江苏省2016届高三数学专题复习 专题五 解析几何模拟演练 文
- 格式:doc
- 大小:82.50 KB
- 文档页数:6
回扣六 解析几何陷阱盘点1 忽视倾斜角、斜率概念及其关系致误不能准确区分直线倾斜角的取值范围以及斜率与倾斜角的关系,导致由斜率的取值范围确定倾斜角的范围时出错.[回扣问题1]直线x cos θ+3y -2=0的倾斜角的范围是________.陷阱盘点2 忽视直线方程的使用条件致误求直线方程时,易忽视方程形式的限制条件致误.(1)解决直线的截距问题时,忽视截距为“0”的情形.(2)点斜式、斜截式方程的盲目使用,忽视斜率不存在的情形.[回扣问题2]已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________.陷阱盘点3 判断两直线位置关系时,忽视特殊情况致误讨论两条直线的位置关系时,易忽视系数等于零时的讨论导致漏解.如两条直线垂直时,一条直线的斜率不存在,另一条直线斜率为0,另外解析几何中两条直线的位置关系,不要遗漏两条直线可能重合的情形.[回扣问题3]“a =-1”是“直线ax +y +1=0与直线x +ay +2=0平行”的________条件.陷阱盘点4 忽视公式d =|C 1-C 2|A 2+B 2使用条件致误 求两条平行线之间的距离时,易忽视两直线x ,y 的系数对应相等的条件,而直接代入公式d =|C 1-C 2|A 2+B 2导致错误.[回扣问题4]直线3x +4y +5=0与6x +8y -7=0的距离为________.陷阱盘点5 两圆相切,易误以为两圆外切,忽视两圆内切的情形[回扣问题5]双曲线x 2a 2-y 2b 2=1的左焦点为F 1,顶点为A 1、A 2,P 是双曲线右支上任意一点,则分别以线段PF 1、A 1A 2为直径的两圆的位置关系为________.陷阱盘点6 混淆椭圆、双曲线中a ,b ,c 关系致误易混淆椭圆的标准方程与双曲线的标准方程,尤其是方程中a ,b ,c 三者之间的关系,导致计算错误.[回扣问题6]若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的焦距________(填“相等”、“不相等”).陷阱盘点7 忽视圆锥曲线定义中的条件致误利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件.如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a <|F 1F 2|.如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支.[回扣问题7]已知平面内两定点A (0,1),B (0,-1),动点M 到两定点A 、B 的距离之和为4,则动点M 的轨迹方程是________.陷阱盘点8 已知双曲线的渐近线方程求双曲线的离心率时,易忽视讨论焦点所在坐标轴导致漏解[回扣问题8]设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足PA =PB ,则该双曲线的离心率是________.回扣六 解析几何 1.⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π [tan α=k =-cos θ3,知-33≤k ≤33, ∴0≤α≤π6或5π6≤α<π.] 2.5x -y =0或x +y -6=0 [(1)若截距为0,则直线过原点(0,0),∴直线方程为y =5x .(2)若截距不为0,设直线方程为x a +y a =1,∴1a +5a=1,则a =6,直线方程为x +y -6=0. 故所求的直线方程为5x -y =0或x +y -6=0.]3.充分不必要 [由ax +y +1=0与x +ay +2=0平行,得a ·a -1×1=0,得a =±1.故“a =-1”是“两条直线平行”的充分不必要条件.]4.1710 [将3x +4y +5=0化为6x +8y +10=0,∴两直线间的距离d =|10+7|62+82=1710.] 5.内切 [设双曲线的右焦点为F 2,且线段PF 1的中点为O ′,由双曲线定义,PF 1-PF 2=2a ,∴OO ′=12PF 2=-a +12PF 1. 又12A 1A 2=a ,则OO ′=12()PF 1-A 1A 2,因此OO ′=R -r ,两圆相内切.] 6.相等 [因为0<k <9,所以两条曲线都表示双曲线, 双曲线x 225-y 29-k=1的实半轴长为5,虚半轴长为9-k , 焦距为225+(9-k )=234-k ,离心率为34-k 5.又双曲线x 225-k -y 29=1的实半轴长为25-k ,虚半轴长为3,焦距为2(25-k )+9=234-k ,离心率为34-k 25-k .两双曲线中只有焦距相等.] 7.y 24+x 23=1 [由于MA +MB =4,且4>AB ,∴动点M 的轨迹是以A 、B 为焦点的椭圆.因此a =2,c =1,b =3,所以点M 的轨迹方程为y 24+x 23=1.] 8.52 [双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b a x . 由⎩⎪⎨⎪⎧y =b a x ,x -3y +m =0得A ⎝ ⎛⎭⎪⎫am 3b -a ,bm 3b -a , 由⎩⎪⎨⎪⎧y =-b a x ,x -3y +m =0得B ⎝ ⎛⎭⎪⎫-am a +3b ,bm a +3b , 所以AB 的中点C 坐标为⎝ ⎛⎭⎪⎫a 2m9b 2-a 2,3b 2m 9b 2-a 2. 设直线l :x -3y +m =0(m ≠0),因为PA =PB ,所以PC ⊥l ,所以k PC =-3,化简得a 2=4b 2,在双曲线中,即a 2=4(c 2-a 2),所以4c 2=5a 2,所以离心率e =c a =52.]。
专题四立体几何经典模拟·演练卷一、填空题1.(2015·苏、锡、常、镇调研)设α,β,γ是三个不重合的平面,l是直线,给出下列四个命题:①若α⊥β,l⊥β,则l∥α;②若l⊥α,l∥β,则α⊥β;③若l上有两点到α的距离相等,则l∥α;④若α⊥β,α∥γ,则γ⊥β.其中正确命题的序号是________.2.(2015·济宁模拟)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的________条件.3.(2015·苏、锡、常、镇模拟)在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上,若EF∥平面AB1C,则线段EF的长度等于________.4.(2015·泰州检测)设l是直线,α,β是两个不同的平面.①若l∥α,l∥β,则α∥β;②若l∥α,l⊥β,则α⊥β;③若α⊥β,l⊥α,则l⊥β;④若α⊥β,l∥α,则l⊥β.则上述命题中正确的是________.5.(2015·镇江调研)如图所示,ABCD是正方形,PA⊥平面ABCD,E,F分别是AC,PC的中点,PA=2,AB=1,求三棱锥C-PED的体积为________.6.(2015·吉林实验中学模拟)已知E,F分别是矩形ABCD的边BC与AD的中点,且BC=2AB =2,现沿EF将平面ABEF折起,使平面ABEF⊥平面EFDC,则三棱锥A-FEC外接球的体积为________.7.(2015·菏泽模拟)如图,正方体ABCD-A1B1C1D1的棱长为1,E为棱DD1上的点,F为AB的中点,则三棱锥B1-BFE的体积为________.8.(2015·南通模拟)已知m,n表示两条不同直线,α表示平面.给出以下说法:①若m∥α,n∥α,则m∥n;②若m⊥α,n⊂α,则m⊥n;③若m⊥α,m⊥n,则n∥α;④若m∥α,m⊥n,则n⊥α;则上述说法错误的是________(填序号).9.(2015·南师附中模拟)在正三棱锥P-ABC中,M,N分别是PB,PC的中点,若截面AMN ⊥平面PBC,则此棱锥中侧面积与底面积的比为________.10.(2015·保定联考)如图,棱长为1的正方体ABCD-A1B1C1D1中,P为线段A1B上的动点,给出下列结论:①DC1⊥D1P;②平面D1A1P⊥平面A1AP;③∠APD1的最大值为90°;④AP+PD1的最小值为2+ 2.则上述结论正确的是________(填序号).二、解答题11.(2015·苏州调研)如图,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB.过点A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.12.(2015·苏北四市调研)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.13.(2015·常州监测)如图,在直三棱柱A1B1C1-ABC中,AB⊥BC,E,F分别是A1B,AC1的中点.(1)求证:EF∥平面ABC;(2)求证:平面AEF⊥平面AA1B1B;(3)若A1A=2AB=2BC=2a,求三棱锥F-ABC的体积.经典模拟·演练卷1.②④ [由线线、线面、面面平行与垂直的判定与性质定理逐个判断,真命题为②④.]2.必要不充分 [当m ⊥β,m ⊂α时,α⊥β,必要性成立.但α⊥β,m ⊂α,则m ⊂β或m ∥β或m 与β相交.因此“α⊥β”是“m ⊥β”的必要不充分条件.] 3. 2 [∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,又∵E 是AD 的中点,∴F 是CD 的中点,即EF 是△ACD 的中位线,∴EF =12AC =12×22= 2.] 4.② [利用线与面、面与面的关系定理判定,用特例法.设α∩β=a ,若直线l ∥a ,且l ⊄α,l ⊄β,则l ∥α,l ∥β,因此α不一定平行于β,故①错误;由于l ∥α,故在α内存在直线l ′∥l ,又因为l ⊥β,所以l ′⊥β,故α⊥β,所以②正确;若α⊥β,在β内作交线的垂线l ,则l ⊥α,此时l 在平面β内,因此③错误;已知α⊥β,若α∩β=a ,l ∥a ,且l 不在平面α,β内,则l ∥α且l ∥β,因此④错误.]5.16[∵PA ⊥平面ABCD , ∴PA 是三棱锥P -CED 的高,PA =2.∵ABCD 是正方形,E 是AC 的中点,∴△CED 是等腰直角三角形.AB =1,故CE =ED =22, S △CED =12CE ·ED =12·22·22=14. 故V C -PED =V P -CED =13·S △CED ·PA =13·14·2=16.] 6.32π [如图,平面ABEF ⊥平面EFDC ,AF ⊥EF ,∴AF ⊥平面ECDF ,将三棱锥A -FEC 补成正方体ABC ′D ′-FECD .依题意,其棱长为1,外接球的半径R =32, ∴外接球的体积V =43πR 3=43π·⎝ ⎛⎭⎪⎫323=32π.] 7.112[∵V 三棱锥B 1-BFE =V 三棱锥E -BB 1F , 又S △BB 1F =12·BB 1·BF =14,且点E 到底面BB 1F 的距离h =1.∴V 三棱锥B 1-BFE =13·h ·S △BB 1F =112.] 8.①③④ [若m ∥α,n ∥α,则m ,n 可能平行、相交或异面,①错;若m ⊥α,n ⊂α,则m ⊥n ,因为直线与平面垂直时,它垂直于平面内任一直线,②正确; 若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,③错;若m ∥α,m ⊥n ,则n 与α可能相交,可能平行,也可能n ⊂α,④错.]9. 6 [取BC 的中点D ,连接AD ,PD ,且PD 与MN 的交点为E .因为AM =AN ,E 为MN 的中点,所以AE ⊥MN ,又截面AMN ⊥平面PBC ,所以AE ⊥平面PBC ,则AE ⊥PD ,又E 点是PD 的中点,所以PA =AD .设正三棱锥P -ABC 的底面边长为a ,则侧棱长为32a ,斜高为22a ,则此棱锥中侧面积与底面积的比为3×12a ×22a 34a 2= 6.] 10.①②④ [由DC 1⊥平面A 1BCD 1知DC 1⊥D 1P ,∴①正确.∵D 1A 1⊥平面ABB 1A 1,且A 1D 1⊂平面D 1A 1P ,∴平面D 1A 1P ⊥平面A 1AP ,因此②正确.当0<A 1P <22时,∠APD 1为钝角,∴③错. 将面AA 1B 与面A 1BCD 1沿面对角线A 1B 展开成平面图形时,线段A 1D 为AP +PD 1的最小值. 在△AA 1D 1中,A 1D 1=A 1A =1,∠AA 1D 1=135°.由余弦定理,AD 21=12+12-2×1×1cos 135°=2+ 2.∴AP+PD1的最小值AD1=2+2,因此④正确.]11.证明(1)因为AS=AB,AF⊥SB,垂足为F,所以F是SB的中点.又因为E是SA的中点,所以EF∥AB.因为EF⊄平面ABC.AB⊂平面ABC,所以EF∥平面ABC.同理EG∥平面ABC.又EF∩EG=E,所以平面EFG∥平面ABC.(2)因为平面SAB⊥平面SBC,且交线为SB,又AF⊂平面SAB,AF⊥SB,所以AF⊥平面SBC. 因为BC⊂平面SBC,所以AF⊥BC.又因为AB⊥BC,AF∩AB=A,AF⊂平面SAB,AB⊂平面SAB,所以BC⊥平面SAB.因为SA⊂平面SAB,所以BC⊥SA.12.证明(1)因为平面PAD∩平面ABCD=AD.又平面PAD⊥平面ABCD,且PA⊥AD.PA⊂平面PAD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,且四边形ABED为平行四边形.所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.又因为PA∩AD=A,所以CD⊥平面PAD,从而CD⊥PD,且CD⊂平面PCD,又E,F分别是CD和CP的中点,所以EF∥PD,故CD⊥EF.由EF,BE在平面BEF内,且EF∩BE=E,所以CD⊥平面BEF.所以平面BEF⊥平面PCD.13.(1)证明连接A1C.∵直三棱柱A1B1C1-ABC中,AA1C1C是矩形.∴点F在A1C上,且为A1C的中点.在△A1BC中,∵E,F分别是A1B,A1C的中点,∴EF∥BC.又∵BC⊂平面ABC,EF⊄平面ABC,所以EF∥平面ABC.(2)证明∵直三棱柱A1B1C1-ABC中,B1B⊥平面ABC,∴B1B⊥BC.又∵EF∥BC,AB⊥BC,∴AB⊥EF,B1B⊥EF.∵B 1B ∩AB =B ,∴EF ⊥平面ABB 1A 1. ∵EF ⊂平面AEF ,∴平面AEF ⊥平面ABB 1A 1.(3)解 V F -ABC =12VA 1-ABC =12×13×S △ABC ×AA 1 =12×13×12a 2×2a =a 36.。
1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34 【答案】B 【解析】考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )2【答案】D 【解析】试题分析:因为F 抛物线24y x =的焦点,所以(1,0)F , 又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21k=,所以2k =,选D. 考点: 抛物线的性质,反比例函数的性质.【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y =kx(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.3.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .4.【2016高考四川文科】抛物线24y x =的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0) 【答案】D 【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.5.【2016高考山东文数】已知圆M :2220(0)x y ay a 截直线0x y 所得线段的长度是22M 与圆N :22(1)1x y (-1)的位置关系是( )(A )内切(B )相交(C )外切(D )相离 【答案】B 【解析】考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. 6.【2016高考北京文数】圆22(1)2x y ++=的圆心到直线3y x =+的距离为( ) A.1 B.2 2 2【答案】C 【解析】试题分析:圆心坐标为(1,0)-,由点到直线的距离公式可知22d ==C.考点:直线与圆的位置关系【名师点睛】点),(00y x 到直线b kx y +=(即0=--b kx y )的距离公式2001||k b kx y d +--=记忆容易,对于知d 求k ,b 很方便.7、【2016高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________. 25【解析】试题分析:利用两平行线间距离公式得12222225d a b 21===++考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.8.【2016高考北京文数】已知双曲线22221x y a b -= (0a >,0b >)的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.【答案】1,2a b ==. 考点:双曲线的基本概念【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.9.【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y -++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题:①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. ②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 【解析】考点:1.新定义问题;2.曲线与方程.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.10.[2016高考新课标Ⅲ文数]已知直线l :360x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________. 【答案】4 【解析】试题分析:由360x -+=,得36x =-,代入圆的方程,并整理,得23360y -+=,解得1223,3y y ==,所以120,3x x ==-,所以221212||()()23AB x y y y =-+-=l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD ==︒.考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.11.【2016高考浙江文数】设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______. 【答案】(27,8). 【解析】考点:双曲线的几何性质.【思路点睛】先由对称性可设点P 在右支上,进而可得1F P 和2F P ,再由12F F ∆P 为锐角三角形可得2221212F F FF P +P >,进而可得x 的不等式,解不等式可得12F F P +P 的取值范围.12.【2016高考浙江文数】已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______. 【答案】(2,4)--;5. 【解析】试题分析:由题意22a a =+,12a =-或,1a =-时方程为224850x y x y +++-=,即22(2)(4)25x y +++=,圆心为(2,4)--,半径为5,2a =时方程为224448100x y x y ++++=,2215()(1)24x y +++=-不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得a 的方程,解得a 的值,一定要注意检验a 的值是否符合题意,否则很容易出现错误.13.【2016高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点(0,5)M 在圆C 上,且圆心到直线20x y -= 的距离为455,则圆C 的方程为__________. 【答案】22(2)9.x y -+=考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.14.【2016高考山东文数】已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2 【解析】 试题分析:依题意,不妨设6,4AB AD ==,作出图象如下图所示 则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.15. 【2016高考新课标1文数】设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为 .【答案】4π 考点:直线与圆【名师点睛】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:2222l r d ⎛⎫=+ ⎪⎝⎭在求圆的方程时常常用到.16.【2016高考天津文数】已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( )(A )1422=-y x(B )1422=-y x (C )15320322=-y x (D )12035322=-y x【答案】A 【解析】试题分析:由题意得2215,2,11241b x yc a b a =⇒==⇒-=,选A.考点:双曲线渐近线【名师点睛】求双曲线的标准方程关注点:(1)确定双曲线的标准方程也需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a ,b 的值,常用待定系数法.(2)利用待定系数法求双曲线的标准方程时应注意选择恰当的方程形式,以避免讨论. ①若双曲线的焦点不能确定时,可设其方程为Ax 2+By 2=1(AB <0).②若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0). 17.【2016高考新课标2文数】圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =( )(A )−43 (B )−34(C 3 (D )2【答案】A考点: 圆的方程,点到直线的距离公式.【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.18.【2016高考新课标1文数】(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OHON; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由. 【答案】(I )2(II )没有 【解答】试题分析:先确定),(2t p t N ,ON 的方程为x t p y =,代入px y 22=整理得0222=-x t px ,解得01=x ,p t x 222=,得)2,2(2t p t H ,由此可得N 为OH 的中点,即2||||=ON OH .(II ) 把直线MH 的方程x tpt y 2=-,与px y 22=联立得04422=+-t ty y ,解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.考点:直线与抛物线【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.19.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =32k <<.【答案】(Ⅰ)14449;(Ⅱ))32,2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN ∆的面积;(Ⅱ)设()11,M x y ,,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN =求k .试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >.由已知及椭圆的对称性知,直线AM 的倾斜角为4π, 又(2,0)A -,因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=, 解得0y =或127y =,所以1127y =. 因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=. 考点:椭圆的性质,直线与椭圆的位置关系. 【名师点睛】本题中22233k tk k t=++,分离变量t ,得()332132k k t k -=>-,解不等式,即求得实数k 的取值范围.20.[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.【解析】考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.21.【2016高考北京文数】(本小题14分)已知椭圆C:22221x ya b+=过点A(2,0),B(0,1)两点.(I)求椭圆C的方程及离心率;(Ⅱ)设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【答案】(Ⅰ)2214xy+=;32=e(Ⅱ)见解析.【解析】考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.22.【2016高考山东文数】(本小题满分14分)已知椭圆C:(a>b>0)的长轴长为4,焦距为2.(I)求椭圆C的方程;(Ⅱ)过动点M(0,m)(m>0)的直线交x轴与点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长线QM交C于点B.(i)设直线PM、QM的斜率分别为k、k',证明为定值.(ii)求直线AB的斜率的最小值.【答案】(Ⅰ)22142x y+=.(Ⅱ)(i)见解析;(ii)直线AB6【解析】此时'3kk=-,所以'kk为定值3-.所以直线AB 的斜率的最小值为6 2考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系;3.基本不等式.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答此类题目,利用,,,a b c e的关系,确定椭圆(圆锥曲线)方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根与系数的关系,得到参数的解析式或方程是关键,易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、基本计算能力、分析问题解决问题的能力等.23.【2016高考天津文数】(设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA e OA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.【答案】(Ⅰ)22143x y +=(Ⅱ)64± 【解析】(2)设直线的斜率为(0)k k ≠,则直线l 的方程为(2)y k x =-,设(,)B B B x y ,由方程组221,43(2),x y y k x ⎧+=⎪⎨⎪=-⎩消去y , 考点:椭圆的标准方程和几何性质,直线方程【名师点睛】解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.直线与圆锥曲线位置关系的判断、有关圆锥曲线弦的问题等能很好地渗透对函数方程思想和数形结合思想的考查,一直是高考考查的重点,特别是焦点弦和中点弦等问题,涉及中点公式、根与系数的关系以及设而不求、整体代入的技巧和方法,也是考查数学思想方法的热点题型.24.【2016高考浙江文数】(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1.(I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x轴交于点M .求M 的横坐标的取值范围.【答案】(I )2p =;(II )()(),02,-∞+∞.【解析】设M(m,0),由A,M,N 三点共线得:222222231t t t t t m t t +=+--- , 于是2221t m t =-,经检验,m<0或m>2满足题意. 综上,点M 的横坐标的取值范围是()(),02,-∞+∞.考点:抛物线的几何性质、直线与抛物线的位置关系.【思路点睛】(I )当题目中出现抛物线上的点到焦点的距离时,一般会想到转化为抛物线上的点到准线的距离.解答本题时转化为抛物线上的点到准线的距离,进而可得点到y 轴的距离;(II )通过联立方程组可得点B 的坐标,进而可得点N 的坐标,再利用A ,M ,N 三点共线可得m 用含有t 的式子表示,进而可得M 的横坐标的取值范围.25.【2016高考上海文科】(本题满分14分)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
第2讲圆锥曲线【自主学习】第2讲圆锥曲线(本讲对应学生用书第47~50页)自主学习回归教材1. (选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(—2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4⎧+=⎪⎨⎪=⎩a ba b,,解得a2=10,b2=6,所以所求方程为210x+26y=1。
2。
(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x—236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3。
(选修2—1 P51例2改编)经过点P(—2,-4)的抛物线标准方程为.【答案】y2=-8x或x2=—y【解析】因为点P(-2,-4)在第三象限,所以满足条件的抛物线方程有两种情形。
y2=-2p1x或x2=—2p2y,分别代入点P的坐标,解得p1=4,p2=12,所以抛物线的标准方程为y2=-8x或x2=—y。
4. (选修2—1 P57练习5改编)已知抛物线y2=4x上一点M到焦点的距离为3,则点M到y轴的距离为.【答案】2【解析】抛物线y2=4x的准线方程为x=-1,点M到焦点的距离为3,说明到准线的距离为3,所以点M到y轴的距离为2.5。
(选修2—1 P58练习8改编)设P(x,y)是椭圆22xa+22yb=1(a>b〉0)上一点,F1,F2为椭圆的两个焦点,则PF1·PF2的最大值为。
【答案】a2【解析】因为PF1·PF2=PF1·(2a—PF1)=-P21F+2a PF1=-(PF1-a)2+a2,由于a-c≤PF1≤a+c,所以当PF1=a时,PF1·PF2有最大值a2。
后记答题模板【范例赏析】后记答题模板(本讲对应学生用书第48~49页) 范例赏析典例如图,已知A,B分别为曲线C:22xa+y2=1(y≥0,a>0)与x轴的左、右两个交点,直线l过点B,且与x轴垂直,S为l上异于点B的一点,连接AS交曲线C 于点T.(1)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标.(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值;若不存在,请说明理由.(典例)【规范解答】(1)当曲线C为半圆时,a=1,由点T为圆弧AB的三等分点,得∠BOT=60°或120°.2分①当∠BOT=60°时,∠SAB=30°.又AB=2,故在△SAB中,有SB=AB·tan 30°=23,所以S231⎛⎝⎭,. 4分②当∠BOT=120°时,同理可求得点S 的坐标为(1,).综上,点S 的坐标为S1⎛ ⎝⎭或S (1,2). 6分(2)切入点一:从点“T ”入手设点T (a cos θ,sin θ)(sin θ≥0),则直线AT 的方程为y=sin cos a a θθ+(x+a ), 8分令x=a ,得点S 2sin cos 1a θθ⎛⎫ ⎪+⎝⎭,,所以k OS =2sin (cos 1)a θθ+.又B (a ,0),所以k TB =sin cos -a a θθ. 10分假设存在a (a>0),使得O ,M ,S 三点共线,由于点M 在以SB 为直径的圆上,故BT ⊥OS.所以k OS ·k TB =sin cos -a a θθ·2sin (cos 1)a θθ+=-1,解得a 2=2.又因为a>0,所以. 15分经检验,当时,O ,M ,S 三点共线.故存在,使得O ,M ,S 三点共线. 16分切入点二:从点“S ”入手设点S (a ,m ),则直线SA 的方程为y=2m a (x+a ),联立方程组2221()2x y a m y x a a ⎧+=⎪⎪⎨⎪=+⎪⎩,,化简得(m 2+4)x 2+2m 2ax+m 2a 2-4a 2=0.8分设点T (x T ,y T ),因为A (-a ,0),所以x T ·(-a )=2222-44m a a m +,得x T =224-4a m am +,y T =244m m +,所以k TB =-2ma . 10分假设存在a (a>0),使得O ,M ,S 三点共线,由于点M 在以SB 为直径的圆上,故BT ⊥OS.12分又因为k OS =m a ,所以k OS ·k TB =m a ·2-ma ⎛⎫⎪⎝⎭=-1,解得a 2=2.又因为a>0,所以a=2.15分经检验,当a=2时,O ,M ,S 三点共线.故存在a=2,使得O ,M ,S 三点共线. 16分切入点三:从直线AS 的斜率入手 假设存在a (a>0),使得O ,M ,S 三点共线. 由于点M 在以SB 为直径的圆上,故BT ⊥OS.8分显然,直线AS 的斜率k 存在且k>0,可设直线AS 的方程为y=k (x+a ).由2221()x y a y k x a ⎧+=⎪⎨⎪=+⎩,,得(1+a 2k 2)x 2+2a 3k 2x+a 4k 2-a 2=0. 10分设点T (x T ,y T ),所以x T ·(-a )=42222-1a k a a k +.故x T =3222-1a a k a k +,从而y T =k (x T +a )=2221ak a k +,亦即T 322222-211a a k ak a k a k ⎛⎫ ⎪++⎝⎭,. 12分方法一:因为B (a ,0),所以BT u u u r =322222-2211a k aka k a k ⎛⎫⎪++⎝⎭,.由()x a y k x a =⎧⎨=+⎩,,得S (a ,2ak ),所以OS u u u r =(a ,2ak ).由BT ⊥OS ,可得BT u u u r ·OS u uu r =422222-241a k a k a k ++=0,即-2a 4k 2+4a 2k 2=0. 因为k>0,a>0,所以2. 15分经检验,当2时,O ,M ,S 三点共线.故存在2,使得O ,M ,S 三点共线. 16分方法二:因为B (a ,0),所以k BT =-TT y x a =-21a k ,故k SM =a 2k.由()x a y k x a =⎧⎨=+⎩,,得S (a ,2ak ),所以直线SM 的方程为y-2ak=a 2k (x-a ).O ,M ,S 三点共线当且仅当O 在直线SM 上,即-2ak=a 2k (-a ).因为k>0,a>0,所以2. 15分经检验,当2时,O ,M ,S 三点共线.故存在2,使得O ,M ,S 三点共线. 16分【总结提升】解题几何中的多动点问题,一直是学生难以逾越的障碍,究其原因:“多且动”,大有牵一发而动全身的感觉,各个点都丝丝相连,环环相扣.而恰恰正是点多且动,反而给我们一个启发,多且动的点中肯定有一个“核心点”,正是这个点牵动了其他点,使其他点始终围绕这个“核心点”运动.例题正是这类问题,其中点M 即为“核心点”,只要把握好这个“核心点”在圆上具有的性质,以其他的点或线为切入点,就可从多途径入手,让每个动点都可“一显身手”,以达到多解的目的.【拓展训练】拓 展 训 练变式 (2015·盐城二模)如图,在平面直角坐标系xOy 中,椭圆E :22x a+22y b =1(a>b>0)的离心率为2,直线l :y=12x 与椭圆E 相交于A ,B 两点,AB=25,C ,D 是椭圆E 上异于A ,B 两点,且直线AC ,BD 相交于点M ,直线AD ,BC 相交于点N.(1)求a ,b 的值;(2)求证:直线MN 的斜率为定值.(变式)【解答】(1)因为e=c a =2,所以c 2=12a 2,即a 2-b 2=12a 2,所以a 2=2b 2,故椭圆E 的方程为222x b +22y b =1.由题意,不妨设点A 在第一象限,点B 在第三象限.由22221212y x x y b b ⎧=⎪⎪⎨⎪+=⎪⎩,,解得A233⎫⎪⎪⎝⎭,. 又AB=5,所以5,即43b 2+13b 2=5,解得b 2=3.故a=6,3.(2)由(1)知椭圆E 的方程为26x +23y =1,从而A (2,1),B (-2,-1).①当CA ,CB ,DA ,DB 的斜率都存在时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =00-1-2y x ·0012y x ++=2020-1-4y x =202031--16-4x x ⎛⎫ ⎪⎝⎭=20202-2-4x x =-12,所以k CB =-112k .同理k DB =-212k .于是直线AD 的方程为y-1=k 2(x-2),直线BC 的方程为y+1=-112k (x+2).由1211-(2)2-1(-2)y x k y k x ⎧+=+⎪⎨⎪=⎩,,解得12112122124-4-221-2-41.21k k k x k k k k k y k k ⎧=⎪+⎪⎨+⎪=⎪+⎩,从而点N 的坐标为12112212124-4-2-2-412121k k k k k k k k k k ⎛⎫+ ⎪++⎝⎭,. 用k 2代k 1,k 1代k 2得点M 的坐标为12212112124-4-2-2-412121k k k k k k k k k k +++,.所以k MN =12212112121211221212-2-41-2-41-21214-4-24-4-2-2121k k k k k k k k k k k k k k k k k k k k ++++++=12214(-)4(-)k k k k =-1.即直线MN 的斜率为定值-1.②当CA ,CB ,DA ,DB 中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在,故不妨设直线CA 的斜率不存在,从而C (2,-1).仍然设DA 的斜率为k 2,由①知k DB =-212k .此时CA :x=2,DB :y+1=-212k (x+2),它们的交点坐标为M 222-1-k ⎛⎫⎪⎝⎭,.由BC :y=-1,AD :y-1=k 2(x-2),它们交点N 222--1k ⎛⎫⎪⎝⎭,,从而k MN =-1也成立. 由①②可知,直线MN 的斜率为定值-1.。
1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34 【答案】B 【解析】考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )2【答案】D 【解析】试题分析:因为F 抛物线24y x 的焦点,所以(1,0)F ,又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21k=,所以2k =,选D. 考点: 抛物线的性质,反比例函数的性质.【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y =kx(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.3.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;[3)通过特殊值或特殊位置,求出e .4.【2016高考四川文科】抛物线24y x =的焦点坐标是[ ) [A)[0,2) [B) [0,1) [C) [2,0) [D) [1,0) 【答案】D 【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.5.【2016高考山东文数】已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是( ) (A )内切(B )相交(C )外切(D )相离 【答案】B 【解析】考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. 6.【2016高考北京文数】圆22(1)2x y ++=的圆心到直线3y x =+的距离为( )A.1B.2 【答案】C 【解析】试题分析:圆心坐标为(1,0)-,由点到直线的距离公式可知d ==,故选C.考点:直线与圆的位置关系【名师点睛】点),(00y x 到直线b kx y +=[即0=--b kx y )的距离公式2001||k b kx y d +--=记忆容易,对于知d 求k ,b 很方便.7、【2016高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________.【答案】5【解析】试题分析:利用两平行线间距离公式得d ===考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.8.【2016高考北京文数】已知双曲线22221x y a b -= (0a >,0b >)的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.【答案】1,2a b ==.考点:双曲线的基本概念【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:[1)掌握方程;[2)掌握其倾斜角、斜率的求法;[3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.9.【2016高考四川文科】在平面直角坐标系中,当P [x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y-++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: 若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 【解析】考点:1.新定义问题;2.曲线与方程.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.10.[2016高考新课标Ⅲ文数]已知直线l :60x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________. 【答案】4 【解析】试题分析:由60x +=,得6x =-,代入圆的方程,并整理,得260y -+=,解得12y y ==,所以120,3x x ==-,所以||AB ==l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD ==︒.考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法[即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.11.【2016高考浙江文数】设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.【答案】. 【解析】考点:双曲线的几何性质.【思路点睛】先由对称性可设点P 在右支上,进而可得1F P 和2F P ,再由12F F ∆P 为锐角三角形可得2221212F F F F P +P >,进而可得x 的不等式,解不等式可得12F F P +P 的取值范围.12.【2016高考浙江文数】已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______. 【答案】(2,4)--;5. 【解析】试题分析:由题意22a a =+,12a =-或,1a =-时方程为224850x y x y +++-=,即22(2)(4)25x y +++=,圆心为(2,4)--,半径为5,2a =时方程为224448100x y x y ++++=,2215()(1)24x y +++=-不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得a 的方程,解得a 的值,一定要注意检验a 的值是否符合题意,否则很容易出现错误.13.【2016高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=,则圆C 的方程为__________. 【答案】22(2)9.x y -+=考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:[1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.[2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.14.【2016高考山东文数】已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2 【解析】 试题分析:依题意,不妨设6,4AB AD ==,作出图象如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.15. 【2016高考新课标1文数】设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若错误!未找到引用源。
专题五 解析几何真题体验·引领卷一、填空题1.(2013·江苏高考)双曲线-=1的两条渐近线的方程为________.2.(2015·广东高考改编)平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是________.3.(2012·江苏高考)在平面直角坐标系xOy中,若双曲线-=1的离心率为,则m的值为______.4.(2015·全国卷Ⅱ改编)过三点A(1,3),B(4,2),C(1,-7)的圆交y轴于M、N两点,则|MN|=________.5.(2015·江苏高考)在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx-y-2m-1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为________.6.(2010·江苏高考)在平面直角坐标系xOy中,已知双曲线-=1上一点M的横坐标是3,则点M到此双曲线的右焦点的距离为________.7.(2015·湖南高考)设F是双曲线C:-=1的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为________.8.(2012·江苏高考)在平面直角坐标系xOy中,圆C的方程为x2+y2-8x+15=0,若直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是________.9.(2015·江苏高考)在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为________.10.(2015·全国卷Ⅱ改编)已知A,B为双曲线E的左,右顶点,点M在E 上,△ABM为等腰三角形,且顶角为120°,则E的离心率为________.二、解答题11.(2013·江苏高考)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.12.(2015·江苏高考)如图,在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,且右焦点F到左准线l的距离为3.(1)求椭圆的标准方程;(2)过F的直线与椭圆交于A,B两点,线段AB的垂直平分线分别交直线l 和AB于点P,C,若PC=2AB,求直线AB的方程.13.(2015·天津高考)已知椭圆+=1(a>b>0)的左焦点为F(-c,0),离心率为,点M在椭圆上且位于第一象限,直线FM被圆x2+y2=截得的线段的长为c,FM=.(1)求直线FM的斜率;(2)求椭圆的方程;(3)设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.专题五 解析几何经典模拟·演练卷一、填空题1.(2015·南通·泰州调研)双曲线-=1(m>0)的离心率为,则m等于________.2.(2015·河南名校联考)过点(3,1)作圆(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为________.3.(2015·广州模拟)若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为________.4.(2015·江苏五市模拟)已知椭圆+=1(0<m<9),左、右焦点分别为F1,F2,过F1的直线交椭圆于A,B两点,若AF2+BF2的最大值为10,则m的值为________.5.(2015·北京东城调研)已知双曲线C:-=1(a>0,b>0)的离心率为,则C的渐近线方程为________.6.(2015·潍坊三模)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与圆(x-2)2+(y-3)2=8相外切,则圆C的方程为________.7.(2015·烟台模拟)等轴双曲线x2-y2=a2(a>0)的左、右顶点分别为A、B,P是双曲线上在第一象限内的一点,若直线PA,PB的倾斜角分别为α,β,且β=2α,那么β的值是________.8.(2015·济南模拟)已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为________.9.(2015·泰州调研)若圆上一点A(2,3)关于直线x+2y=0的对称点仍在圆上,且圆与直线x-y+1=0相交的弦长为2,则圆的方程是________.10.(2015·苏北四市调研)若双曲线x2-=1(b>0)的一条渐近线与圆x2+(y-2)2=1至多有一个公共点,则双曲线离心率的取值范围是________.二、解答题11.(2015·哈尔滨调研)椭圆C的中心在原点,一个焦点F(-2,0),且短轴长与长轴长的比是.(1)求椭圆C的方程;(2)设点M(m,0)在椭圆C的长轴上,点P是椭圆上任意一点.当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.12.(2015·南京、盐城模拟)如图,在平面直角坐标系xOy中,已知点A 为椭圆+=1的右顶点,点D(1,0),点P,B在椭圆上,=.(1)求直线BD的方程;(2)求直线BD被过P,A,B三点的圆C截得的弦长;(3)是否存在分别以PB,PA为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.13.(2015·江苏高考命题原创卷)如图,过点C(0,)的椭圆+=1(a>b >0)的离心率为,椭圆与x轴交于A(a,0)和B(-a,0)两点,过点C的直线l与椭圆交于另一点D,并与x轴交于点P,直线AC与直线BD交于点Q.(1)当直线l过椭圆的右焦点时,求线段CD的长;(2)当点P异于点B时,求证:·为定值.专题五 解析几何专题过关·提升卷(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.(2015·长沙调研)若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=________.2.(2015·福建高考改编)若双曲线E:-=1的左、右焦点分别为F1,F2,点P在双曲线E上,且PF1=3,则PF2=________.3.(2015·北京高考改编)圆心为(1,1)且过原点的圆的方程是________.4.已知直线x+y=a与圆x2+y2=1交于A、B两点,且|+|=|-|(其中O为坐标原点),则实数a的值为________.5.(2015·广东高考改编)已知双曲线C:-=1(a>0,b>0)的离心率e =,且其右焦点为F2(5,0),则双曲线C的方程为________.6.(2015·长沙模拟)双曲线x2-=1的右焦点为F,O为坐标原点,以F 为圆心,FO为半径的圆与此双曲线的两条渐近线分别交于点A,B(不同于O点),则|AB|=________.7.(2014·江苏高考)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为________.8.(2015·唐山调研)椭圆C:+=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为________.9.(2015·重庆高考改编)已知直线l:x+ay-1=0(a∈R)是圆C:x2+y2-4x-2y+1=0的对称轴,过点A(-4,a)作圆C的一条切线,切点为B,则AB=________.10.(2015·山东高考改编)一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为________.11.(2015·青岛模拟)已知双曲线-=1(a>0,b>0)的右焦点为F,过F 作斜率为-1的直线交双曲线的渐近线于点P,点P在第一象限,O为坐标原点,若△OFP的面积为,则该双曲线的离心率为________.12.已知动点P(x,y)在椭圆C:+=1上,点F为椭圆C的右焦点,若点Q 满足=1,且·=0,则的最大值为________.13.(2015·衡水中学冲刺卷)已知F1,F2是双曲线-=1(a>0,b>0)的两个焦点,M为该双曲线右支上一点,且MF,F1F,MF成等差数列,该点到x轴的距离为,则该双曲线的离心率为________.14.(2015·合肥质检)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x 轴,则椭圆E的方程为________.二、解答题(本大题共6小题,共90分,解答时写出必要的文字说明,证明过程或演算步骤)15.(本小题满分14分)(2015·全国卷Ⅰ)已知过点A(0,1)且斜率为k的直线l与圆C:(x-2)2+(y-3)2=1交于M,N两点.(1)求k的取值范围;(2)若·=12,其中O为坐标原点,求MN.16.(本小题满分14分)(2015·太原模拟)已知动点A在椭圆C:+=1(a>b>0)上,动点B在直线x=-2上,且满足⊥(O为坐标原点),椭圆C 上的点M到两焦点距离之和为4.(1)求椭圆C的方程;(2)判断直线AB与圆x2+y2=3的位置关系,并证明你的结论.17.(本小题满分14分)(2015·北京高考)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.18.(本小题满分16分)(2014·江苏高考)如图,在平面直角坐标系xOy 中,F1,F2分别是椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为,且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.19.(本小题满分16分)(2015·苏、锡、常、镇模拟)如图,已知椭圆:+y2=1,点A,B是它的两个顶点,过原点且斜率为k的直线l与线段AB相交于点D,且与椭圆相交于E、F两点.(1)若=6,求k的值;(2)求四边形AEBF面积的最大值.20.(本小题满分16分)(2012·江苏高考)如图,在平面直角坐标系xOy 中,椭圆+=1(a>b>0)的左、右焦点分别为F1(-c,0),F2(c,0).已知点(1,e)和都在椭圆上,其中e为椭圆的离心率.(1)求椭圆的方程;(2)设A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,AF2与BF1交于点P.(ⅰ)若AF1-BF2=,求直线AF1的斜率;(ⅱ)求证:PF1+PF2是定值.专题五 解析几何真题体验·引领卷1.y=±x [由双曲线方程可知a=4,b=3,所以两条渐近线方程为y =±x.]2.2x+y+5=0或2x+y-5=0 [设所求的切线方程为2x+y+c=0(c≠1),依题意,得=,则c=±5.∴所求切线的方程为2x+y+5=0或2x+y-5=0.]3.2 [建立关于m的方程求解.∵c2=m+m2+4,∴e2===5,∴m2-4m+4=0,∴m=2.]4.4 [易知=(3,-1),=(-3,-9).则·=3×(-3)+(-1)×(-9)=0,所以⊥,故过三点A,B,C的圆以AC为直径,其方程为(x-1)2+(y+2)2=25.令x=0,得(y+2)2=24,解之得y1=-2-2,y2=-2+2.因此|MN|=|y1-y2|=4.]5.(x-1)2+y2=2 [直线mx-y-2m-1=0恒过定点(2,-1),由题意,得半径最大的圆的半径r==.故所求圆的标准方程为(x-1)2+y2=2.]6.4 [法一 x=3代入-=1,y=±,不妨设M(3,),右焦点F(4,0).∴MF==4.法二 由双曲线第二定义知,M到右焦点F的距离与M到右准线x==1的距离比为离心率e==2,∴=2,得MF=4.]7. [不妨设F(-c,0),虚轴的一个端点为B(0,b).依题意,点B恰为线段PF的中点,则P(c,2b),将P(c,2b)代入双曲线方程,得=5,因此e=.]8. [圆C的标准方程为(x-4)2+y2=1,设圆心C(4,0)到直线y=kx-2的距离为d,则d=,由题意知问题转化为d≤2,即d=≤2,得0≤k≤,所以k max=.]9. [双曲线x2-y2=1的渐近线为x±y=0.又直线x-y+1=0与渐近线x-y=0平行,所以两平行线间的距离d==,由点P到直线x-y+1=0的距离大于c恒成立.所以c≤,故c的最大值为.]10. [如图,设双曲线E的方程为-=1(a>0,b>0),则AB=2a,由双曲线的对称性,可设点M(x1,y1)在第一象限内,过M作MN⊥x轴于点N(x1,0).∵△ABM为等腰三角形,且∠ABM=120°,∴BM=AB=2a,∠MBN=60°.在Rt△BMN中,y1=MN=2asin 60°=a,x1=OB+BN=a+2acos 60°=2a.将点M(x1,y1)的坐标代入-=1,可得a2=b2,所以双曲线E的离心率e===.]11.解 (1)由题设,圆心C是直线y=2x-4和y=x-1的交点,解得点C(3,2),于是切线的斜率必存在.设过A(0,3)的圆C的切线方程为y=kx+3,由题意,得=1,解得k=0或-,故所求切线方程为y=3或3x+4y-12=0.(2)因为圆心在直线y=2x-4上,所以圆C的方程为(x-a)2+[y-2(a-2)]2=1.设点M(x,y),因为MA=2MO,所以=2 ,化简得x2+y2+2y-3=0,即x2+(y+1)2=4,所以点M在以D(0,-1)为圆心,2为半径的圆上.由题意,点M(x,y)在圆C上,所以圆C与圆D有公共点,则|2-1|≤CD≤2+1,即1≤≤3.整理得-8≤5a2-12a≤0.由5a2-12a+8≥0,得a∈R;由5a2-12a≤0,得0≤a≤.所以点C的横坐标a的取值范围是.12.解 (1)由题意,得=且c+=3,解得a=,c=1,则b=1,所以椭圆的标准方程为+y2=1.(2)当AB⊥x轴时,AB=,又CP=3,不合题意.当AB与x轴不垂直时,设直线AB的方程为y=k(x-1),A(x1,y1),B(x2,y2),将AB的方程代入椭圆方程,得(1+2k2)x2-4k2x+2(k2-1)=0,则x1,2=,C的坐标为,且AB===.若k=0,则线段AB的垂直平分线为y轴,与左准线平行,不合题意.从而k≠0,故直线PC的方程为y+=-,则P点的坐标为,从而PC=.因为PC=2AB,所以=,解得k=±1.此时直线AB的方程为y=x-1或y=-x+1.13.解 (1)由于椭圆的离心率e=,且a2=b2+c2,∴a2=3c2,且b2=2c2,设直线FM的斜率为k(k>0),且焦点F(-c,0).则直线FM的方程为y=k(x+c).由已知,有+=,解得k=.(2)由(1)得椭圆方程为+=1,直线FM的方程为y=(x+c),两个方程联立,消去y,整理得3x2+2cx-5c2=0,解之得x=-c或x=c.因为点M在第一象限,则点M的坐标为.由|FM|==.解得c=1,所以椭圆的方程为+=1.(3)设点P的坐标为(x,y),直线FP的斜率为t,得t=,即y=t(x+1)(x≠-1),与椭圆方程联立.消去y,整理得2x2+3t2(x+1)2=6,又由已知,得t=>,解得-<x<-1,或-1<x<0.设直线OP的斜率为m,得m=,即y=mx(x≠0),与椭圆方程联立,整理得m2=-.①当x∈时,有y=t(x+1)<0.因此m>0,于是m=,得m∈.②当x∈(-1,0)时,有y=t(x+1)>0.因此m<0,于是m=-,得m∈.综上,直线OP的斜率的取值范围是∪.经典模拟·演练卷1.9 [由题意得c=,所以=,解得m=9.]2.2x+y-3=0 [易知点A(1,1)是一个切点.由圆的几何性质,过点(3,1)、(1,0)的直线与直线AB垂直.∴k AB=-=-2.所以直线AB的方程为y-1=-2(x-1),即2x+y-3=0.]3.(x-2)2+(y±)2=4 [因为圆C经过(1,0),(3,0)两点,所以圆心在直线x=2上,又圆与y轴相切,所以半径为2,设圆心坐标为(2,b),则(2-1)2+b2=4,∴b2=3,b=±.]4.3 [已知椭圆+=1(0<m<9)中,a2=9,b2=m.AF2+BF2=4a-AB≤10,∴AB≥2,AB min===2,解得m=3.]5.y=±2x [由题意知:==1+=5,则=2,所以渐近线的方程为y =±2x.]6.(x+1)2+y2=2 [由题设,圆C的圆心C(-1,0),设半径为r,又圆C与圆C′:(x-2)2+(y-3)2=8相外切,∴|CC′|=2+r.又|CC′|==3,则r=,故所求圆C的方程为(x+1)2+y2=2.]7. [由β=2α,得∠APB=α,则|PB|=|AB|=2a,设P(x,y).∴x=a+2acos β,y=2asin β,则P(a+2acos β,2asin β),代入双曲线方程(a+2acos β)2-(2asin β)2=a2,cos 2β+cos β=0.∴2cos2β+cos β-1=0,则cos β=,cos β=-1(舍去),故β=.]8.6 [由∠APB=90°,知点P在以线段AB为直径的圆上,设该圆的圆心为O,则O(0,0),半径r=m,由圆的几何性质,当圆C与圆O相内切时,圆的半径取得最大值.∴|OC|==m-1,∴m=6.故m的最大值为6.]9.(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244 [设圆的方程为(x-a)2+(y-b)2=r2,点A(2,3)关于直线x+2y=0的对称点仍在圆上,说明圆心在直线x+2y=0上,即有a+2b=0,又(2-a)2+(3-b)2=r2,而圆与直线x-y+1=0相交的弦长为2,故r2-=2,依据上述方程,解得或所以,所求圆的方程为(x-6)2+(y+3)2=52或(x-14)2+(y+7)2=244.]10.(1,2] [双曲线的渐近线方程为y=±bx,则有≥1,解得b2≤3,则e2=1+b2≤4,得1<e≤2.]11.解 (1)设椭圆C的方程为+=1(a>b>0),由焦点F(-2,0)知c=2.∴a2=4+b2,①又=,②联立①,②得a2=16,b2=12.所以椭圆C的方程为+=1.(2)设P(x,y)为椭圆上的动点,由于椭圆方程为+=1.故-4≤x≤4.由点M(m,0)在椭圆的长轴上,则-4≤m≤4.①由=(x-m,y),所以||2=(x-m)2+y2=(x-m)2+12=x2-2mx+m2+12=(x-4m)2+12-3m2.∵当||最小时,点P恰好落在椭圆的右顶点.∴当x=4时,||2取得最小值.由于x∈[-4,4],故4m≥4,则m≥1,②由①,②知,实数m的取值范围是[1,4].12.解 (1)因为=且A(3,0),所以BP=DA=2,而B,P关于y轴对称,所以点P的横坐标为1,从而得P(1,2),B(-1,2),所以直线BD的方程为x+y-1=0.(2)线段BP的垂直平分线方程为x=0,线段AP的垂直平分线方程为y=x -1,所以圆C的圆心为(0,-1),且圆C的半径为r=,又圆心(0,-1)到直线BD的距离为d=,所以直线BD被圆C截得的弦长为2=4.(3)假设存在这样的两个圆M与圆N,其中PB是圆M的弦,PA是圆N的弦,则点M一定在y轴上,点N一定在线段PA的垂直平分线y=x-1上,当圆M 和圆N是两个相外切的等圆时,一定有P,M,N在一条直线上,且PM=PN.设M(0,b),则N(2,4-b),根据N(2,4-b)在直线y=x-1上,解得b=3.所以M(0,3),N(2,1),PM=PN=,故存在这样的两个圆,且方程分别为x2+(y-3)2=2,(x-2)2+(y-1)2=2.13.(1)解 由已知得b=,=,得a=2,所以椭圆的方程为+=1.椭圆的右焦点为F(1,0),此时直线l的方程为y=-x+.由解得x1=0,x2=,所以|CD|=|x1-x2|=×=.(2)证明 当直线l与x轴垂直时,与题意不符,所以直线l与x轴不垂直,即直线l的斜率存在.设直线l的方程为y=kx+(k≠0且k≠).将其代入椭圆的方程,化简得(3+4k2)x2+8kx=0,解得x1=0,x2=.将其代入直线l的方程,得y1=,y2=.所以D点的坐标为.因为B(-2,0),k BD==-·,所以直线BD的方程为y=-(x+2).又直线AC的方程为+=1,联立直线AC与直线BD的方程解得即Q.而P,所以·=·=4+0=4.所以·为定值4.专题过关·提升卷1.9 [圆C1:x2+y2=1的圆心C1(0,0),半径r1=1.圆C2:x2+y2-6x -8y+m=0的圆心为C2(3,4),半径为r2=.由于两圆外切,则|C1C2|=r1+r2,所以5=1+,解之得m=9.]2.9 [由双曲线定义,|PF2-PF1|=6,又PF1=3,知点P在双曲线的左支上,则PF2-PF1=6.所以PF2=9.]3.(x-1)2+(y-1)2=2 [因为圆心为(1,1)且过原点,所以该圆的半径r==,则该圆的方程为(x-1)2+(y-1)2=2.]4.±1 [∵|+|=|-|,∴以,为邻边作出的平行四边形OACB为矩形,则⊥,所以△OAB为直角三角形,因此AB=.于是圆心O到直线x+y=a的距离d==,从而,得=,∴a=±1.]5.-=1 [因为所求双曲线的右焦点为F2(5,0)且离心率为e==,所以c=5,a=4,b2=c2-a2=9,所以所求双曲线方程为-=1.]6.2 [由双曲线x2-=1,右焦点F(2,0),渐近线方程分别为y=±x,代入圆F的方程(x-2)2+y2=4,得x=1,y=±.故AB=2.]7. [圆心为(2,-1),半径r=2.圆心到直线的距离d==,所以弦长为2=2=.]8.-1 [设F(-c,0),点A(m,n),依题意,得解之得A.代入椭圆方程,有+=1.又b2=a2-c2代入,得c4-8a2c2+4a4=0.所以e4-8e2+4=0,e2=4-2,e=-1.]9.6 [圆C的标准方程为(x-2)2+(y-1)2=4,圆心为C(2,1),半径为r=2,因此2+a×1-1=0,a=-1,即A(-4,-1),AB===6.]10.-或- [圆(x+3)2+(y-2)2=1的圆心M(-3,2),半径r=1.点N(-2,-3)关于y轴的对称点N′(2,-3).如图所示,反射光线一定过点N′(2,-3)且斜率存在,∴反射光线所在直线方程为y+3=k(x-2),即kx-y-(2k+3)=0.∵反射光线与已知圆相切,∴=1,整理得12k2+25k+12=0,解得k=-或k=-.]11. [设P(x P,y P),依题设x P>0,且y P>0.由S△OFP=·c·y P==,∴y P=.又直线PF的方程为y=-(x-c),∴x P=,又点P在双曲线的渐近线bx-ay=0上,∴·b-=0,则a=3b,c=b,故双曲线的离心率e==.]12. [如图所示,由方程+=1知:顶点A(-4,0),B(4,0),右焦点F(2,0).又||=1,∴点Q的轨迹是以焦点F(2,0)为圆心,以1为半径的圆.由·=0,知PQ⊥FQ.因此直线PQ是圆F的切线,且Q为切点,∴PQ2=PF2-1,当PF最长时,PQ取最大值.当点P与椭圆的左顶点A重合时,PF有最大值AF=6.所以||的最大值为=.]13. [依题意,MF+MF=F1F.∴△MF1F2是以M为直角顶点的直角三角形.因此MF1·MF2=F1F2·=2c·=c2.又MF+MF=(MF1-MF2)2+2MF1MF2=4c2.∴(2a)2+2c2=4c2,则c2=2a2,故双曲线的离心率e==.]14.x2+y2=1 [设点A在点B上方,F1(-c,0),F2(c,0),其中c=,则可设A(c,b2),B(x0,y0),由AF1=3F1B,得=3,故即代入方程+b2=1,得b2=,故所求椭圆E的方程为x2+y2=1.]15.解 (1)由题设,可知直线l的方程为y=kx+1,因为直线l与圆C交于两点,所以<1.解得<k<.所以k的取值范围为.(2)设M(x1,y1),N(x2,y2).将y=kx+1代入圆C的方程(x-2)2+(y-3)2=1,整理得(1+k2)x2-4(1+k)x+7=0.所以x1+x2=,x1x2=.·=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=+8.由题设可得+8=12,解得k=1,所以l的方程为y=x+1.故圆C的圆心(2,3)在l上,所以MN=2.16.解 (1)由题意得∴a2=12,b2=3,∴椭圆C的方程为+=1.(2)直线AB与圆x2+y2=3相切,证明如下:由题意可设A(x0,y0),B(-2,t)(t∈R),则直线AB的方程为(y0-t)x-(x0+2)y+(tx0+2y0)=0,∵⊥,∴2x0=ty0,∴t=,∵动点A在椭圆C上,∴+=1,∴y=12-4x,∴原点O到直线AB的距离d======,∴直线AB与圆x2+y2=3相切.17.解 (1)由点P(0,1)在椭圆上,知b=1,又离心率e==且a2=b2+c2.解得c2=1,a2=2,故椭圆C的方程为+y2=1.设M(x M,0).因为m≠0,所以-1<n<1.直线PA的方程为y-1=x.所以x M=,即M.(2)因为点B与点A关于x轴对称,所以B(m,-n).设N(x N,0),则x N=.“存在点Q(0,y Q)使得∠OQM=∠ONQ”等价于“存在点Q(0,y Q)使得=”,即y Q满足y=|x M||x N|.因为x M=,x N=,+n2=1.所以y=|x M||x N|==2.所以y Q=或y Q=-.故在y轴上存在点Q,使得∠OQM=∠ONQ,点Q的坐标为(0,)或(0,-).18.解 设椭圆的焦距为2c,则F1(-c,0),F2(c,0).(1)因为B(0,b),所以BF2==a.又BF2=,故a=.因为点C在椭圆上,所以+=1.解得b2=1.故所求椭圆的方程为+y2=1.(2)因为B(0,b),F2(c,0)在直线AB上,所以直线AB的方程为+=1.解方程组得所以点A的坐标为.又AC垂直于x轴,由椭圆的对称性,可得点C的坐标为.因为直线F1C的斜率为=,直线AB的斜率为-,且F1C⊥AB,所以·=-1.又b2=a2-c2,整理得a2=5c2.故e2=.因此e=.19.解 (1)依题设得椭圆的顶点A(2,0),B(0,1),则直线AB的方程为x+2y-2=0,设EF的方程为y=kx(k>0).如题图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,联立直线l与椭圆的方程消去y得方程(1+4k2)x2=4,则x2=-x1=,由=6知x0-x1=6(x2-x0),得x0=(6x2+x1)=x2=;由D在AB上知x0+2kx0-2=0,得x0=.所以=,化简得24k2-25k+6=0,解之得k=或k=.(2)根据点到直线的距离公式知,点A,B到EF的距离分别为h1=,h2=.又EF=4,所以四边形AEBF的面积为S=EF(h1+h2)==2=2=2≤2,当且仅当4k=,即当k=时,取等号.所以S的最大值为2.20.解 (1)由题设知a2=b2+c2,e=,由点(1,e)在椭圆上,得+=1,解得b2=1,于是c2=a2-1,又点在椭圆上,所以+=1,即+=1,解得a2=2.因此,所求椭圆的方程是+y2=1.(2)由(1)知F1(-1,0),F2(1,0),又直线AF1与BF2平行,所以可设直线AF1的方程为x+1=my,直线BF2的方程为x-1=my.设A(x1,y1),B(x2,y2),y1>0,y2>0.由,得(m2+2)y-2my1-1=0,解得y1=,故AF1===.①同理,BF2=.②(ⅰ)由①②得AF1-BF2=,解=得m2=2,注意到m>0,故m=.所以直线AF1的斜率为=.(ⅱ)证明 因为直线AF1与BF2平行,所以=,于是=,故PF1=BF1.由B点在椭圆上知BF1+BF2=2,从而PF1=(2-BF2).同理PF2=·(2-AF1).因此,PF1+PF2=(2-BF2)+·(2-AF1)=2-.又由①②知AF1+BF2=,AF1·BF2=,所以PF1+PF2=2-=.因此,PF1+PF2是定值.。
专题五 解析几何专题过关·提升卷(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.(2015·长沙调研)若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________. 2.(2015·福建高考改编)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且PF 1=3,则PF 2=________.3.(2015·北京高考改编)圆心为(1,1)且过原点的圆的方程是________.4.已知直线x +y =a 与圆x 2+y 2=1交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|(其中O 为坐标原点),则实数a 的值为________.5.(2015·广东高考改编)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率e =54,且其右焦点为F 2(5,0),则双曲线C 的方程为________.6.(2015·长沙模拟)双曲线x 2-y 23=1的右焦点为F ,O 为坐标原点,以F 为圆心,FO 为半径的圆与此双曲线的两条渐近线分别交于点A ,B (不同于O 点),则|AB |=________. 7.(2014·江苏高考)在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.8.(2015·唐山调研)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,若F 关于直线3x +y =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为________.9.(2015·重庆高考改编)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则AB =________.10.(2015·山东高考改编)一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为________.11.(2015·青岛模拟)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,过F 作斜率为-1的直线交双曲线的渐近线于点P ,点P 在第一象限,O 为坐标原点,若△OFP 的面积为a 2+b 28,则该双曲线的离心率为________.12.已知动点P (x ,y )在椭圆C :x 216+y 212=1上,点F 为椭圆C 的右焦点,若点Q 满足QF →=1,且QP →·QF →=0,则PQ →的最大值为________.13.(2015·衡水中学冲刺卷)已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,M 为该双曲线右支上一点,且MF 21,12F 1F 22,MF 22成等差数列,该点到x 轴的距离为c 2,则该双曲线的离心率为________.14.(2015·合肥质检)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________. 二、解答题(本大题共6小题,共90分,解答时写出必要的文字说明,证明过程或演算步骤) 15.(本小题满分14分)(2015·全国卷Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求MN .16.(本小题满分14分)(2015·太原模拟)已知动点A 在椭圆C :y 2a 2+x 2b 2=1(a >b >0)上,动点B 在直线x =-2上,且满足OA →⊥OB →(O 为坐标原点),椭圆C 上的点M ⎝⎛⎭⎪⎫32,3到两焦点距离之和为4 3. (1)求椭圆C 的方程;(2)判断直线AB 与圆x 2+y 2=3的位置关系,并证明你的结论.17.(本小题满分14分)(2015·北京高考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线PA 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.18.(本小题满分16分)(2014·江苏高考)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.19.(本小题满分16分)(2015·苏、锡、常、镇模拟)如图,已知椭圆:x 24+y 2=1,点A ,B是它的两个顶点,过原点且斜率为k 的直线l 与线段AB 相交于点D ,且与椭圆相交于E 、F 两点.(1)若ED →=6DF →,求k 的值; (2)求四边形AEBF 面积的最大值.20.(本小题满分16分)(2012·江苏高考)如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b2=1(a>b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0).已知点(1,e )和⎝ ⎛⎭⎪⎫e ,32都在椭圆上,其中e 为椭圆的离心率.(1)求椭圆的方程;(2)设A ,B 是椭圆上位于x 轴上方的两点,且直线AF 1与直线BF 2平行,AF 2与BF 1交于点P . (ⅰ)若AF 1-BF 2=62,求直线AF 1的斜率; (ⅱ)求证:PF 1+PF 2是定值.专题过关·提升卷1.9 [圆C 1:x 2+y 2=1的圆心C 1(0,0),半径r 1=1.圆C 2:x 2+y 2-6x -8y +m =0的圆心为C 2(3,4),半径为r 2=25-m .由于两圆外切,则|C 1C 2|=r 1+r 2,所以5=1+25-m ,解之得m =9.]2.9 [由双曲线定义,|PF 2-PF 1|=6,又PF 1=3,知点P 在双曲线的左支上,则PF 2-PF 1=6.所以PF 2=9.]3.(x -1)2+(y -1)2=2 [因为圆心为(1,1)且过原点,所以该圆的半径r =12+12=2,则该圆的方程为(x -1)2+(y -1)2=2.] 4.±1 [∵|OA →+OB →|=|OA →-OB →|,∴以OA →,OB →为邻边作出的平行四边形OACB 为矩形, 则OA →⊥OB →,所以△OAB 为直角三角形,因此AB = 2.于是圆心O 到直线x +y =a 的距离d =AB 2=22,从而,得|0+0-a |12+12=22,∴a =±1.] 5.x 216-y 29=1 [因为所求双曲线的右焦点为F 2(5,0)且离心率为e =c a =54,所以c =5,a =4,b 2=c 2-a 2=9,所以所求双曲线方程为x 216-y 29=1.]6.2 3 [由双曲线x 2-y 23=1,右焦点F (2,0),渐近线方程分别为y =±3x ,代入圆F 的方程(x -2)2+y 2=4,得x =1,y =± 3. 故AB =2 3.]7.2555[圆心为(2,-1),半径r =2.圆心到直线的距离d =|2+2×(-1)-3|1+4=355,所以弦长为2r 2-d 2=222-⎝ ⎛⎭⎪⎫3552=2555.]8.3-1 [设F (-c ,0),点A (m ,n ),依题意,得⎩⎪⎨⎪⎧n m +c ·(-3)=-1,3(m -c )2+n 2=0,解之得A ⎝ ⎛⎭⎪⎫c2,32c . 代入椭圆方程,有c 24a 2+3c 24b2=1.又b 2=a 2-c 2代入,得c 4-8a 2c 2+4a 4=0. 所以e 4-8e 2+4=0,e 2=4-23,e =3-1.] 9.6 [圆C 的标准方程为(x -2)2+(y -1)2=4, 圆心为C (2,1),半径为r =2, 因此2+a ×1-1=0,a =-1, 即A (-4,-1),AB =AC 2-r 2=(-4-2)2+(-1-1)2-4=6.]10.-34或-43[圆(x +3)2+(y -2)2=1的圆心M (-3,2),半径r =1.点N (-2,-3)关于y 轴的对称点N ′(2,-3).如图所示,反射光线一定过点N ′(2,-3)且斜率存在,∴反射光线所在直线方程为y +3=k (x -2),即kx -y -(2k +3)=0. ∵反射光线与已知圆相切,∴|-3k -2-2k -3|k 2+(-1)2=1,整理得12k 2+25k +12=0, 解得k =-34或k =-43.]11.103[设P (x P ,y P ),依题设x P >0,且y P >0. 由S △OFP =12·c ·y P =a 2+b 28=c 28,∴y P =c4.又直线PF 的方程为y =-(x -c ),∴x P =3c4,又点P 在双曲线的渐近线bx -ay =0上, ∴3c 4·b -ac4=0,则a =3b ,c =10b , 故双曲线的离心率e =ca =103.] 12.35 [如图所示,由方程x 216+y 212=1知:顶点A (-4,0),B (4,0),右焦点F (2,0).又|QF →|=1,∴点Q 的轨迹是以焦点F (2,0)为圆心,以1为半径的圆. 由QP →·QF →=0,知PQ ⊥FQ .因此直线PQ 是圆F 的切线,且Q 为切点, ∴PQ 2=PF 2-1,当PF 最长时,PQ 取最大值. 当点P 与椭圆的左顶点A 重合时,PF 有最大值AF =6. 所以|PQ →|的最大值为62-1=35.] 13. 2 [依题意,MF 21+MF 22=F 1F 22.∴△MF 1F 2是以M 为直角顶点的直角三角形. 因此MF 1·MF 2=F 1F 2·c 2=2c ·c2=c 2.又MF 21+MF 22=(MF 1-MF 2)2+2MF 1MF 2=4c 2.∴(2a )2+2c 2=4c 2,则c 2=2a 2, 故双曲线的离心率e =ca= 2.]14.x 2+32y 2=1 [设点A 在点B 上方,F 1(-c ,0),F 2(c ,0),其中c =1-b 2,则可设A (c ,b 2),B (x 0,y 0), 由AF 1=3F 1B ,得AF 1→=3F 1B →,故⎩⎪⎨⎪⎧-2c =3(x 0+c ),-b 2=3y 0,即⎩⎪⎨⎪⎧x 0=-53c ,y 0=-13b 2.代入方程25(1-b 2)9+19b 2=1,得b 2=23,故所求椭圆E 的方程为x 2+32y 2=1.]15.解 (1)由题设,可知直线l 的方程为y =kx +1, 因为直线l 与圆C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎭⎪⎫4-73,4+73.(2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入圆C 的方程(x -2)2+(y -3)2=1,整理得(1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2.OM →·ON →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k (1+k )1+k2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆C 的圆心(2,3)在l 上,所以MN =2.16.解 (1)由题意得⎩⎪⎨⎪⎧2a =43,9a 2+34b2=1,∴a 2=12,b 2=3,∴椭圆C 的方程为y 212+x 23=1. (2)直线AB 与圆x 2+y 2=3相切,证明如下: 由题意可设A (x 0,y 0),B (-2,t )(t ∈R ),则直线AB 的方程为(y 0-t )x -(x 0+2)y +(tx 0+2y 0)=0, ∵OA →⊥OB →,∴2x 0=ty 0,∴t =2x 0y 0,∵动点A 在椭圆C 上,∴y 2012+x 203=1,∴y 20=12-4x 20,∴原点O 到直线AB 的距离d =|tx 0+2y 0|(y 0-t )2+(x 0+2)2=|tx 0+2y 0|y 20-2ty 0+t 2+x 20+4x 0+4=|tx 0+2y 0|y 20+t 2+x 20+4=2|x 20+y 20|x 20y 20+y 40+4x 20+4y 20=6|4-x 20|12(x 40-8x 20+16)=3, ∴直线AB 与圆x 2+y 2=3相切.17.解 (1)由点P (0,1)在椭圆上,知b =1, 又离心率e =c a =22且a 2=b 2+c 2.解得c 2=1,a 2=2, 故椭圆C 的方程为x 22+y 2=1.设M (x M ,0).因为m ≠0,所以-1<n <1. 直线PA 的方程为y -1=n -1mx . 所以x M =m 1-n ,即M ⎝ ⎛⎭⎪⎫m1-n ,0.(2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ). 设N (x N ,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得OM OQ =OQ ON”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1.所以y 2Q =|x M ||x N |=m 21-n 2=2.所以y Q =2或y Q =- 2. 故在y 轴上存在点Q ,使得∠OQM =∠ONQ ,点Q 的坐标为(0,2)或(0,-2). 18.解 设椭圆的焦距为2c ,则F 1(-c ,0),F 2(c ,0).(1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2.因为点C ⎝ ⎛⎭⎪⎫43,13在椭圆上, 所以169a 2+19b2=1.解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c ,0)在直线AB 上,所以直线AB 的方程为x c +y b=1. 解方程组⎩⎪⎨⎪⎧x c +y b =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c 2,y 1=b (c 2-a 2)a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b . 所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2ca 2+c 2,b (c 2-a 2)a 2+c 2. 又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a 2-c 2)a 2+c 2. 因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-b c ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c 3·⎝ ⎛⎭⎪⎫-b c =-1. 又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15.因此e =55. 19.解 (1)依题设得椭圆的顶点A (2,0),B (0,1),则直线AB 的方程为x +2y -2=0,设EF 的方程为y =kx (k >0).如题图,设D (x 0,kx 0),E (x 1,kx 1),F (x 2,kx 2),其中x 1<x 2,联立直线l 与椭圆的方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx消去y 得方程(1+4k 2)x 2=4,则x 2=-x 1=21+4k 2,由ED →=6DF →知x 0-x 1=6(x 2-x 0),得x 0=17(6x 2+x 1)=57x 2=1071+4k2; 由D 在AB 上知x 0+2kx 0-2=0,得x 0=21+2k. 所以21+2k =1071+4k2,化简得24k 2-25k +6=0, 解之得k =23或k =38. (2)根据点到直线的距离公式知,点A ,B 到EF 的距离分别为 h 1=2k1+k 2,h 2=11+k 2.又EF =41+k 21+4k 2,所以四边形AEBF 的面积为S =12EF (h 1+h 2)=2(1+2k )1+4k2 =21+4k 2+4k 1+4k 2=21+4k1+4k 2 =21+44k +1k≤22, 当且仅当4k =1k ,即当k =12时,取等号. 所以S 的最大值为2 2.20.解 (1)由题设知a 2=b 2+c 2,e =ca,由点(1,e )在椭圆上, 得1a 2+c 2a 2b 2=1,解得b 2=1,于是c 2=a 2-1, 又点⎝⎛⎭⎪⎫e ,32在椭圆上,所以e 2a 2+34b 2=1,即a 2-1a 4+34=1,解得a 2=2. 因此,所求椭圆的方程是x 22+y 2=1. (2)由(1)知F 1(-1,0),F 2(1,0),又直线AF 1与BF 2平行,所以可设直线AF 1的方程为x +1=my ,直线BF 2的方程为x -1=my .设A (x 1,y 1),B (x 2,y 2),y 1>0,y 2>0. 由⎩⎪⎨⎪⎧x 212+y 21=1x 1+1=my 1,得(m 2+2)y 21-2my 1-1=0,解得y 1=m +2m 2+2m 2+2, 故AF 1=(x 1+1)2+(y 1-0)2=(my 1)2+y 21 =2(m 2+1)+m m 2+1m 2+2.① 同理,BF 2=2(m 2+1)-m m 2+1m 2+2.② (ⅰ)由①②得AF 1-BF 2=2m m 2+1m 2+2,解2m m 2+1m 2+2=62得m 2=2,注意到m >0, 故m = 2.所以直线AF 1的斜率为1m =22. (ⅱ)证明 因为直线AF 1与BF 2平行,所以PB PF 1=BF 2AF 1,于是PB +PF 1PF 1=BF 2+AF 1AF 1,故PF 1=AF 1AF 1+BF 2BF 1.由B 点在椭圆上知BF 1+BF 2=22, 从而PF 1=AF 1AF 1+BF 2(22-BF 2).同理PF 2=BF 2AF 1+BF 2·(22-AF 1). 因此,PF 1+PF 2=AF 1AF 1+BF 2(22-BF 2)+BF 2AF 1+BF 2·(22-AF 1)=22-2AF 1·BF 2AF 1+BF 2. 又由①②知AF 1+BF 2=22(m 2+1)m 2+2,AF 1·BF 2=m 2+1m 2+2,所以PF 1+PF 2=22-22=322.因此,PF 1+PF 2是定值.。
专题五 解析几何经典模拟²演练卷一、填空题1.(2015²南通²泰州调研)双曲线x 216-y 2m =1(m >0)的离心率为54,则m 等于________.2.(2015²河南名校联考)过点(3,1)作圆(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为________.3.(2015²广州模拟)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为________.4.(2015²江苏五市模拟)已知椭圆x 29+y 2m=1(0<m <9),左、右焦点分别为F 1,F 2,过F 1的直线交椭圆于A ,B 两点,若AF 2+BF 2的最大值为10,则m 的值为________.5.(2015²北京东城调研)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为5,则C 的渐近线方程为________.6.(2015²潍坊三模)已知圆C 的圆心是直线x -y +1=0与x 轴的交点,且圆C 与圆(x -2)2+(y -3)2=8相外切,则圆C 的方程为________.7.(2015²烟台模拟)等轴双曲线x 2-y 2=a 2(a >0)的左、右顶点分别为A 、B ,P 是双曲线上在第一象限内的一点,若直线PA ,PB 的倾斜角分别为α,β,且β=2α,那么β的值是________.8.(2015²济南模拟)已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0),若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________.9.(2015²泰州调研)若圆上一点A (2,3)关于直线x +2y =0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为22,则圆的方程是________.10.(2015²苏北四市调研)若双曲线x 2-y 2b2=1(b >0)的一条渐近线与圆x 2+(y -2)2=1至多有一个公共点,则双曲线离心率的取值范围是________. 二、解答题11.(2015²哈尔滨调研)椭圆C 的中心在原点,一个焦点F (-2,0),且短轴长与长轴长的比是32. (1)求椭圆C 的方程;(2)设点M (m ,0)在椭圆C 的长轴上,点P 是椭圆上任意一点.当MP →最小时,点P 恰好落在椭圆的右顶点,求实数m 的取值范围.12.(2015²南京、盐城模拟)如图,在平面直角坐标系xOy 中,已知点A 为椭圆x 29+2y 29=1的右顶点,点D (1,0),点P ,B 在椭圆上,BP →=DA →.(1)求直线BD 的方程;(2)求直线BD 被过P ,A ,B 三点的圆C 截得的弦长;(3)是否存在分别以PB ,PA 为弦的两个相外切的等圆?若存在,求出这两个圆的方程;若不存在,请说明理由.13.(2015²江苏高考命题原创卷)如图,过点C (0,3)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为12,椭圆与x 轴交于A (a ,0)和B (-a ,0)两点,过点C 的直线l 与椭圆交于另一点D ,并与x 轴交于点P ,直线AC 与直线BD 交于点Q .(1)当直线l 过椭圆的右焦点时,求线段CD 的长; (2)当点P 异于点B 时,求证:OP →²OQ →为定值.经典模拟²演练卷1.9 [由题意得c =16+m ,所以16+m 4=54,解得m =9.] 2.2x +y -3=0 [易知点A (1,1)是一个切点.由圆的几何性质,过点(3,1)、(1,0)的直线与直线AB 垂直.∴k AB =-11-03-1=-2.所以直线AB 的方程为y -1=-2(x -1),即2x+y -3=0.]3.(x -2)2+(y ±3)2=4 [因为圆C 经过(1,0),(3,0)两点, 所以圆心在直线x =2上,又圆与y 轴相切,所以半径为2,设圆心坐标为(2,b ),则(2-1)2+b 2=4, ∴b 2=3,b =± 3.]4.3 [已知椭圆x 29+y 2m=1(0<m <9)中,a 2=9,b 2=m .AF 2+BF 2=4a -AB ≤10,∴AB ≥2,AB min =2b 2a =2m3=2,解得m =3.]5.y =±2x [由题意知:c 2a 2=a 2+b 2a 2=1+b 2a 2=5,则ba=2,所以渐近线的方程为y =±2x .]6.(x +1)2+y 2=2 [由题设,圆C 的圆心C (-1,0),设半径为r , 又圆C 与圆C ′:(x -2)2+(y -3)2=8相外切, ∴|CC ′|=22+r .又|CC ′|=[2-(-1)]2+32=32,则r =2, 故所求圆C 的方程为(x +1)2+y 2=2.] 7.π3 [由β=2α,得∠APB =α, 则|PB |=|AB |=2a ,设P (x ,y ).∴x =a +2a cos β,y =2a sin β,则P (a +2a cos β,2a sin β), 代入双曲线方程(a +2a cos β)2-(2a sin β)2=a 2,cos 2β+cos β=0.∴2cos 2β+cos β-1=0,则cos β=12,cos β=-1(舍去),故β=π3.]8.6 [由∠APB =90°,知点P 在以线段AB 为直径的圆上,设该圆的圆心为O ,则O (0,0),半径r =m ,由圆的几何性质,当圆C 与圆O 相内切时,圆的半径取得最大值. ∴|OC |=32+42=m -1,∴m =6. 故m 的最大值为6.]9.(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244 [设圆的方程为(x -a )2+(y -b )2=r 2,点A (2,3)关于直线x +2y =0的对称点仍在圆上,说明圆心在直线x +2y =0上,即有a +2b =0,又(2-a )2+(3-b )2=r 2,而圆与直线x -y +1=0相交的弦长为22,故r 2-⎝⎛⎭⎪⎫a -b +122=2,依据上述方程,解得⎩⎪⎨⎪⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.所以,所求圆的方程为(x -6)2+(y +3)2=52或(x -14)2+(y +7)2=244.] 10.(1,2] [双曲线的渐近线方程为y =±bx ,则有|0-2|1+b2≥1,解得b 2≤3,则e 2=1+b2≤4,得1<e ≤2.]11.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),由焦点F (-2,0)知c =2. ∴a 2=4+b 2,① 又b a =32,② 联立①,②得a 2=16,b 2=12. 所以椭圆C 的方程为x 216+y 212=1.(2)设P (x ,y )为椭圆上的动点,由于椭圆方程为x 216+y 212=1.故-4≤x ≤4.由点M (m ,0)在椭圆的长轴上,则-4≤m ≤4.① 由MP →=(x -m ,y ),所以|MP →|2=(x -m )2+y 2=(x -m )2+12⎝ ⎛⎭⎪⎫1-x 216=14x 2-2mx +m 2+12 =14(x -4m )2+12-3m 2. ∵当|MP →|最小时,点P 恰好落在椭圆的右顶点. ∴当x =4时,|MP →|2取得最小值. 由于x ∈[-4,4],故4m ≥4,则m ≥1,② 由①,②知,实数m 的取值范围是[1,4].12.解 (1)因为BP →=DA →且A (3,0),所以BP =DA =2,而B ,P 关于y 轴对称,所以点P 的横坐标为1,从而得P (1,2),B (-1,2), 所以直线BD 的方程为x +y -1=0.(2)线段BP 的垂直平分线方程为x =0,线段AP 的垂直平分线方程为y =x -1,所以圆C 的圆心为(0,-1),且圆C 的半径为r =10,又圆心(0,-1)到直线BD 的距离为d =2,所以直线BD 被圆C 截得的弦长为2r 2-d 2=4 2.(3)假设存在这样的两个圆M 与圆N ,其中PB 是圆M 的弦,PA 是圆N 的弦,则点M 一定在y 轴上,点N 一定在线段PA 的垂直平分线y =x -1上,当圆M 和圆N 是两个相外切的等圆时,一定有P ,M ,N 在一条直线上,且PM =PN .设M (0,b ),则N (2,4-b ),根据N (2,4-b )在直线y =x -1上,解得b =3.所以M (0,3),N (2,1),PM =PN =2,故存在这样的两个圆,且方程分别为x 2+(y -3)2=2,(x -2)2+(y -1)2=2.13.(1)解 由已知得b =3,c a =12,得a =2,所以椭圆的方程为x 24+y 23=1.椭圆的右焦点为F (1,0),此时直线l 的方程为y =-3x + 3.由⎩⎨⎧y =-3x +3,3x 2+4y 2=12解得x 1=0,x 2=85,所以|CD |=(1+k 2)|x 1-x 2|=4³85=165.(2)证明 当直线l 与x 轴垂直时,与题意不符,所以直线l 与x 轴不垂直,即直线l 的斜率存在.设直线l 的方程为y =kx +3(k ≠0且k ≠32).将其代入椭圆的方程,化简得(3+4k 2)x 2+83kx =0, 解得x 1=0,x 2=-83k3+4k2.将其代入直线l 的方程,得y 1=3,y 2=3(3-4k 2)3+4k. 所以D 点的坐标为⎝ ⎛⎭⎪⎫-83k3+4k 2,3(3-4k 2)3+4k 2. 因为B (-2,0),k BD =y 2-0x 2+2=-32²2k +32k -3, 所以直线BD 的方程为y =-3(2k +3)2(2k -3)(x +2).又直线AC 的方程为x 2+y3=1, 联立直线AC 与直线BD 的方程解得⎩⎪⎨⎪⎧x =-4k 3,y =2k +3,即Q ⎝ ⎛⎭⎪⎫-4k 3,2k +3.而P ⎝ ⎛⎭⎪⎫-3k ,0,所以OP →²OQ →=⎝ ⎛⎭⎪⎫-3k ,0²⎝ ⎛⎭⎪⎫-4k 3,2k +3=4+0=4.所以OP →²OQ →为定值4.。