b a =12,则a =2,b =1,所以双曲线的方程为x 24-y 2=1.学@科网答案 (1)A (2)A【变式探究】 (1)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A.x 25-y 220=1 B.x 220-y 25=1 C.3x 225-3y 2100=1 D.3x 2100-3y225=1 (2)设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________.解析 (1)由题意知,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =2x ,所以b a=2,即b 2=4a 2.又双曲线的一个焦点是直线l 与x 轴的交点,所以该焦点的坐标为(-5,0),所以c =5,即a 2+b 2=25,联立得⎩⎪⎨⎪⎧b 2=4a 2,a 2+b 2=25, 解得a 2=5,b 2=20,故双曲线的方程为x 25-y 220=1.(2)设双曲线的方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1, 解得λ1=32,λ2=0.经检验λ1=32,λ2=0都是分式方程的根,但λ=0不符合题意,应舍去,所以λ=32. 故所求双曲线的方程为y 24-x 25=1.答案 (1)A (2)y 24-x 25=1【举一反三】 (1)设双曲线C 的中心为点O ,若有且只有一对相交于点O ,所成的角为60°的直线A 1B 1和A 2B 2,使|A 1B 1|=|A 2B 2|,其中A 1,B 1和A 2,B 2分别是这对直线与双曲线C 的交点,则该双曲线的离心率的取值范围是( ) A.⎝ ⎛⎦⎥⎤233,2 B.⎣⎢⎡⎭⎪⎫233,2 C.⎝⎛⎭⎪⎫233,+∞ D.⎣⎢⎡⎭⎪⎫233,+∞ (2)已知双曲线x 2-y 23=1的左顶点为A 1,右焦点为F 2,P 为双曲线右支上一点,则PA 1→·PF 2→的最小值为________.所以双曲线的离心率的范围是⎝⎛⎦⎥⎤233,2. (2)由题可知A 1(-1,0),F 2(2,0).设P (x ,y )(x ≥1),则PA 1→=(-1-x ,-y ),PF 2→=(2-x ,-y ),PA 1→·PF 2→=(-1-x )(2-x )+y 2=x 2-x -2+y 2=x 2-x -2+3(x 2-1)=4x 2-x -5.因为x ≥1,函数f (x )=4x 2-x -5的图象的对称轴为x =18,所以当x =1时,PA 1→·PF 2→取得最小值-2.答案 (1)A (2)-2【方法规律】与双曲线有关的范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接变换转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决. 【变式探究】 根据下列条件,求双曲线的标准方程: (1)虚轴长为12,离心率为54;(2)焦距为26,且经过点M (0,12);(3)经过两点P (-3,27)和Q (-62,-7).(2)∵双曲线经过点M (0,12),∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a =12. 又2c =26,∴c =13,∴b 2=c 2-a 2=25. ∴双曲线的标准方程为y 2144-x 225=1.(3)设双曲线方程为mx 2-ny 2=1(mn >0).∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎪⎨⎪⎧m =-175,n =-125.∴双曲线的标准方程为y 225-x 275=1.高频考点三 双曲线的几何性质例3、(2016·天津卷)已知双曲线x 24-y 2b2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A.x 24-3y 24=1 B.x 24-4y 23=1 C.x 24-y 24=1D.x 24-y 212=1解析 由双曲线x 24-y 2b 2=1(b >0)知其渐近线方程为y =±b2x ,12.故双曲线的方程为x 24-y 212=1. 答案 D【感悟提升】(1)双曲线的几何性质中重点是渐近线方程和离心率,在双曲线x 2a 2-y 2b2=1(a >0,b >0)中,离心率e 与双曲线的渐近线的斜率k =±b a满足关系式e 2=1+k 2.(2)求双曲线的离心率时,将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式,利用b 2=c 2-a 2和e =c a转化为关于e 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.【变式探究】(1)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点是F ,左,右顶点分别是A 1,A 2,过F 作A 1A 2的垂线与双曲线交于B ,C 两点,若A 1B ⊥A 2C ,则该双曲线的渐近线的斜率为( ) A .±12 B .±22C .±1D .± 2(2)(2015·湖北)将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( ) A .对任意的a ,b ,e 1<e 2B .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2C .对任意的a ,b ,e 1>e 2D .当a >b 时,e 1>e 2;当a <b 时,e 1<e 2答案 (1)C (2)B解析 (1)如图,双曲线x 2a 2-y 2b 2=1的右焦点F (c,0),左,右顶点分别为A 1(-a,0),A 2(a,0),易求B ⎝ ⎛⎭⎪⎫c ,b 2a ,C ⎝⎛⎭⎪⎫c ,-b 2a , 则kA 2C =b 2aa -c,kA 1B =b 2aa +c,又A 1B 与A 2C 垂直,则有kA 1B ·kA 2C =-1,即b 2aa +c ·b 2aa -c=-1,∴b 4a 2c 2-a2=1,∴a 2=b 2,即a =b ,∴渐近线斜率k =±b a=±1. (2)e 1=1+b 2a 2,e 2=1+b +m 2a +m2.不妨令e 1<e 2,化简得b a <b +ma +m(m >0),得bm <am ,得b <a .所以当b >a 时,有b a >b +m a +m ,即e 1>e 2;当b <a 时,有b a <b +ma +m,即e 1<e 2.故选B. 高频考点四 直线与双曲线的综合问题例4、(1)过双曲线x 2-y 23=1的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则|AB |等于( ) A.433B .2 3 C .6 D .4 3 答案 D(2)若双曲线E :x 2a2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点.①求k 的取值范围;②若|AB |=63,点C 是双曲线上一点,且OC →=m (OA →+OB →),求k ,m 的值.解 ①由⎩⎪⎨⎪⎧c a=2,a 2=c 2-1得⎩⎪⎨⎪⎧a 2=1,c 2=2,故双曲线E 的方程为x 2-y 2=1. 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1,得(1-k 2)x 2+2kx -2=0.(*) ∵直线与双曲线右支交于A ,B 两点,故⎩⎪⎨⎪⎧k >1,Δ=k 2--k2-,即⎩⎨⎧k >1,-2<k <2,所以1<k < 2.得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ). ∵点C 是双曲线上一点. ∴80m 2-64m 2=1,得m =±14.故k =52,m =±14. 【感悟提升】(1)研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定.(2)用“点差法”可以解决弦中点和弦斜率的关系问题,但需要检验.【变式探究】已知双曲线C 的两个焦点分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2的距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程; (3)已知定点G (1,2),点D 是双曲线C 右支上的动点,求|DF 1|+|DG |的最小值.解 (1)依题意,得双曲线C 的实半轴长为a =1,半焦距为c =2,所以其虚半轴长b =c 2-a 2= 3. 又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.即6x -y -11=0.学科#网 (3)由已知,得|DF 1|-|DF 2|=2, 即|DF 1|=|DF 2|+2,所以|DF 1|+|DG |=|DF 2|+|DG |+2≥|GF 2|+2,当且仅当G ,D ,F 2三点共线时取等号. 因为|GF 2|=-2+22=5,所以|DF 2|+|DG |+2≥|GF 2|+2=5+2,故|DF 1|+|DG |的最小值为5+2.1. 【2016高考新课标1卷】已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()1,3- (B )(- (C )()0,3 (D )(【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-,故选A . 2.【2016高考新课标2理数】已知12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x轴垂直,211sin 3MF F ∠=,则E 的离心率为( ) (A(B )32(C(D )2【答案】A【解析】因为1MF 垂直于x 轴,所以2212,2b b MF MF a a a ==+,因为211sin 3MF F ∠=,即2122132b MF ab MF a a==+,化简得b a =,故双曲线离心率e ==.选A. 3.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则( )A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A4.【2016高考天津理数】已知双曲线2224=1x y b -(b >0),以原点为圆心,双曲线的实半轴长为半径 长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,则双曲线的方程为( )(A )22443=1y x -(B )22344=1y x -(C )2224=1x y b -(D )2224=11x y -【答案】D【解析】根据对称性,不妨设A 在第一象限,(,)A x y,∴22422x x y bb y x y ⎧=⎧+=⎪⎪⎪⇒⎨⎨=⎪⎪=⎩⎪⎩, ∴221612422b b xy b b =⋅=⇒=+,故双曲线的方程为221412x y -=,故选D. 5.【2016高考山东理数】已知双曲线E :22221x y a b-= (a >0,b >0),若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______.【答案】2【解析】假设点A 在第一象限,点B 在第二象限,则2b A(c,)a ,2b B(c,)a -,所以22b |AB |a=,|BC |2c =,由2AB 3BC =,222c a b =+得离心率e 2=或1e 2=-(舍去),所以E 的离心率为2. 6.【2016年高考北京理数】双曲线22221x y a b-=(0a >,0b >)的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,若正方形OABC 的边长为2,则a =_______________. 【答案】27.【2016高考江苏卷】在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是________▲________.【答案】【解析】222227,3,7310,2a b c a b c c ==∴=+=+=∴==焦距为2c[故答案应填: 8. 【2016高考上海理数】双曲线2221(0)y x b b-=>的左、右焦点分别为12F F 、,直线l 过2F 且与双曲线交于A B 、两点。
学案制教学下双曲线的教学案例韶关一中 李赞伟【摘要】:本文从教学案例出发探讨学案制教学中学案的使用与实施【关键词】:双曲线、椭圆学情分析:学生在学习了椭圆及其标准方程的基础下,在理解椭圆定义时不难引出“动点到两定点的距离之差为一个常数”的问题探究。
本学案通过问题探究、动态演示的方式加深学生对圆锥曲线的定义理解,分清椭圆与双曲线的定义区别。
引入类比的思想更好的理解双曲线的定义与标准方程与椭圆的不同之处。
内容摘要:定义、标准方程、问题教学、类比思想。
下面仅以我在我校上的一堂校级公开课的课题实录来说明。
课堂构设:一、 复习引入师:前面的学习中我们已经学习了椭圆的定义,现在我们请一位同学来回顾椭圆的定义。
生:平面内,到两定点的距离之和为一个常数(大于两定点间的距离)的点的轨迹。
查漏补缺:不少学生会在回答的时候漏掉平面内、大于两定点间的距离这些关键词,这里教师要起到规范定义的严格性,和学生讲清为什么要有平面内、大于两定点间的距离的关键性,也为了双曲线的定义的引入做一个很好的铺垫。
师:那么如果是平面内到两定点的距离之差为一个常数的时候的点的轨迹会有什么效果呢? 生:双曲线的一支。
课堂情况分析:由于学案制教学的特殊性,不少同学根据学案做的课前预习能够回答出双曲线,但是极少数同学能够回答出双曲线的一支的情况。
这里教师要充分的发挥主导作用,让同学们能够起到很好的讨论作用。
师:好,下面我们通过几何画板的动态演示来理解这个内容。
课堂情况分析:几何画板的演示拉链的轨迹1过程中,教师要很好的帮助学生理解:“常数=-||||12MF MF ”这个式子中的|MF ||MF |12、、常数所代表的分别是拉链的那部分,引导学生观察在整个运动的过程中那些量产生了变化,那些量一直没有变。
师:那么是不是只有这样的曲线呢?生:老师,下面还有。
生:老师左边也应该有。
课堂情况分析:这里大部分学生应该能够判断轨迹2的轨迹。
部分学生还能够判断出轨迹3和4.师:我们把这样的两条曲线定义为双曲线。
第2课时 双曲线几何性质的应用学习目标 1.了解直线与双曲线的位置关系.2.了解与直线、双曲线有关的弦长、中点等问题.知识点一 直线与双曲线的位置关系思考 直线与圆(椭圆)有且只有一个公共点,则直线与圆(椭圆)相切,那么,直线与双曲线相切,能用这个方法判断吗? 答案 不能.梳理 设直线l :y =kx +m (m ≠0),①双曲线C :x 2a 2-y 2b2=1(a >0,b >0),②把①代入②得(b 2-a 2k 2)x 2-2a 2mkx -a 2m 2-a 2b 2=0.(1)当b 2-a 2k 2=0,即k =±b a时,直线l 与双曲线C 的渐近线平行,直线与双曲线相交于一点.(2)当b 2-a 2k 2≠0,即k ≠±b a时,Δ=(-2a 2mk )2-4(b 2-a 2k 2)(-a 2m 2-a 2b 2). Δ>0⇒直线与双曲线有两个公共点,此时称直线与双曲线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与双曲线相切; Δ<0⇒直线与双曲线没有公共点,此时称直线与双曲线相离. 知识点二 弦长公式若斜率为k (k ≠0)的直线与双曲线相交于A (x 1,y 1),B (x 2,y 2)两点,则|AB |=+k2x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2y 1+y 22-4y 1y 2].1.若直线与双曲线交于一点,则直线与双曲线相切.( × ) 2.直线l :y =x 与双曲线C :2x 2-y 2=2有两个公共点.( √ )类型一 直线与双曲线的位置关系例1 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为233,且过点(6,1).(1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,求k 的取值范围. 考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 (1)由e =233,可得c 2a 2=43,所以a 2=3b 2,故双曲线方程可化为x 23b 2-y 2b2=1.将点P (6,1)代入双曲线C 的方程, 解得b 2=1,所以双曲线C 的方程为x 23-y 2=1.(2)联立直线与双曲线方程,⎩⎨⎧y =kx +2,x 2-3y 2-3=0,消去y ,得(1-3k 2)x 2-62kx -9=0.由题意得,⎩⎪⎨⎪⎧Δ=72k 2--3k2-,1-3k 2≠0,解得-1<k <1且k ≠±33. 所以k 的取值范围为⎝⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫-33,33∪⎝ ⎛⎭⎪⎫33,1. 反思与感悟 (1)解决直线与双曲线的公共点问题,不仅要考虑判别式,更要注意二次项系数为0时,直线与渐近线平行的特殊情况.(2)双曲线与直线只有一个公共点的题目,应分两种情况讨论:双曲线与直线相切或直线与双曲线的渐近线平行.(3)注意对直线l 的斜率是否存在进行讨论.跟踪训练1 已知双曲线x 2-y 24=1,过点P (1,1)的直线l 与双曲线只有一个公共点,求直线l 的斜率k .考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 解 当直线l 的斜率不存在时, 直线l :x =1与双曲线相切,符合题意. 当直线l 的斜率存在时,设l 的方程为y =k (x -1)+1, 代入双曲线方程,得(4-k 2)x 2-(2k -2k 2)x -k 2+2k -5=0. 当4-k 2=0时,k =±2,直线l 与双曲线的渐近线平行,l 与双曲线只有一个公共点; 当4-k 2≠0时,令Δ=0,得k =52.综上,k =52或k =±2或k 不存在.类型二 弦长公式及中点弦问题 例2 双曲线的方程是x 24-y 2=1.(1)直线l 的倾斜角为π4,被双曲线截得的弦长为8311,求直线l 的方程;(2)过点P (3,1)作直线l ′,使其被双曲线截得的弦恰被P 点平分,求直线l ′的方程. 考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)设直线l 的方程为y =x +m ,代入双曲线方程,得3x 2+8mx +4(m 2+1)=0, Δ=(8m )2-4×3×4(m 2+1)=16(m 2-3)>0, ∴m 2>3.设直线l 与双曲线交于A (x 1,y 1),B (x 2,y 2)两点, 则x 1+x 2=-83m ,x 1x 2=m 2+3.由弦长公式|AB |=1+k 2|x 1-x 2|,得 2×⎝ ⎛⎭⎪⎫-83m 2-m 2+3=8311, ∴42×m 2-33=8311,即m =±5,满足m 2>3,∴直线l 的方程为y =x ±5.(2)设直线l ′与双曲线交于A ′(x 3,y 3),B ′(x 4,y 4)两点, 点P (3,1)为A ′B ′的中点,则x 3+x 4=6,y 3+y 4=2. 由x 23-4y 23=4,x 24-4y 24=4,两式相减得(x 3+x 4)(x 3-x 4)-4(y 3+y 4)(y 3-y 4)=0, ∴y 3-y 4x 3-x 4=34,∴l ′的方程为y -1=34(x -3),即3x -4y -5=0.把此方程代入双曲线方程,整理得5y 2-10y +114=0,满足Δ>0,∴所求直线l ′的方程为3x -4y -5=0.反思与感悟 (1)使用弦长公式时,一般可以利用根与系数的关系,解决此类问题,一定不要忽略直线与双曲线相交这个条件,得到的k 要保证满足相交,即验证Δ>0.(2)与弦中点有关的问题主要用点差法.跟踪训练2 设双曲线的顶点是椭圆x 23+y 24=1的焦点,该双曲线又与直线15x -3y +6=0交于A ,B 两点,且OA ⊥OB (O 为坐标原点). (1)求此双曲线的方程; (2)求|AB |.考点 直线与双曲线的位置关系 题点 弦长及弦中点问题解 (1)已知椭圆的焦点为(0,±1), 即是双曲线的顶点,因此设双曲线方程为y 2-mx 2=1(m >0),① 又直线15x -3y =-6,②A (x 1,y 1),B (x 2,y 2)是方程①②组成的方程组的两个解.由⎩⎨⎧y 2-mx 2=1,15x -3y =-6,得⎝ ⎛⎭⎪⎫53-m x 2+4153x +3=0, 当m =53时,显然不满足题意.当m ≠53时,则⎩⎪⎨⎪⎧x 1+x 2=-415353-m ,x 1x 2=353-m ,又OA ⊥OB ,∴OA →·OB →=0,∴x 1x 2+y 1y 2=0,∴x 1x 2+y 1y 2=83x 1x 2+2153(x 1+x 2)+4=0,∴83×353-m +2153×⎝ ⎛⎭⎪⎪⎫-415353-m +4=0,∴m =13,经验证,此时Δ>0.∴双曲线的方程为y 2-x 23=1.(2)∵⎩⎪⎨⎪⎧x 1+x 2=-15,x 1x 2=94,∴|AB |=1+k 2×x 1+x 22-4x 1x 2=1+⎝⎛⎭⎪⎫1532×-152-4×94=4.类型三 由直线与双曲线相交求参数的取值范围(值)例3 已知中心在坐标原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A ,B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围.考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系解 (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由已知得a =3,c =2,所以b =1.故所求双曲线方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,可得(1-3k 2)x 2-62kx -9=0. 由直线l 与双曲线交于不同的两点,得⎩⎨⎧1-3k 2≠0,Δ=-62k2+-3k2=-k2,故k 2≠13且k 2<1.设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2,由OA →·OB →>2,得x 1x 2+y 1y 2>2. 又因为y 1y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k (x 1+x 2)+2=-9k 21-3k 2+12k21-3k2+2=3k 21-3k2+2. 所以-91-3k 2+3k 21-3k 2+2>2,所以3k 2-91-3k 2>0.又因为k 2≠13且k 2<1,所以13<k 2<1.所以k 的取值范围是⎩⎨⎧⎭⎬⎫k ⎪⎪⎪-1<k <-33或33<k <1. 反思与感悟 当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关数量关系式求解. 跟踪训练3 已知双曲线C :x 2-y 2=1及直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A ,B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值. 考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 解 (1)双曲线C 与直线l 有两个不同的交点,则方程组⎩⎪⎨⎪⎧x 2-y 2=1,y =kx -1有两个不同的实数根,整理得(1-k 2)x 2+2kx -2=0,∴⎩⎪⎨⎪⎧1-k 2≠0,Δ=4k 2+-k2,解得-2<k <2且k ≠±1.∴当双曲线C 与直线l 有两个不同的交点时,k 的取值范围是(-2,-1)∪(-1,1)∪(1,2).(2)设交点A (x 1,y 1),B (x 2,y 2), 直线l 与y 轴交于点D (0,-1).由(1)知,C 与l 联立的方程为(1-k 2)x 2+2kx -2=0, ∴⎩⎪⎨⎪⎧x 1+x 2=-2k1-k 2,x 1x 2=-21-k 2.当A ,B 在双曲线上的一支上且|x 1|>|x 2|时,S △OAB =S △OAD -S △OBD=12(|x 1|-|x 2|) =12|x 1-x 2|; 当A ,B 在双曲线的两支上且x 1>x 2时,S △OAB =S △ODA +S △OBD=12(|x 1|+|x 2|) =12|x 1-x 2|. ∴S △OAB =12|x 1-x 2|=2,∴(x 1-x 2)2=(22)2, 即⎝⎛⎭⎪⎫-2k 1-k 22+81-k 2=8,解得k =0或k =±62. 又∵-2<k <2且k ≠±1, ∴当k =0或k =±62时,△AOB 的面积为 2.1.若直线y =kx 与双曲线4x 2-y 2=16相交,则实数k 的取值范围是( ) A .-2<k <2B .-1<k <1C .0<k <2D .-2<k <0考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 A解析 易知k ≠±2,将y =kx 代入4x 2-y 2=16得关于x 的一元二次方程(4-k 2)x 2-16=0,由Δ>0可得-2<k <2.2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 B3.直线y =x -1被双曲线2x 2-y 2=3所截得的弦的中点坐标是( ) A .(1,2) B .(-2,-1) C .(-1,-2)D .(2,1)考点 直线与双曲线的位置关系 题点 直线与双曲线的位置关系 答案 C解析 将y =x -1代入2x 2-y 2=3,得x 2+2x -4=0,由此可得弦的中点的横坐标为x 1+x 22=-22=-1,将x =-1代入直线方程y =x -1得y =-2,故选C. 4.过点A (3,-1)且被A 点平分的双曲线x 24-y 2=1的弦所在的直线方程是________.考点 直线与双曲线的位置关系 题点 直线与双曲线的其他问题 答案 3x +4y -5=0解析 易知所求直线的斜率存在,设为k ,设该直线的方程为y +1=k (x -3),代入x 24-y 2=1,消去y 得关于x 的一元二次方程(1-4k 2)x 2+(24k 2+8k )x -36k 2-24k -8=0, ∴-24k 2+8k 1-4k 2=6,∴k =-34,此时Δ>0,符合题意,∴所求直线方程为3x +4y -5=0.5.过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A ,B 两点,若|AB |=4,则满足条件的直线l 有________条.考点 直线与双曲线的位置关系题点 直线与双曲线相交弦长与三角形面积 答案 3解析 当直线l 交双曲线于左右两支时,因为2a =2,而|AB |=4,故可有两条.若直线l 交双曲线于同支,当直线l 垂直于x 轴时,|AB |=4,故只有一条,所以满足条件的直线有3条.双曲线的综合问题常涉及其离心率、渐近线、范围等,与向量、三角函数、不等式等知识交汇考查综合运用数学知识的能力.(1)当与向量知识结合时,注意运用向量的坐标运算,将向量间的关系,转化为点的坐标问题,再根据根与系数的关系,将所求问题与条件建立关系求解.(2)当与直线有关时,常常联立直线与双曲线的方程,消元后利用一元二次方程的判别式、根与系数的关系构造相关关系求解.一、选择题1.双曲线C 与椭圆x 29+y 24=1有相同的焦距,一条渐近线的方程为x -2y =0,则双曲线C 的标准方程为( ) A.x 24-y 2=1 B.x 24-y 2=1或y 2-x 24=1 C .x 2-y 24=1或y 2-x 24=1D .y 2-x 24=1 考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 B2.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB |为C 的实轴长的2倍,则C 的离心率为( ) A.2B.3C .2D .3 考点 双曲线的几何性质 题点 求双曲线的离心率答案 B解析 设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0).∵直线l 过双曲线的焦点且与对称轴垂直, ∴直线l 的方程为x =c 或x =-c ,代入x 2a 2-y 2b 2=1,得y 2=b 2⎝ ⎛⎭⎪⎫c 2a 2-1=b 4a 2, ∴y =±b 2a ,故|AB |=2b 2a .依题意2b2a=4a ,∴b 2a 2=2,∴c 2-a 2a2=e 2-1=2,∴e = 3. 3.双曲线y 2b 2-x 2a 2=1(a >b >0)的一条渐近线与椭圆x 2a 2+y 2b2=1交于点M ,N ,则|MN |等于( )A .a +b B.2aC.a 2+b 2 D.a 2-b 2考点 双曲线性质的应用题点 双曲线与椭圆结合的有关问题 答案 C解析 双曲线y 2b 2-x 2a 2=1的一条渐近线方程为y =ba x ,由⎩⎪⎨⎪⎧y =ba x ,x 2a 2+y 2b 2=1,得x =±22a . 所以|MN |=1+b 2a 2|x 2-x 1|=a 2+b 2a 2·2a=a 2+b 24.已知F 1,F 2分别为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos∠F 1PF 2等于( ) A.14B.35C.34D.45 考点 双曲线的定义 题点 双曲线的焦点三角形 答案 C解析 由双曲线定义知,|PF 1|-|PF 2|=22, 又|PF 1|=2|PF 2|,∴|PF 2|=22,|PF 1|=4 2.|F 1F 2|=2c =2 a 2+b 2=4.∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=32+8-162×22×42=2416×2=34. 5.已知双曲线方程为x 2-y 24=1,过P (1,0)的直线l 与双曲线只有一个公共点,则l 的条数为( )A .4B .3C .2D .1 考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系答案 B解析 由双曲线x 2-y 24=1的渐近线方程为y =±2x ,点P (1,0)是双曲线的右顶点,则直线x =1与双曲线只有一个公共点,过点P (1,0)且平行于渐近线y =±2x 时,直线l 与双曲线只有一个公共点,有2条,故满足题意的直线共3条. 6.已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (3,0),过点F 的直线交双曲线于A ,B 两点,若AB 的中点坐标为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 26-y 23=1 C.x 24-y 25=1 D.x 25-y 24=1 考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 C解析 设A (x 1,y 1),B (x 2,y 2), 则x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1, 两式相减可得x 1+x 2x 1-x 2a 2=y 1+y 2y 1-y 2b 2.∵线段AB 的中点坐标为N (-12,-15), ∴-x 1-x 2a 2=-y 1-y 2b 2. ∴y 1-y 2x 1-x 2=4b 25a 2.∵直线的斜率为-15-12-3=1, ∴4b 25a 2=1. ∵右焦点为F (3,0),∴a 2+b 2=9,解得a 2=4,b 2=5,∴E 的方程为x 24-y 25=1. 7.已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是( )A.⎝ ⎛⎭⎪⎫-33,33B.⎝ ⎛⎭⎪⎫-36,36 C.⎝ ⎛⎭⎪⎫-223,223 D.⎝ ⎛⎭⎪⎫-233,233 考点 双曲线的几何性质题点 双曲线范围的应用答案 A解析 由题意知a 2=2,b 2=1, 所以c 2=3,不妨设F 1(-3,0),F 2(3,0),所以MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0),所以MF 1→·MF 2→=x 20-3+y 20=3y 20-1<0,所以-33<y 0<33. 8.如图,已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的离心率为( ) A.7B .4 C.233 D. 3考点 双曲线的几何性质题点 求双曲线的离心率答案 A解析 因为△ABF 2为等边三角形,不妨设|AB |=|BF 2|=|AF 2|=m ,A 为双曲线上一点,|F 1A |-|F 2A |=|F 1A |-|AB |=|F 1B |=2a ,B 为双曲线上一点,则|BF 2|-|BF 1|=2a ,|BF 2|=4a ,|F 1F 2|=2c ,由∠ABF 2=60°,得∠F 1BF 2=120°,在△F 1BF 2中,由用余弦定理,得4c 2=4a 2+16a 2-2·2a ·4a ·cos120°,得c 2=7a 2,则e 2=7,即e =7.二、填空题 9.双曲线x 2a 2-y 29=1的离心率e =54,则其两条渐近线方程为________. 考点 双曲线性质的应用题点 以离心率或渐近线为条件的简单问题答案 y =±34x 解析 双曲线x 2a 2-y 29=1,∴b =3, 又双曲线的离心率e =c a =1+b 2a 2=1+9a 2=54, 解得a =4, ∴双曲线的两条渐近线方程为y =±b a x =±34x .10.双曲线x 29-y 216=1的右顶点为A ,右焦点为F ,过点F 平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.考点 双曲线的定义题点 双曲线的焦点三角形答案 3215 解析 双曲线右顶点A (3,0),右焦点F (5,0),双曲线一条渐近线的斜率是43,则直线FB 的方程是y =43(x -5),与双曲线方程联立解得点B 的纵坐标为-3215,故△AFB 的面积为12×|AF ||y B |=12×2×3215=3215. 11.若双曲线x 2a 2-y 2b2=1(a >0,b >0)与直线y =2x 无交点,则离心率e 的取值范围是________. 考点 双曲线的几何性质题点 求双曲线离心率的取值范围答案 (1,5]解析 由题意可得,双曲线的渐近线的斜率ba≤2,所以e =1+⎝ ⎛⎭⎪⎫b a 2≤ 5. 又e >1,则离心率e 的取值范围是(1,5].12.过P (8,3)作双曲线9x 2-16y 2=144的弦AB ,且P 为弦AB 的中点,那么直线AB 的方程为________.考点 直线与双曲线的位置关系题点 弦长及弦中点问题答案 3x -2y -18=0解析 设A (x 1,y 1),B (x 2,y 2),由P (8,3)为弦AB 的中点,可得x 1+x 2=16,y 1+y 2=6,又9x 21-16y 21=144,9x 22-16y 22=144,两式相减,可得9(x 1+x 2)(x 1-x 2)-16(y 1+y 2)(y 1-y 2)=0,即为9(x 1-x 2)-6(y 1-y 2)=0,可得k AB =y1-y 2x 1-x 2=32,则直线AB 的方程为y -3=32(x -8),即3x -2y -18=0.三、解答题13.已知双曲线的渐近线方程为y =±2x ,且双曲线过点(-3,42).(1)求双曲线的方程;(2)若直线4x -y -6=0与双曲线相交于A ,B 两点,求|AB |的值.考点 直线与双曲线的位置关系题点 直线与双曲线的位置关系解 (1)双曲线的渐近线方程为y =±2x ,则设双曲线的方程为x 2-y24=λ(λ≠0),把(-3,42)代入方程,得9-324=λ,解得λ=1,∴双曲线的方程为x 2-y 24=1.(2)设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧4x -y -6=0,x 2-y24=1,整理得3x 2-12x +10=0,由根与系数的关系,得x 1+x 2=4,x 1x 2=103, 由弦长公式可知|AB |=+k 2x 1+x 22-4x 1x 2] =+⎝ ⎛⎭⎪⎫42-4×103=21023, ∴|AB |的值为21023. 四、探究与拓展 14.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 作一条与其渐近线平行的直线l ,交C 于点P .若点P 的横坐标为2a ,求双曲线C 的离心率. 考点 双曲线的几何性质题点 求双曲线的离心率解 如图所示,不妨设与渐近线平行的直线l 的斜率为b a , 又直线l 过右焦点F (c,0),则直线l 的方程为y =b a(x -c ).因为点P 的横坐标为2a ,代入双曲线方程得4a 2a 2-y 2b2=1, 化简得y =-3b 或y =3b (点P 在x 轴下方,故舍去), 故点P 的坐标为(2a ,-3b ),代入直线方程得-3b =b a (2a -c ),化简可得离心率e =c a =2+ 3.15.直线y =ax +1与双曲线3x 2-y 2=1相交于A ,B 两点.(1)求线段AB 的长;(2)当a 为何值时,以AB 为直径的圆经过坐标原点? 考点 直线与双曲线的位置关系题点 弦长及弦中点问题解 由⎩⎪⎨⎪⎧ y =ax +1,3x 2-y 2=1,消去y , 得(3-a 2)x 2-2ax -2=0.由题意可得3-a 2≠0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2a3-a 2,x 1x 2=-23-a 2.(1)|AB |=x 1-x 22+y 1-y 22=+a 2x 1+x 22-4x 1x 2] =+a 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2a 3-a 22+83-a 2=2+a 2-a 2|3-a 2|.(2)由题意知,OA ⊥OB ,则OA →·OB →=0.即x 1x 2+y 1y 2=0,∴x 1x 2+(ax 1+1)(ax 2+1)=0,即(1+a 2)x 1x 2+a (x 1+x 2)+1=0,∴(1+a 2)·-23-a 2+a ·2a3-a 2+1=0,解得a =±1.经检验当a =±1时,以AB 为直径的圆经过坐标原点.。
双曲线及其标准方程学案一、双曲线的定义双曲线是一类重要的数学曲线,它在几何学、物理学和工程学等领域有着广泛的应用。
双曲线可以通过平面上的一对焦点和总距离来定义。
具体而言,对于两个给定的焦点F₁和F₂以及一个给定的常数C,双曲线定义为到焦点F₁和F₂的距离之差等于常数C的所有点的集合。
双曲线可以分为两支,分别延伸到无穷远处,这两支称为双曲线的两个分支。
二、双曲线的标准方程双曲线的标准方程是指在坐标系中,以坐标原点为中心、x轴和y轴为对称轴的标准双曲线的方程。
标准双曲线的方程可以表示为:x²/a² - y²/b² = 1 或 y²/b² - x²/a² = 1,其中a和b分别是双曲线的半轴长度。
具体而言,在第一种标准方程中,a代表x轴上的半轴长度,b代表y轴上的半轴长度;在第二种标准方程中,a代表y轴上的半轴长度,b代表x轴上的半轴长度。
三、双曲线的性质1. 双曲线的离心率双曲线的离心率是确定双曲线形状的一个重要参数。
对于标准方程为x²/a² - y²/b² = 1的双曲线,离心率e可以通过以下公式计算得到:e = √(a² + b²) / a。
2. 双曲线的渐近线双曲线有两条渐近线,分别与双曲线的两个分支无限靠近,且与双曲线的两个分支垂直。
这两条渐近线的斜率分别为±b/a,方程可以表示为y = ±(b/a)x。
3. 双曲线的焦点和直径双曲线的焦点是定义双曲线的重要元素。
对于标准方程为x²/a²- y²/b² = 1的双曲线,焦点的坐标可以表示为(F₁,0)和(-F₂,0),其中F₁和F₂分别是双曲线的焦距。
双曲线的主轴长度为2a,副轴长度为2b,主轴和副轴的交点与双曲线的两个分支的交点分别称为双曲线的顶点。
2.3.2双曲线的简单几何性质(第1课时)【学习目标】1、通过对双曲线标准方程的讨论,掌握双曲线的范围,对称性,顶点,渐近线和离心率等几何性质与双曲线的中心,实轴,虚轴,渐进线,等轴双曲线的概念,加深对a 、b 、c 、e 的关系及其几何意义的理解。
2、能利用双曲线的简单几何性质及标准方程解决相关的基本问题。
【学习重点】双曲线的简单几何性质及其应用。
【学习难点】渐近线方程的导出。
一、课前预习要求及内容回顾:1、双曲线的定义:2、双曲线的标准方程:3、回想我们是怎样利用椭圆的标准方程探究椭圆性质的?二、预习整理(一)试一试类比探究椭圆的简单几何性质的方法,根据双曲线的标准方程)0,0(,12222>>=-b a b y a x ,研究它的几何性质。
①范围 :由双曲线的标准方程可得:=22by 从而得x 的范围: ;即双曲线在不等式 和所表示的区域内。
22ax = 从而得y 的范围为 。
②对称性:以x -代x ,方程不变,这说明所以双曲线关于 对称。
同理,以y -代y ,方程不变得双曲线关于 对称,以x -代x ,且以y -代y ,方程也不变,得双曲线关于 对称。
③顶点:即双曲线与对称轴的交点。
在方程12222=-by a x 里,令y=0,得x= 得到双曲线的顶点坐标为1A ( )2A ( ) ;我们把1B ( )2B ( )也画在y 轴上(如图)。
线段 分别叫做双曲线的实轴和虚轴,它们的长分别为 。
④离心率:双曲线的离心率e= ,范围为 。
(二)想一想1、根据上述四个性质,画出椭圆 191622=+y x 与双曲线191622=-y x 的图象。
2、渐近线:双曲线22221x ya b-=的渐近线方程为,双曲线各支向外延伸时,与它的渐近线,。
叫做等轴双曲线,它的渐近线为,离心率为。
思考:离心率可以刻画椭圆的扁平程度,双曲线的离心率刻画双曲线的什么几何特征?三、合作探究四、小组展示例题1、求下列双曲线的实轴和虚轴的长、顶点和焦点的坐标、离心率,渐近线方程。
第六节双曲线课程标准解读1.了解双曲线的实际背景,感受双曲线在刻画现实世界和解决实际问题中的作用.2.了解双曲线的定义、几何图形和标准方程,以及它的简单几何性质.3.通过双曲线与方程的学习,进一步体会数形结合的思想.[知识排查·微点淘金]知识点一双曲线的定义一般地,如果F1,F2是平面内的两个定点,a是一个正常数,且2a<|F1F2|,则平面上满足||PF1|-|PF2||=2a的动点P的轨迹称为双曲线,其中,两个定点F1,F2称为双曲线的焦点,两个焦点的距离|F1F2|称为双曲线的焦距.[微提醒](1)当|PF1|-|PF2|=2a(2a<|F1F2|)时,点P的轨迹为靠近F2的双曲线的一支;当|PF1|-|PF2|=-2a(2a<|F1F2|)时,点P的轨迹为靠近F1的双曲线的一支.(2)若2a=2c,则轨迹是以F1,F2为端点的两条射线;若2a>2c,则轨迹不存在;若2a =0,则轨迹是线段F1F2的垂直平分线.知识点二双曲线的标准方程1.中心在坐标原点,焦点在x轴上的双曲线的标准方程为x2a2-y2b2=1(a>0,b>0).2.中心在坐标原点,焦点在y轴上的双曲线的标准方程为y2a2-x2b2=1(a>0,b>0).知识点三双曲线的几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)范围|x|≥a,y∈R|y|≥a,x∈R对称性对称轴:x轴,y轴;对称中心:原点焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴线段A1A2,B1B2分别是双曲线的实轴和虚轴;实轴长为2a,虚轴长为2b离心率e=ca=1+b2a2∈(1,+∞);e是表示双曲线开口大小的一个量,e越大开口越大渐近线 y =±b axy =±a bxa ,b ,c 的关系a 2=c 2-b 2[微思考]已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0),如何求其他具有共同渐近线的双曲线方程?提示:可设方程为x 2a 2-y 2b 2=λ(λ≠0).常用结论1.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a ,也叫通径.2.双曲线的焦点到其渐近线的距离为b .3.若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a +c ,|PF 2|min =c -a .[小试牛刀·自我诊断]1.思维辨析(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.( ) (2)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( ) (3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( )(4)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( )答案:(1)× (2)× (3)× (4)√2.(链接人B 选择性必修第一册P 141AT 1)已知点M 为双曲线C :x 2-y 28=1的左支上一点,F 1,F 2分别为C 的左、右焦点,则|MF 1|+|F 1F 2|-|MF 2|=( )A .1B .4C .6D .8解析:选B 由a 2=1,b 2=8, 得a =1,c =3,则|MF 1|+|F 1F 2|-|MF 2|=|MF 1|-|MF 2|+|F 1F 2|=-2a +2c =4. 故选B .3.(链接人B 选择性必修第一册P 146例2)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A .5B .5C . 2D .2解析:选A 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±yb =0,即bx ±ay =0,∴2a =bc a 2+b 2=b .又a 2+b 2=c 2,∴5a 2=c 2. ∴e 2=c 2a 2=5,∴e = 5. 4.(忽视双曲线上的点到焦点的最小距离)已知双曲线x 2-y 216=1上一点P 到它的一个焦点的距离等于4,那么点P 到另一个焦点的距离等于__________.解析:设双曲线的焦点为F 1,F 2,|PF 1|=4, 则||PF 1|-|PF 2||=2,故|PF 2|=6或2,又双曲线上的点到焦点的距离的最小值为c -a =17-1,故|PF 2|=6. 答案:65.(忽视焦点的位置)以坐标原点为对称中心,两坐标轴为对称轴的双曲线的一条渐近线的倾斜角为π3,则双曲线的离心率为__________.解析:若双曲线的焦点在x 轴上,设双曲线的方程为x 2a 2-y 2b 2=1,则渐近线的方程为y=±b a x ,由题意可得b a =tan π3=3,b =3a ,可得c =2a ,则e =ca =2;若双曲线的焦点在y轴上,设双曲线的方程为y 2a 2-x 2b 2=1,则渐近线的方程为y =±a b x ,由题意可得a b =tan π3=3,a =3b ,可得c =233a ,则e =233.综上可得e =2或e =233.答案:2或233一、基础探究点——双曲线的标准方程(题组练透)1.(多选题)已知双曲线的渐近线方程为y =±22x ,实轴长为4,则该双曲线的标准方程为( )A .x 24-y 22=1B .y 24-x 28=1C .x 24-y 28=1D .y 24-x 22=1解析:选AB 设双曲线方程为x 22m -y 2m =1(m ≠0),又2a =4,∴a 2=4, 当m >0时,2m =4,m =2; 当m <0时,-m =4,m =-4.故所求双曲线的标准方程为x 24-y 22=1或y 24-x 28=1.2.经过点P (3,27),Q (-62,7)的双曲线的标准方程为________.解析:设双曲线方程为mx 2+ny 2=1(mn <0),因为所求双曲线经过点P (3,27),Q (-62,7),所以⎩⎪⎨⎪⎧9m +28n =1,72m +49n =1,解得⎩⎨⎧m =-175,n =125,故所求双曲线标准方程为y 225-x 275=1.答案:y 225-x 275=13.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P (2, 3 )在双曲线上,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则该双曲线的标准方程为________.解析:∵|PF 1|,|F 1F 2|,|PF 2|成等差数列, ∴|PF 1|+|PF 2|=4c .∵点P 位于第一象限,∴|PF 1|-|PF 2|=2a , ∴|PF 1|=2c +a ,|PF 2|=2c -a ,∴cos ∠PF 2F 1=4c 2+(2c -a )2-(2c +a )24c (2c -a )=c -2a2c -a,又点P (2,3)在双曲线上,∴sin ∠PF 2F 1=32c -a ,∴⎝ ⎛⎭⎪⎫c -2a 2c -a 2+3(2c -a )2=1,化简得(c -2a )2+3=(2c -a )2,即c 2-a 2=b 2=1,又4a 2-3b2=1,∴a 2=1,∴双曲线的标准方程为x 2-y 2=1.答案:x 2-y 2=1求双曲线标准方程的常用方法(1)待定系数法:设出双曲线方程的标准形式,根据 已知条件,列出参数a ,b ,c 的方程并求出a ,b ,c 的值;(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. 提醒:求双曲线的标准方程时,若焦点位置不确定,需注意分类讨论,也可以设双曲线方程为mx 2+ny 2=1(m ·n <0)求解.二、应用探究点——双曲线的定义及其应用(思维拓展)[典例剖析][例1] (1)设F 1,F 2是双曲线C :x 2-y 23=1的两个焦点,O 为坐标原点,点P 在C 上且|OP |=2,则△PF 1F 2的面积为( )A .72B .3C .52D .2[解析] 选B 设F 1,F 2分别为双曲线C 的左、右焦点,则由题意可知F 1(-2,0),F 2(2,0),又|OP |=2,所以|OP |=|OF 1|=|OF 2|,所以△PF 1F 2是直角三角形,所以|PF 1|2+|PF 2|2=|F 1F 2|2=16.不妨令点P 在双曲线C 的右支上,则有|PF 1|-|PF 2|=2,两边平方,得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=4,又|PF 1|2+|PF 2|2=16,所以|PF 1|·|PF 2|=6,则S △PF 1F 2=12|PF 1|·|PF 2|=12×6=3,故选B .(2)(2021·福建四校联考)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为________.[解析] 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,∴|PF 1|·|PF 2|=8,∴S △F 1PF 2=12|PF 1|·|PF 2|·sin 60°=2 3.[答案] 2 3 [拓展变式][变条件]本例(2)中,“∠F 1PF 2=60°”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积为________.解析:不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4, ∴S △F 1PF 2=12|PF 1|·|PF 2|=2.答案:21.利用双曲线定义解决的2类问题(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线;(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题. 2.利用双曲线的定义解决问题时的3个注意点 (1)距离之差的绝对值; (2)2a <|F 1F 2|;(3)焦点所在坐标轴的位置.[学会用活]1.(2021·河南安阳模拟)设双曲线C :x 28-y 2m =1的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线C 交于M ,N 两点,其中M 在左支上,N 在右支上.若∠F 2MN =∠F 2NM ,则|MN |=( )A .8B .4C .8 2D .4 2解析:选C 由∠F 2MN =∠F 2NM 可知,|F 2M |=|F 2N |,由双曲线定义可知,|MF 2|-|MF 1|=42,|NF 1|-|NF 2|=42,两式相加得,|NF 1|-|MF 1|=|MN |=8 2.三、综合探究点——双曲线的几何性质(多向思维)[典例剖析]思维点1 双曲线的渐近线问题[例2] (1)(2021·全国甲卷)点(3,0)到双曲线x 216-y 29=1的一条渐近线的距离为( )A .95B .85C .65D .45[解析] 选A 双曲线x 216-y 29=1的渐近线方程是x 4±y3=0,即3x ±4y =0.由点到直线的距离公式,得点(3,0)到渐近线3x ±4y =0的距离为|3×3|32+42=95.故选A . (2)(2021·全国乙卷)已知双曲线C :x 2m -y 2=1(m >0)的一条渐近线为3x +my =0,则C的焦距为________.[解析] 易得双曲线C 的渐近线方程为y =±1mx ,又知C 的一条渐近线方程为y =-3m x ,则3m =1m,解得m =3.故C 的方程为x 23-y 2=1.所以C 的焦距为4.[答案] 4思维点2 双曲线的离心率问题[例3] (1)(2021·全国甲卷)已知F 1,F 2是双曲线C 的两个焦点,P 为C 上一点,且∠F 1PF 2=60°,|PF 1|=3|PF 2|,则C 的离心率为( )A .72B .132C .7D .13[解析] 选A 由题意,得|PF 1|-|PF 2|=2|PF 2|=2a ,所以|PF 1|=3a ,|PF 2|=a .在△PF 1F 2中,由余弦定理,可得a 2+9a 2-4c 22a ×3a=12,所以c 2a 2=74,所以双曲线C 的离心率为72.故选A .(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,在双曲线上存在点P满足2|PF 1→+PF 2→|≤|F 1F 2→|,则此双曲线的离心率e 的取值范围是________.[解析] 当P 不是双曲线与x 轴的交点时,连接OP ,因为OP 为△PF 1F 2的边F 1F 2上的中线,所以PO →=12(PF 1→+PF 2→);当P 是双曲线与x 轴的交点时,同样满足上述等式.因为双曲线上存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→|,所以4|PO →|≤2c ,由|PO →|≥a ,可知4a ≤2c ,则e ≥2. [答案] [2,+∞)思维点3 双曲线的几何性质的综合应用[例4] 已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是双曲线C 的两个焦点.若MF 1→·MF 2→<0,则y 0的取值范围是________.[解析] 由题意知a =2,b =1,c =3, 设F 1(-3,0),F 2(3,0).则MF 1→=(-3-x 0,-y 0),MF 2→=(3-x 0,-y 0). ∵MF 1→·MF 2→<0,∴(-3-x 0)(3-x 0)+y 20<0,即x 20-3+y 20<0.∵点M (x 0,y 0)在双曲线C 上, ∴x 202-y 20=1,即x 20=2+2y 20, ∴2+2y 20-3+y 20<0,∴-33<y 0<33. [答案] ⎝⎛⎭⎫-33,33(1)求双曲线的渐近线或离心率的方法①求出a ,b ,c 直接求离心率,写渐近线方程.②列出a ,b ,c 的齐次方程(或不等式),然后解方程或不等式.(2)双曲线性质的综合应用要充分注意与平面几何知识的联系,善于发现条件中的相等或不等关系.[学会用活]2.已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A .2B . 3C .2D . 5解析:选D 由题意,可得F (1,0),直线l 的方程为x =-1, 双曲线的渐近线方程为y =±ba x .将x =-1代入y =±b a x ,得y =±ba ,所以点A ,B 的纵坐标的绝对值均为ba .由|AB |=4|OF |可得2ba=4,即b =2a ,b 2=4a 2, 故双曲线的离心率e =ca=a 2+b 2a 2= 5. 四、应用探究点——直线与双曲线的位置关系(师生共研)[典例剖析][例5] (2021·新高考卷Ⅰ)在平面直角坐标系xOy 中,已知点F 1(-17,0),F 2(17,0),点M 满足|MF 1|-|MF 2|=2.记M 的轨迹为C .(1)求C 的方程;(2)设点T 在直线x =12上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且|TA |·|TB |=|TP |·|TQ |,求直线AB 的斜率与直线PQ 的斜率之和.[解] (1)因为|MF 1|-|MF 2|=2<|F 1F 2|,根据双曲线的定义知,点M 的轨迹是以F 1,F 2为焦点的双曲线的右支.由题意,得c =17,|MF 1|-|MF 2|=2a =2,所以a =1. 又c 2=a 2+b 2,所以17=1+b 2,则b 2=16. 所以C 的方程为x 2-y 216=1(x ≥1). (2)设T ⎝⎛⎭⎫12,t ,A (x 1,y 1),B (x 2,y 2),由题意可知直线AB 的斜率存在且不为0,设直线AB 的方程为y =k ⎝⎛⎭⎫x -12+t (k ≠0), 将此方程代入x 2-y 216=1(x ≥1),得(k 2-16)x 2+(2kt -k 2)x +14k 2-kt +t 2+16=0,又直线AB 与曲线C 必有两个不同交点,则k 2-16≠0. 所以x 1+x 2=k 2-2kt k 2-16,x 1x 2=14k 2-kt +t 2+16k 2-16.①|TA |·|TB |=1+k 2⎪⎪⎪⎪x 1-12·1+k 2⎪⎪⎪⎪x 2-12 =(1+k 2)⎝⎛⎭⎫x 1-12⎝⎛⎭⎫x 2-12 设P (x 3,y 3),Q (x 4,y 4),直线PQ 的方程为y =k ′⎝⎛⎭⎫x -12+t (k ′≠0), 将此方程代入x 2-y 216=1,得(k ′2-16)x 2+(2k ′t -k ′2)x +14k ′2-k ′t +t 2+16=0,所以x 3+x 4=k ′2-2k ′tk ′2-16,x 3x 4=14k ′2-k ′t +t 2+16k ′2-16.② |TP |·|TQ |=(1+k ′2)⎝⎛⎭⎫x 3-12⎝⎛⎭⎫x 4-12, 由|TA |·|TB |=|TP |·|TQ |, 得(1+k 2)⎝⎛⎭⎫x 1-12⎝⎛⎭⎫x 2-12 =(1+k ′2)⎝⎛⎭⎫x 3-12⎝⎛⎭⎫x 4-12, 即(1+k 2)⎣⎡⎦⎤x 1x 2-12(x 1+x 2)+14 =(1+k ′2)⎣⎡⎦⎤x 3x 4-12(x 3+x 4)+14.③ 将①②代入③并整理,得k 2=k ′2. 因为k ≠k ′且k ,k ′≠0,所以k +k ′=0. 故直线AB 的斜率与直线PQ 的斜率之和为0.解决直线与双曲线的位置关系问题的策略(1)解题“步骤” 第一步―联立直线方程与双曲线方程↓第二步―消元转化成关于x 或y 的一元二次方程(或一元一次方程)↓ 第三步―利用根与系数的关系(或方程的解)判断它们的位置关系(2)解题“关键”联立直线方程与双曲线方程,消元后一定要注意判断二次项系数是否为零.当二次项系数为0时,直线与双曲线最多只有一个交点;当二次项系数不为0时,利用判别式Δ求解:Δ>0⇔有两个交点⇔相交;Δ=0⇔有一个交点⇔相切;Δ<0⇔无交点⇔相离.[学会用活] 3.(2021·吉安一模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),点P (x 0,y 0)是直线bx -ay +4a =0上任意一点,若圆(x -x 0)2+(y -y 0)2=1与双曲线C 的右支没有公共点,则双曲线离心率的取值范围是( )A .(1,2]B .(1,4]C .[2,+∞)D .[4,+∞)解析:选B 由题意,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =b ax ,即bx -ay =0,∵P (x 0,y 0)是直线bx -ay +4a =0上任意一点,则直线bx -ay +4a =0与直线bx -ay =0的距离d =4aa 2+b 2=4a c,∵圆(x -x 0)2+(y -y 0)2=1与双曲线C 的右支没有公共点,则d ≥1,∴4a c ≥1,即e =c a≤4,故e 的取值范围为(1,4],故选B .。
§8.6双曲线1.双曲线的概念平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.集合P={M|||MF1|-|MF2||=2a},|F1F2|=2c>2a,其中a,c为常数且a>0,c>0.2.双曲线的标准方程和几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近线y=±ba x y=±ab x离心率e=ca,e∈(1,+∞),其中c=a2+b2实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|=2a,线段B1B2叫做双曲线的虚轴,它的长|B1B2|=2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a,b,c的关系c2=a2+b2 (c>a>0,c>b>0)概念方法微思考1.平面内与两定点F1,F2的距离之差的绝对值等于常数2a的动点的轨迹一定为双曲线吗?为什么?提示不一定.当2a=|F1F2|时,动点的轨迹是两条射线;当2a >|F 1F 2|时,动点的轨迹不存在;当2a =0时,动点的轨迹是线段F 1F 2的中垂线.2.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0<a <b ,双曲线哪些性质受影响? 提示 离心率受到影响.∵e =ca=1+⎝⎛⎭⎫b a 2,故当a >b >0时,1<e <2;当a =b >0时,e =2(亦称等轴双曲线);当0<a <b 时,e > 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.( × ) (2)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(3)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x 2m 2-y 2n 2=0,即x m ±yn =0.( √ )(4)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ ) 题组二 教材改编2.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .2 答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±yb =0,即bx ±ay=0, ∴2a =bca 2+b2=b .又a 2+b 2=c 2,∴5a 2=c 2. ∴e 2=c 2a 2=5,∴e = 5. 3.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b 2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a =32,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0. 4.经过点A (4,1),且对称轴都在坐标轴上的等轴双曲线方程为________. 答案 x 215-y 215=1解析 设双曲线的方程为x 2a 2-y 2a 2=±1(a >0),把点A (4,1)代入,得a 2=15(舍负), 故所求方程为x 215-y 215=1.题组三 易错自纠5.(多选)(2020·辽宁六校协作体月考)若方程x 23-t +y 2t -1=1所表示的曲线为C ,则下面四个命题中错误的是( ) A .若C 为椭圆,则1<t <3 B .若C 为双曲线,则t >3或t <1 C .曲线C 可能是圆D .若C 为椭圆,且长轴在y 轴上,则1<t <2 答案 AD解析 若t >3,则方程可变形为y 2t -1-x 2t -3=1,它表示焦点在y 轴上的双曲线;若t <1,则方程可变形为x 23-t -y 21-t =1,它表示焦点在x 轴上的双曲线;若2<t <3,则0<3-t <t -1,故方程x 23-t +y 2t -1=1表示焦点在y 轴上的椭圆;若1<t <2,则0<t -1<3-t ,故方程x 23-t +y 2t -1=1表示焦点在x 轴上的椭圆;若t =2,方程x 23-t +y 2t -1=1即为x 2+y 2=1,它表示圆,综上,选AD.6.已知双曲线的实轴长为8,离心率为2,则双曲线的标准方程为__________________. 答案 x 216-y 248=1或y 216-x 248=1解析 由题意知a =4,e =ca =2,∴c =8,∴b 2=c 2-a 2=64-16=48.∵双曲线的焦点位置不确定,故所求双曲线的标准方程为x 216-y 248=1或y 216-x 248=1.7.P 是双曲线x 216-y 281=1上任意一点,F 1,F 2分别是它的左、右焦点,且|PF 1|=9,则|PF 2|=________. 答案 17解析 由题意知a =4,b =9, c =a 2+b 2=97,由于|PF 1|=9<a +c =4+97,故点P 只能在左支上, ∴|PF 2|-|PF 1|=2a =8, ∴|PF 2|=|PF 1|+8=17.双曲线的定义例1 (1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________________. 答案x 2-y 28=1(x ≤-1) 解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 2,C 1的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8. 故点M 的轨迹方程为x 2-y 28=1(x ≤-1). (2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则△F 1PF 2的面积为______.答案 2 3解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, 在△F 1PF 2中,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=12,∴|PF 1|·|PF 2|=8,∴12F PF S △=12|PF 1|·|PF 2|·sin 60°=2 3.本例(2)中,“∠F 1PF 2=60°”改为“PF 1→·PF 2→=0”,则△F 1PF 2的面积为________. 答案 2解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22, ∵PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16, ∴|PF 1|·|PF 2|=4,∴12F PF S △=12|PF 1|·|PF 2|=2.思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1 (1)(2020·广东普宁华侨中学期末)过双曲线x 2-y 24=1的左焦点F 1作一条直线l 交双曲线左支于P ,Q 两点,若|PQ |=4,F 2是双曲线的右焦点,则△PF 2Q 的周长是________. 答案 12解析 由题意,得|PF 2|-|PF 1|=2,|QF 2|-|QF 1|=2. ∵|PF 1|+|QF 1|=|PQ |=4, ∴|PF 2|+|QF 2|-4=4, ∴|PF 2|+|QF 2|=8.∴△PF 2Q 的周长是|PF 2|+|QF 2|+|PQ |=8+4=12.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 答案 34解析 ∵由双曲线的定义得 |PF 1|-|PF 2|=|PF 2|=2a =22, ∴|PF 1|=2|PF 2|=42,则cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=(42)2+(22)2-422×42×22=34.双曲线的标准方程1.(2020·合肥调研)已知双曲线的渐近线为y =±22x ,实轴长为4,则该双曲线的方程为( )A.x 24-y 22=1 B.x 24-y 28=1或y 24-x 28=1 C.x 24-y 28=1 D.x 24-y 22=1或y 24-x 28=1 答案 D解析 设双曲线方程为x 22m -y 2m =1(m ≠0),又2a =4,∴a 2=4, 当m >0时,2m =4,m =2; 当m <0时,-m =4,m =-4.故所求双曲线方程为x 24-y 22=1或y 24-x 28=1.2.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.3.过双曲线C :x 2a 2-y 2b 2=1(a >b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点F 为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的标准方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 答案 A解析 因为渐近线y =ba x 与直线x =a 交于点A (a ,b ),c =4且(4-a )2+b 2=4,解得a 2=4,b 2=12,因此双曲线的标准方程为x 24-y 212=1. 4.经过点P (-3,27)和点Q (-62,-7)的双曲线方程为________. 答案 y 225-x 275=1解析 设双曲线方程为mx 2-ny 2=1(mn >0),∴⎩⎪⎨⎪⎧9m -28n =1,72m -49n =1,解得⎩⎨⎧m =-175,n =-125,∴双曲线方程为y 225-x 275=1.思维升华 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a ,2b 或2c ,从而求出a 2,b 2,写出双曲线方程.(2)待定系数法:先确定焦点在x 轴还是y 轴,设出标准方程,再由条件确定a 2,b 2的值,即“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n 2=λ(λ≠0),再根据条件求λ的值.注意 ①双曲线与椭圆标准方程均可记为mx 2+ny 2=1(mn ≠0),其中当m >0,n >0,且m ≠n 时表示椭圆;当mn <0时表示双曲线,合理使用这种形式可避免讨论. ②常见双曲线设法(i)已知a =b 的双曲线可设为x 2-y 2=λ(λ≠0); (ii)已知过两点的双曲线可设为Ax 2-By 2=1(AB >0);(iii)已知渐近线为x m ±y n =0的双曲线方程可设为x 2m 2-y 2n2=λ(λ≠0).双曲线的几何性质命题点1 渐近线例2 (1)已知双曲线9y 2-m 2x 2=1(m >0)的一个顶点到它的一条渐近线的距离为15,则m 等于( )A .1B .2C .3D .4 答案 D解析 由已知,取顶点⎝⎛⎭⎫0,13,渐近线3y -mx =0,则顶点到渐近线的距离为132+m 2=15,解得m =4.(2)(2019·江苏)在平面直角坐标系xOy 中,若双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是____________. 答案 y =±2x 解析 因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),所以9-16b2=1,得b =2,所以该双曲线的渐近线方程是y =±2x . 命题点2 离心率例3 (1)(2019·浙江)渐近线方程为x ±y =0的双曲线的离心率是( ) A.22B .1 C. 2 D .2 答案 C解析 因为双曲线的渐近线方程为x ±y =0,所以无论双曲线的焦点在x 轴上还是在y 轴上,都满足a =b ,所以c =2a ,所以双曲线的离心率e =ca= 2.(2)(2019·唐山模拟)设双曲线C :x 2a 2-y 2b 2=1(a >b >0)的两条渐近线的夹角为α,且cos α=13,则C 的离心率为( ) A.52 B.62 C.72D .2 答案 B解析 ∵a >b >0,∴渐近线y =ba x 的斜率小于1,∵两条渐近线的夹角为α,cos α=13.∴cos 2α2=23,sin 2α2=13,tan 2α2=12,∴b 2a 2=12,∴c 2-a 2a 2=12, ∴e 2=32,∴e =62.(3)(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( ) A .2sin 40° B .2cos 40° C.1sin 50° D.1cos 50°答案 D解析 由题意可得-ba =tan 130°,所以e =1+b 2a2=1+tan 2130°=1+sin 2130°cos 2130° =1|cos 130°|=1cos 50°.(4)(2019·全国Ⅱ)设F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( ) A. 2 B. 3 C .2 D. 5 答案 A解析 如图,由题意知,以OF 为直径的圆的方程为⎝⎛⎭⎫x -c 22+y 2=c24,①将x 2+y 2=a 2,② ①-②得x =a 2c,则以OF 为直径的圆与圆x 2+y 2=a 2的相交弦所在直线的方程为x =a 2c,所以|PQ |=2a 2-⎝⎛⎭⎫a 2c 2. 由|PQ |=|OF |,得2a 2-⎝⎛⎭⎫a 2c 2=c , 整理得c 4-4a 2c 2+4a 4=0,即e 4-4e 2+4=0,解得e =2,故选A. 思维升华 求双曲线的离心率 (1)求双曲线的离心率或其范围的方法①求a ,b ,c 的值,由c 2a 2=a 2+b 2a 2=1+b 2a2直接求e .②列出含有a ,b ,c 的等式(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.(2)焦点在x 轴上的双曲线的渐近线的斜率k 与离心率e 的关系:k =ba =c 2-a 2a =c 2a 2-1=e 2-1.跟踪训练2 (1)(2019·汉中模拟)若双曲线x 2-y 2m 2=1(m >0)的焦点到渐近线的距离是4,则m 的值是( )A .2 B. 2 C .1 D .4 答案 D 解析 双曲线x 2-y 2m 2=1(m >0)的焦点设为(c ,0), 当双曲线方程为x 2a 2-y 2b2=1时,渐近线方程设为bx -ay =0,可得焦点到渐近线的距离 d =|bc |b 2+a 2=b , 故由题意可得b =m =4.(2)(2019·安徽江淮十校模拟)已知点(1,2)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,则其离心率的取值范围是( ) A.()1,5 B.⎝⎛⎭⎫1,52 C.()5,+∞ D.⎝⎛⎭⎫52,+∞ 答案 C解析 已知点(1,2)是双曲线x 2a 2-y 2b 2=1(a >0,b >0)上一点,得1a 2-4b 2=1,即b 2a 2=b 2+4, 所以e =ca=1+b 2a2=b 2+5>5,所以e > 5. (3)(2019·天津)已知抛物线y 2=4x的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A. 2B. 3 C .2 D. 5 答案 D解析 由题意,可得F (1,0),直线l 的方程为x =-1,双曲线的渐近线方程为y =±ba x .将x =-1代入y =±b a x ,得y =±b a ,所以点A ,B 的纵坐标的绝对值均为b a .由|AB |=4|OF |可得2ba =4,即b =2a ,b 2=4a 2,故双曲线的离心率e =ca=a 2+b 2a 2= 5.1.(2020·衡水质检)对于实数m ,“1<m <2”是“方程x 2m -1+y 2m -2=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 C解析 若方程x 2m -1+y 2m -2=1表示双曲线,则(m -1)(m -2)<0,得1<m <2,则“1<m <2”是“方程x 2m -1+y 2m -2=1表示双曲线”的充要条件.2.(2019·北京)已知双曲线x 2a 2-y 2=1(a >0)的离心率是5,则a 等于( )A. 6 B .4 C .2 D.12答案 D解析 由双曲线方程x 2a 2-y 2=1,得b 2=1,∴c 2=a 2+1. ∴5=e 2=c 2a 2=a 2+1a 2=1+1a2. 结合a >0,解得a =12.3.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,则该双曲线的渐近线方程为( )A .x ±y =0B .x ±3y =0 C.3x ±y =0D .2x ±y =0答案 C解析 ∵双曲线的方程是x 2a 2-y 2b 2=1(a >0,b >0),∴双曲线的渐近线方程为y =±ba x .又∵离心率e =ca =2,∴c =2a ,∴b =c 2-a 2=3a . 由此可得双曲线的渐近线方程为y =±3aax =±3x , 即3x ±y =0.故选C.4.(2020·西南大学附中月考)已知双曲线x 2a 2-y 22=1(0<a <2)的两条渐近线的夹角为π3,则双曲线的离心率为( )A.233B.263 C. 3 D .2答案 D解析 由双曲线方程可知渐近线方程为y =±2a x ,由两条渐近线夹角为π3,0<a <2,可知其中一条渐近线的倾斜角为π3,∴2a =3,∴a =63,c =a 2+b 2=263, ∴e =ca =26363=2.5.(2019·全国Ⅲ)已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |,则△OPF 的面积为( ) A.32 B.52 C.72 D.92 答案 B解析 由F 是双曲线x 24-y 25=1的一个焦点,知|OF |=3,所以|OP |=|OF |=3.不妨设点P 在第一象限,P (x 0,y 0),x 0>0,y 0>0,则⎩⎪⎨⎪⎧x 20+y 20=3,x 204-y 205=1,解得⎩⎨⎧x 20=569,y 20=259,所以P ⎝⎛⎭⎫2143,53,所以S △OPF =12|OF |·y 0=12×3×53=52.6.已知离心率为52的双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若2OMF S △=16,则双曲线的实轴长是( )A .32B .16C .84D .4 答案 B解析 由题意知F 2(c,0),不妨令点M 在渐近线y =b a x 上,由题意可知|F 2M |=bca 2+b 2=b ,所以|OM |=c 2-b 2=a .由2OMF S △=16,可得12ab =16,即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45,所以双曲线C 的实轴长为16.故选B.7.(多选)已知中心在原点,焦点在坐标轴上的双曲线C 与椭圆x 29+y 24=1有相同的焦距,且一条渐近线方程为x -2y =0,则双曲线C 的方程可能为( ) A.x 24-y 2=1 B .x 2-y 24=1 C.y 24-x 2=1 D .y 2-x 24=1 答案 AD解析 在椭圆x 29+y 24=1中,c =9-4= 5.因为双曲线C 与椭圆x 29+y 24=1有相同的焦距,且一条渐近线方程为x -2y =0, 所以可设双曲线方程为x 24-y 2=λ(λ≠0),化为标准方程为x 24λ-y 2λ=1.当λ>0时,c =λ+4λ=5,解得λ=1, 则双曲线C 的方程为x 24-y 2=1;当λ<0时,c =-λ-4λ=5,解得λ=-1, 则双曲线C 的方程为y 2-x 24=1. 综上,双曲线C 的方程为x 24-y 2=1或y 2-x 24=1,故选AD.8.(多选)已知F 1,F 2分别是双曲线C :y 2-x 2=1的上、下焦点,点P 是其一条渐近线上一点,且以线段F 1F 2为直径的圆经过点P ,则( ) A .双曲线C 的渐近线方程为y =±x B .以F 1F 2为直径的圆的方程为x 2+y 2=1 C .点P 的横坐标为±1 D .△PF 1F 2的面积为 2 答案 ACD解析 等轴双曲线C :y 2-x 2=1的渐近线方程为y =±x ,故A 正确; 由双曲线的方程可知|F 1F 2|=22,所以以F 1F 2为直径的圆的方程为x 2+y 2=2,故B 错误; 点P (x 0,y 0)在圆x 2+y 2=2上, 不妨设点P (x 0,y 0)在直线y =x 上,所以由⎩⎪⎨⎪⎧x 20+y 20=2,y 0=x 0,解得|x 0|=1,则点P 的横坐标为±1,故C 正确;由上述分析可得△PF 1F 2的面积为12×22×1=2,故D 正确.故选ACD.9.(2019·华中师大附中月考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 且斜率为1的直线与渐近线有且只有一个交点,则双曲线的离心率为________. 答案2解析 由题意知ba =1,∴e =1+⎝⎛⎭⎫b a 2= 2.10.(2020·焦作模拟)已知左、右焦点分别为F 1,F 2的双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与直线l :x -2y =0相互垂直,点P 在双曲线C 上,且|PF 1|-|PF 2|=3,则双曲线C 的焦距为________. 答案 3 5解析 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为y =±ba x ,一条渐近线与直线l :x -2y =0相互垂直,可得ba =2,即b =2a ,由双曲线的定义可得2a =|PF 1|-|PF 2|=3, 可得a =32,b =3,即有c =a 2+b 2=94+9=352, 即焦距为2c =3 5.11.如图,F 1和F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该双曲线左支的两个交点,且△F 2AB 是等边三角形,则双曲线的离心率为________.答案3+1解析 设F 1F 2=2c ,连接AF 1,∵△F 2AB 是等边三角形,且F 1F 2是⊙O 的直径, ∴∠AF 2F 1=30°,∠F 1AF 2=90°, ∴|AF 1|=c ,|AF 2|=3c ,2a =3c -c ,e =c a =23-1=3+1.12.(2020·临川一中模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,A 1,A 2是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点P i (i =1,2),使得P i A 1—→·P i A 2—→=0,则双曲线离心率的取值范围是________.答案 ⎝ ⎛⎭⎪⎫2,5+12 解析 设c 为半焦距,则F (c ,0),又B (0,b ), 所以BF :bx +cy -bc =0,以A 1A 2为直径的圆的方程为⊙O :x 2+y 2=a 2, 因为P i A 1—→·P i A 2—→=0,i =1,2,所以⊙O 与线段BF 有两个交点(不含端点), 所以⎩⎪⎨⎪⎧bc b 2+c 2<a ,b >a ,即⎩⎪⎨⎪⎧c 4-3a 2c 2+a 4<0,c 2>2a 2, 故⎩⎪⎨⎪⎧e 4-3e 2+1<0,e 2>2,解得2<e <5+12.13.(2020·长沙模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),若存在过右焦点F 的直线与双曲线交于A ,B 两点,且AF →=3BF →,则双曲线离心率的最小值为( ) A. 2 B. 3 C .2 D .2 2 答案 C解析 因为过右焦点的直线与双曲线C 相交于A ,B 两点,且AF →=3BF →,故直线与双曲线相交只能交于左、右两支,即点A 在左支,点B 在右支,设A (x 1,y 1),B (x 2,y 2),右焦点F (c ,0),因为AF →=3BF →,所以c -x 1=3(c -x 2),3x 2-x 1=2c ,因为x 1≤-a ,x 2≥a ,所以-x 1≥a ,3x 2≥3a ,故3x 2-x 1≥4a ,即2c ≥4a ,ca≥2,即e ≥2.所以双曲线离心率的最小值为2.14.(2019·江南十校联考)已知双曲线C 1,C 2的焦点分别在x 轴,y 轴上,渐近线方程都为y =±1a x (a >0),离心率分别为e 1,e 2,则e 1+e 2的最小值为________.答案 2 2解析 由题意得双曲线C 1的方程为x 2a 2-y 2=t (a >0,t >0),双曲线C 2的方程为y 2-x 2a 2=λ(a >0,λ>0), 所以e 1=t +a 2t a t =a 2+1a ,e 2=λ+a 2λλ=a 2+1,所以e 1+e 2=a 2+1a+a 2+1≥2a 2+1a=2a +1a≥22(当且仅当a =1时等号成立).15.(2020·广东华附、省实、广雅、深中联考)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c ,0)作圆x 2+y 2=a 2的切线,切点为E ,延长FE 交抛物线y 2=4cx 于点P ,O 为坐标原点,若OE→=12(OF →+OP →),则双曲线的离心率为( ) A.1+52B.52C.1+32D. 5答案 A解析 ∵|OF |=c ,|OE |=a ,OE ⊥EF , ∴|EF |=c 2-a 2=b , ∵OE →=12(OF →+OP →),∴E 为PF 的中点,|OP |=|OF |=c ,|PF |=2b , 设F ′(c,0)为双曲线的右焦点,也为抛物线的焦点, 则EO 为△PFF ′的中位线,则|PF ′|=2|OE |=2a ,可设P 的坐标为(m ,n ), 则有n 2=4cm ,由抛物线的定义可得|PF ′|=m +c =2a , m =2a -c ,n 2=4c (2a -c ),又|OP |=c ,即有c 2=(2a -c )2+4c (2a -c ), 化简可得,c 2-ac -a 2=0,即e 2-e -1=0, 由于e >1,解得e =5+12. 16.(2020·长沙雅礼中学模拟)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A (0,66),当△APF 周长最小时,则点P 的坐标为________. 答案 (-2,26)解析 如图,由双曲线C 的方程可知a 2=1,b 2=8,∴c 2=a 2+b 2=1+8=9, ∴c =3,∴左焦点E (-3,0), 右焦点F (3,0),∵|AF|=32+(66)2=15,∴当△APF的周长最小时,|P A|+|PF|最小.由双曲线的性质得|PF|-|PE|=2a=2,∴|PF|=|PE|+2,又|PE|+|P A|≥|AE|=|AF|=15,当且仅当A,P,E三点共线且点P在线段AE上时,等号成立,∴△APF的周长为|AF|+|AP|+|PF|=15+|PE|+|AP|+2≥15+15+2=32.直线AE的方程为y=26x+66,将其代入到双曲线方程得x2+9x+14=0,解得x=-7(舍)或x=-2,由x=-2,得y=26(负值已舍),∴点P的坐标为(-2,26).。
2.2双曲线主备人:鲁杰溶、乐飞泽教研组审核意见:一、预习提纲预习教材第45-54页知识点一双曲线的定义1.定义:2.集合语言表示:点集P={M||MF1|-|MF2|=2a,0<2a<|F1F2|}叫做双曲线,F1,F2是双曲线的 ,|F1F2|=2c是 .3.将定义中的常数记为2a,则:当2a<|F1F2|时,点的轨迹是 ;当2a=|F1F2|时,点的轨迹是 ;当2a>|F1F2|时,点的轨迹 .知识点二双曲线的标准方程与性质注:①等轴双曲线:实轴和虚轴等长的双曲线叫做等轴双曲线,标准方程为x2-y2=a2或y2-x2=a2,其中e=2,渐近线为y=±x.②e反映了双曲线开口的大小,即双曲线的离心率越大,它的开口就越大知识点三焦点三角形已知F1,F2是双曲线x2a2-y2b2=1(a>0,b>0)的两个焦点,P为双曲线上一点(异于顶点),∠F1PF2=θ,则△F1PF2的面积为 .知识点四直线与双曲线的位置关系将直线方程与双曲线方程联立组成方程组,消去一个未知数.(1)若得到的方程为一次方程,即直线与双曲线的渐近线平行,此时直线与双曲线相交且只有一个公共点。
(2)若得到的方程为二次方程,则:①当Δ<0⇔方程组无实数解⇔直线与双曲线 ;②当Δ=0⇔方程组有一组解⇔直线与双曲线 ; ③当Δ>0⇔方程组有两组解⇔直线与双曲线 .(3)直线与双曲线相交于两点P 1(x 1,y 1),P 2(x 2,y 2),则弦长|P 1P 2|=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2, 或|P 1P 2|=1+k 2|y 1-y 2|=1+1k2·(y 1+y 2)2-4y 1y 2.预习自测11.平面内,到两定点F 1(-3,0)、F 2(3,0)的距离之差的绝对值等于6的点M 的轨迹是( ) A .椭圆 B .线段 C .双曲线 D .两条射线2.焦点在坐标轴上,中心在原点,且经过点P (27,3)和点Q (-7,-62)的双曲线方程是( ) A .x 225-y 275=1 B.x 225-y 275=1或y 225-x 275=1C .x 225-y 275=1或y 275-x 225=1 D.y 275-x 225=13.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A .(22,0) B .(52,0) C .(62,0) D .(3,0) 4.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是 . 5.已知双曲线过点(5,0),且与椭圆x 230+y 25=1有相同的焦点,求双曲线的方程.预习自测21.双曲线x 225-y 29=1的顶点坐标是( )A .(±5,0)B .(±5,0)或(0,±3)C .(±4,0)D .(±4,0)或(0,±3) 2.(2019·浙江卷,2)渐近线方程为x ±y =0的双曲线的离心率是( ) A .22B .1C . 2D .2 3.(2019·山东潍坊高二期末)双曲线方程为x 24-y 2=1,则渐近线方程为( )A .y =±12xB .y =±2xC .y =±xD .y =12x4.已知双曲线x 2a 2-y 25=1(a >0)的右焦点为(3,0),则该双曲线的离心率等于( )A .34B .32C .3D .45.双曲线x 22-y 2=1的焦距是 ,渐近线方程是 .6.已知中心在原点的双曲线的渐近线方程是y =±3x ,且双曲线过点(2,3). (1)求双曲线的方程;(2)求双曲线的焦点到渐近线的距离.二、知识探究双曲线及其标准方程沧源民族中学 选修1-1 第二章 圆锥曲线与方程高二数学问题1.观察教材P 45-图2.2-1,思考下列问题:①在点M 移动的过程中,|||MF 1|-|MF 2|的值发生变化吗? ②动点M 的轨迹是什么?问题2.利用教材P 46-图2.2-2所建立的坐标系,类比椭圆标准方程的推导过程,思考怎样求双曲线的标准方程? 问题3.双曲线的定义中强调平面内动点到两定点的距离差的绝对值为常数,若没有绝对值,则动点的轨迹是什么?问题4.在双曲线的定义中,必须要求“常数小于|F 1F 2|”,那么“常数等于|F 1F 2|”,“常数大于|F 1F 2|”或“常数为0”时,动点的轨迹是什么?问题5.如何判断方程x 2a 2-y 2b 2=1(a >0,b >0)和y 2a 2-x 2b 2=1(a >0,b >0)所表示双曲线的焦点位置?问题6方程x 2m +y 2n=1表示哪种曲线呢?问题7.椭圆标准方程和双曲线标准方程中的a ,b ,c 之间的关系有什么区别?探究1:双曲线定义的应用例1 椭圆x 2m +y 2n =1(m >n >0)与双曲线x 2a -y 2b =1(a >0,b >0)有相同的焦点F 1,F 2,且P 是这两条曲线的一个交点,则|PF 1|·|PF 2|等于 .变式训练1P 是双曲线x 264-y 236=1上一点,F 1、F 2是双曲线的两个焦点,且|PF 1|=17,则|PF 2|的值为 .探究2:待定系数法求双曲线的标准方程例2 (1)已知双曲线的焦点在y 轴上,并且双曲线经过点(3,-42)和(94,5),求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程.变式训练2求适合下列条件的双曲线的标准方程:(1)双曲线的一个焦点坐标是(0,-6),经过点A (-5,6); (2)与椭圆x 216+y 225=1共焦点,且过点(-2,10).探究3:双曲线的焦点三角形问题例3 设双曲线x 24-y 29=1,F 1、F 2是其两个焦点,点P 在双曲线右支上.(1)若∠F 1PF 2=90°,求△F 1PF 2的面积;(2)若∠F 1PF 2=60°时,△F 1PF 2的面积是多少?若∠F 1PF 2=120°时,△F 1PF 2的面积又是多少?变式训练3若F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上,且|PF 1|·|PF 2|=32,求∠F 1PF 2的大小.探究4:分类讨论思想的应用例4已知方程kx 2+y 2=4,其中k 为实数,对于不同范围的k 值分别指出方程所表示的曲线类型.变式训练4讨论方程x 25-m +y 22-m =1(m <3)所表示的曲线类型.探究5:注意参数取值范围对解题的影响例5 已知双曲线8kx 2-ky 2=8的一个焦点为(0,3),求k 的值.变式训练5已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值范围是( )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-1双曲线的简单几何性质根据以下提纲,预习教材P 49~P 53的内容,回答下列问题.问题1.类比椭圆的几何性质,结合图象,你能得到双曲线x 2a 2-y 2b2=1(a >0,b >0)的哪些几何性质?问题2.如何用a ,b 表示双曲线的离心率?问题3.椭圆的离心率反映了椭圆的扁圆程度.那么,双曲线的离心率与开口大小有关系吗?怎样反映这种关系?问题4.双曲线x 2a 2-y 2b 2=1与y 2b 2-x 2a 2=1的渐近线有什么关系?等轴双曲线的离心率为何值?探究1:根据双曲线方程研究其几何性质例1 求双曲线9y 2-4x 2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程,并作出草图.变式训练1求双曲线4x 2-y 2=4的顶点坐标、焦点坐标、实半轴长、虚半轴长、离心率和渐近线方程,并作出草图.探究2:利用几何性质求双曲线的标准方程例2 求适合下列条件的双曲线的标准方程:(1)实轴长为8,离心率为54;(2)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,实轴长和虚轴长相等,且过点P (4,-10).变式训练2(1)顶点间距离为6,渐近线方程为y =±32x ,则双曲线的方程为 .(2)与双曲线x 2-2y 2=2有公共渐近线,且过点M (2,-2)的双曲线方程为 . 探究3:双曲线的离心率例3已知F 1,F 2是双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,圆(x -c )2+y 2=4c 2与双曲线C 位于x 轴上方的两个交点分别为M ,N ,若F 1M ∥F 2N ,则双曲线C 的离心率为 .变式训练3(1)若双曲线x 2a 2-y 2b 2=1的两条渐近线互相垂直,则它的离心率为( )A . 2B .32C . 3D .2(2)若双曲线x 2a 2-y 2b 2=1的一条渐近线经过点(3,-4),则此双曲线的离心率为( )A .73 B .54 C .43 D .53探究4:实际应用问题例4 如图所示,某建筑工地要挖一个横截面为半圆的柱形土坑,挖出的土只能沿AP 、BP 运到P 处,其中|AP |=100 m ,|BP |=150 m ,∠APB =60°.怎样运土才能最省工?变式训练4如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向距离B 2 km 处,河流沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2 km.现要在曲线PQ 上选一处M 建一座码头,向B 、C 两地转运货物.经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km.求:(1)河流沿岸PQ 所在的曲线方程;(2)修建这两条公路的总费用的最小值.探究5:直线与双曲线的位置关系例5 已知曲线C :x 2-y 2=1和直线l :y =kx -1. (1)若l 与C 有两个不同的交点,求实数k 的取值范围;(2)若l 与C 交于A 、B 两点,O 是坐标原点,且△AOB 的面积为2,求实数k 的值.变式训练5过双曲线x 2-y 22=1的右焦点F 作直线l 交双曲线于A 、B 两点,若|AB |=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条 探究6:双曲线中的中点弦问题 例6 已知双曲线方程为2x 2-y 2=2.(1)过定点P (2,1)作直线交双曲线于P 1,P 2两点,当点P (2,1)是弦P 1P 2的中点时,求此直线方程.(2)过定点Q (1,1)能否作直线l ,使直线l 与此双曲线相交于Q 1,Q 2两点,且Q 是弦Q 1Q 2的中点?若存在,求出直线l 的方程;若不存在,说明理由.变式训练6已知中心在原点的双曲线C 的右焦点为F (2,0),直线3x -2y =0与双曲线C 的一个交点的横坐标为2.(1)求双曲线C 的标准方程;(2)过点(0,1),倾斜角为135°的直线l 与双曲线C 相交于A 、B 两点,O 为坐标原点,求△OAB 的面积.探究7:注意双曲线的焦点位置例7 已知双曲线y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程为y =±34x ,求双曲线的离心率.变式训练7设双曲线x 2a 2-y 2b 2=1(0<a <b )的焦距为2c ,直线l 过(a ,0)、(0,b )两点,且原点到直线l 的距离为34c ,求双曲线的离心率.三、达标练习A 组1.已知双曲线的焦点在x 轴上,且a +c =9,b =3,则它的标准方程是________.2.已知双曲线C 的右焦点为F (3,0),c a =32,则C 的标准方程是________.3.双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于________.4.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为________.5.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为________.6.中心在原点,实轴在x 轴上,一个焦点为直线3x -4y +12=0与坐标轴的交点的等轴双曲线方程是________.7.已知F 1,F 2是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为________. 8.设A ,B 为双曲线x 2-y 22=1上的两点,AB 中点为M (1,2).求:(1)直线AB 的方程;(2)△OAB 的面积 B 组1.已知双曲线的一个焦点为F 1(-5,0),点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的标准方程是________.2.已知椭圆x 26+y 22=1和双曲线x 23-y 2=1的公共焦点为F 1,F 2,P 是两曲线的一个交点,那么cos ∠F 1PF 2的值是________.3.如图,双曲线C :x 29-y 210=1的左焦点为F 1,双曲线上的点P 1与P 2关于y 轴对称,则|P 2F 1|-|P 1F 1|的值是________.4.设F 1和F 2为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,若F 1,F 2,P (0,2b )是正三角形的三个顶点,则双曲线的离心率为________.5.过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点作一条与其渐近线平行的直线,交C 于点P .若点P 的横坐标为2a ,求双曲线C 的离心率.6.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦距为4,且经过点()-3,26.(1)求双曲线C的方程和其渐近线方程;(2)若直线l :y =kx +2与双曲线C 有且只有一个公共点,求所有满足条件的k 的取值.C 组如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离; (2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.。
泰安五中数学学科高二学案
2.2.2直线与双曲线的位置关系
编制者:戚桂林编制时间:2014年12月25日审定
学习目标:
1、掌握直线与双曲线的位置关系
2、会根据双曲线性质求双曲线方程
教学重点:直线与双曲线位置关系
教学难点:直线与双曲线位置关系的判断
㈠预习导学
1、直线与椭圆的位置关系有__________,_____________,___________
2、判断直线与椭圆的位置关系的方法及步骤
【合作探究】
【例1】过点
P与双曲线
22
1
725
x y
-=有且只有一个公共点的直
线有几条,分别求出它们的方程。
例2:已知双曲线1422=-y x ,过点(2,2
1)的直线l 与双曲线只有一个公共点,求直线l 的方程
【拓展延伸】
1、在双曲线19
252
2=-y x 上找一点P ,使得P 到03=--y x 的距离最短,
并求最短的值
2、直线1+=kx y 与双曲线1322=-y x 相交于A 、B 两点,当a 为何值时,A 、B 在双曲线的同一支上?当a 为何值时,A 、B 分别在双曲线的两支上?
【反馈训练】
一.选择题:
1.设直线y =kx 与双曲线4x 2―y 2=16相交,则实数k 的取值范围是
(A )―2<k <2 (B )―1<k <1 (C )0<k <2
(D )―2<k <0
2.“直线与双曲线有唯一交点”是“直线与双曲线相切”的 (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )不充分不必要条件
3.直线y =x ―1被双曲线2x 2―y 2=3所截得的弦的中点坐标是 (A )(1, 2) (B )(―2, ―1) (C )(―1, ―2) (D )(2, 1)
4.等轴双曲线中心在原点,焦点在x 轴上,与直线y =2
1
x 交于A ,
B
两点,若|AB
(A )x 2―y 2=6 (B )x 2―y 2=9 (C )x 2―y 2=16 (D )
x 2―y 2=25
5.直线l 过点(5, 0),与双曲线2
2
14
y x -=只有一个公共点,则满
足条件的l 有
(A )1条 (B )2条 (C )4条 (D )无数条
6.若直线y =kx +1与曲线x k 的取值范围是
(A )―2<k <2 (B )―2<k <―1 (C )1<k <2 (D )
k <―2或k >2
二.填空题:
7.过点A (3, ―1)且被A
点平分的双曲线2
214
x y -=的弦所在的直
线方程是 .
8.直线y =mx ―1与双曲线22
149
x y -=有两个交点,则m 的取值范围
是 .
9.过双曲线16x 2―9y 2=144的右焦点作倾斜角为3
π
的弦AB ,则|AB |等于 .
10.设双曲线122
22=-b
y a x (a >0, b >0)的半焦距是c ,直线
l 过两点
(a , 0), (0, b ),已知原点到直线l 的距离为4
13c ,则双曲线的离心
率为 .。