SPSS分类资料
- 格式:ppt
- 大小:1.73 MB
- 文档页数:30
在S P S S中数据分组-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANSpss分组126头基础母牛体重资料53.0,50.0,51.0,57.0,56.0,51.0,48.0,46.0,62.0,51.0,61.0,56.0,62.0,58.0,46.5,48.0,46.0,50.0,54.5,56.0,40.0,53.0,51.0,57.0,54.0,59.0,52.0,47.0,57.0,59.0,54.0,50.0,52.0,54.0,62.5,50.0,50.0,53.0,51.0,54.0,56.0,50.0,52.0,50.0,52.0,43.0,53.0,48.0,50.0,60.0,58.0,52.0,64.0,50.0,47.0,37.0,52.0,46.0,45.0,42.0,53.0,58.0,47.0,50.0,50.0,45.0,55.0,62.0,51.0,50.0,43.0,53.0,42.0,56.0,54.5,45.0,56.0,54.0,65.0,61.0,47.0,52.0,49.0,49.0,51.0,45.0,52.0,54.0,48.0,57.0,45.0,53.0,54.0,57.0,54.0,54.0,45.0,44.0,52.0,50.0,52.0,52.0,55.0,50.0,54.0,43.0,57.0,56.0,54.0,49.0,55.0,50.0,48.0,46.0,56.0,45.0,45.0,51.0,46.0,49.0,48.5,49.0,55.0,52.0,58.0,54.51、录入数据,变量视图中输入变量:数据、分组。
分别设置小数点为1和0。
2、分组,单击菜单中的分析——描述统计——描述,打开描述对话框。
将数据选入变量,选项中勾选最大值,最小值。
确定。
可知126个数据中极差为28,分为10组,组距选为3,极小值为37,则第一组下限选36。
spss对有序分类资料的统计分析
方法
【摘要】:目的本科及以下,乃至部分研究生使用的《卫生统计学》、《医学统计学》教材和所有有关SPSS的书籍中,没有介绍有序分类资料这一基本的统计分析方法,导致误用无序分类资料的卡方检验方法屡有发生。
本文提出利用SPSS卡方检验处理有序分类资料的简易统计分析方法。
方法用SPSS交叉表统计分析方法,选择"线性和线性组合"行的结果作为判别单向和双向有序分类资料的统计量,并用经典的Ridit分析和SAS程序分析结果比较。
结果在SPSS交叉表对单向有序分类资料的实例分析中,"线性和线性组合"的P值(0.022)与Ridit 分析和SAS程序统计分析的结果(0.0258)相近,统计推断结论一致。
在双向有序分类资料中,"线性和线性组合"的P值(0.044)与Ridit分析和SAS程序统计分析的结果(0.0446)完全一致。
2例均与用无序分类资料的统计分析结果相差很远。
结论 "线性和线性组合"对单向和双向有序分类资料均有效;区分有序分类资料与无序资料的统计分析方法,其分析结果和统计推断结论明显不同。
建议在各种统计学教材和有关SPSS的书籍中增加这部分内容,并明确提示为有序分类资料的统计分析方法。
数据的整理与分析chy一、数据收集-问卷星1、检查与剔除不合格问卷,比如答题时间太短、年龄不符合、问卷填写不完整等。
2、应答率/回收率:是指定的或者抽中的需要作答的对象中,最终完成作答的百分比。
3、合格率:合格数量/作答数量。
4、一般的,访问问卷的回收率最高,回收率一般要求在90%以上;邮寄问卷的回收率低,回收率在50%左右就可以了;发送式自填问卷的回收率一般,回收率要求在67%以上。
5、如果不高尽量不要写入,反而起反作用。
6、可以运用问卷星中的图与表描述,直观描述。
二、数据整理-Excel1、结果导出方式:文本、数字、分数,保存excel原版。
2、再另存一版你用于SPSS分析的表格。
3、注意反向计分的题目。
4、如果量表分为几个维度,可以单独列出来进行分析。
(如我发到群里的表格,可以用总分与其他条目分析,也可以用这个量表包括的几个维度分别与其他条目分析,观察其关联)。
5、如果分不清楚,可以标注一下变量的类型,如分类变量还是数据变量(如我的Excel的第二行,但是导入到SPSS中时需要删除)。
三、数据录入-SPSSSPSS中“变量视图”输入各变量如下:1、“类型”尽量都转换为“数字”;(选中右边的…)(点击“数字”即可)3、“值”的标记:(用于计数资料的标记,在结果中易于观察)点击…,分别输入对应的值和代表的标签,点击“添加”和确定即可4、“测量”分为三类:(1)标度:指计数资料,如年龄、108总分等;(2)有序:指等级资料,如年级等;(3)名义:指计数资料,如性别、性格等。
5、如何把计数资料转换为计量资料,即赋值(以“拖延总分为例”)步骤:(注意填写名称和标签,点击“变化量”) ----点击“旧值和新值”进行赋值:0-20赋值为1:--添加--20.1-40赋值为2:--添加--40.1-60赋值为3:--添加--然后“变量视图”最后一行就会出现新的变量“拖延分数三分类”,可以把“名义”改为“有序”,也可不改。
1、 spss的三种输出结: 表格格式格式文本格式标准图与交互图果2、变量名的定义与保留字不同,同时变量名不能一数字开头。
变量名不能与spss保留字相同, spss的保留字有ALL 、 END 、 BY 、EQ 、 GE 、 GT 、LE 、 LT 、 NE 、NOT 、 OR 、TO 、WITH 。
3、字符型:字符型数据的默认显示宽度为8 个字符位,系统不区分变量名中的大小写字母,并且不能进行数学运算。
注意:在输入数据时不应输入引号,否则双引号将会作为字符型数据的一部分。
4、(1)定类尺度(Nominal Measurement):定类尺度是对事物的类别或属性的一种测度,按照事物的某种属性对其进行分类或分组。
离散型特点:其值仅代表了事物的类别和属性,即能测度类别差异,不能比较各类之间的大小,所以各类之间没有顺序和等级。
对定类尺度的变量只能计算频数和频率。
在spss中,能适用定类尺度的数据可以是数值型,也可以是字符型变量。
使用定类变量对事物进行分类时,必须符合穷尽原则和互斥原则。
(2)定序尺度( Ordinal Measurement ):定序尺度是对事物之间的等级或顺序差别的一种测度,可比较优劣或排序。
离散型特点:由于定序变量只能侧度类别之间的顺序,无法测出类别之间的准确差值,即测量数值不代表绝对的数量大小,所以其测量结果只能排序,不能进行运算。
(3)定矩尺度( Interval Measurement ):定矩尺度是对事物类别或次序之间间距的测度。
特点:不仅能将事物区分为不同类型并进行排序,而且可能准确指出类别之间的差距是多少;定矩变量通常以自然或物理单位为计量尺度,因此测量结果往往表现为数值,所以计量结果可以进行加减运算。
(4)定比尺度( Scale Measurement ):定比尺度是能够测算两个测度值之间比值的一种计量尺度,它的测量结果同定距变量一样表现为数值。
特点:定比变量是测量尺度的最高水平,它除了具有其他三种测量尺度的全部特点外,还具有可计算两个测度之间比值的特点,因此它可以进行加、减、乘、除运算,而定矩变量值可进行加减运算。
spss地大数据分析资料报告案例spss 的大数据分析资料报告案例在当今数字化时代,数据已成为企业和组织决策的重要依据。
SPSS (Statistical Product and Service Solutions)作为一款功能强大的统计分析软件,在处理和分析大数据方面发挥着重要作用。
本文将通过一个实际的案例,展示如何运用 SPSS 进行大数据分析,并从中得出有价值的结论。
一、案例背景假设我们是一家电商公司,拥有大量的用户交易数据。
我们希望通过对这些数据的分析,了解用户的购买行为、偏好以及市场趋势,以便优化产品推荐、营销策略和供应链管理。
二、数据收集与整理首先,我们从数据库中提取了相关的数据,包括用户的基本信息(如年龄、性别、地域等)、购买记录(产品类别、购买时间、购买金额等)以及浏览行为等。
这些数据量庞大,可能达到数百万甚至数千万条记录。
在将数据导入 SPSS 之前,我们需要对数据进行预处理,包括数据清洗、缺失值处理和异常值检测。
例如,删除重复的记录、填充缺失的关键信息,并剔除明显不符合常理的异常值。
三、数据分析方法1、描述性统计分析通过计算均值、中位数、标准差等统计量,对用户的年龄、购买金额等变量进行概括性描述,了解数据的集中趋势和离散程度。
2、相关性分析分析不同变量之间的相关性,例如用户年龄与购买金额之间、购买频率与产品类别之间的关系。
3、分类分析使用聚类分析将用户分为不同的群体,以便针对不同群体制定个性化的营销策略。
4、时间序列分析对于购买时间等变量,运用时间序列分析方法预测未来的销售趋势。
四、SPSS 操作与结果解读1、描述性统计分析结果例如,我们发现用户的平均年龄为 30 岁,购买金额的中位数为 500 元,标准差为 200 元。
这表明大部分用户年龄较为年轻,购买金额分布相对较为集中。
2、相关性分析结果发现用户年龄与购买金额之间存在较弱的正相关关系,即年龄较大的用户可能购买金额相对较高。
SPSS数据分析的医学统计方法选择目录数据分析的统计方法选择小结........................................................................错误!未定义书签。
目录 (1)●资料1 (2)完全随机分组设计的资料 (2)配对设计或随机区组设计 (3)变量之间的关联性分析 (4)●资料2 (5)1。
连续性资料 (5)1.1两组独立样本比较 (5)1。
2两组配对样本的比较 (5)1.3多组完全随机样本比较 (6)1。
4多组随机区组样本比较 (6)2.分类资料 (6)2.1四格表资料 (6)2。
2 2×C表或R×2表资料的统计分析 (7)2。
3 R×C表资料的统计分析 (7)2。
4 配对分类资料的统计分析 (8)●资料3 (8)一、两个变量之间的关联性分析 (8)二、回归分析 (9)●资料4 (10)一.统计方法抉择的条件 (10)1.分析目的 (10)2.资料类型 (10)3.设计方法 (11)4.分布特征及数理统计条件 (12)二.数据资料的描述 (13)1.数值变量资料的描述 (13)2.分类变量资料的描述 (13)三.数据资料的比较 (14)1.假设检验的基本步骤 (14)2.假设检验结论的两类错误 (15)3.假设检验的注意事项 (15)4.常用假设检验方法 (16)四.变量间的相关分析 (17)1.数值变量(计量资料)的关系分析 (18)2.无序分类变量(计数资料)的相关分析 (18)3.有序分类变量(等级资料)等级相关 (18)●资料1完全随机分组设计的资料一、两组或多组计量资料的比较1.两组资料:1)大样本资料或服从正态分布的小样本资料(1)若方差齐性,则作成组t检验(2)若方差不齐,则作t’检验或用成组的Wilcoxon秩和检验2)小样本偏态分布资料,则用成组的Wilcoxon秩和检验2.多组资料:1)若大样本资料或服从正态分布,并且方差齐性,则作完全随机的方差分析.如果方差分析的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:LSD检验,Bonferroni检验等)进行两两比较.2)如果小样本的偏态分布资料或方差不齐,则作Kruskal Wallis的统计检验.如果Kruskal Wallis的统计检验为有统计学意义,则进一步作统计分析:选择合适的方法(如:用成组的Wilcoxon秩和检验,但用Bonferroni方法校正P值等)进行两两比较。
第一章SPSS统计分析系统软件简介1)SPSS的几种基本运行方式:①菜单操作方式:这种方法图形用户界面友好、操作简单、形象直观,能够一步步引导用户完成对数据的描述和模型的建立。
②程序运用方式:是在Syntax编辑窗口输入程序。
也可以用任何文本编辑器中输入,也可以在相应菜单操作的对话框中,用“Paste”按钮可以把相应的操作转化为Syntax语言。
选择所有的语法命令行,单击“Run”运行程序。
或者在SPSS的语法编辑器窗口输入语法。
③ Include运行方式:在编写Syntax命令中,如果要调用其他语法文件时,除了复制粘贴现有的资源外,还可以用Include的命令。
④ Production Facility方式:Production Facility生产作业方式提供了以自动化方式运行SPSS Statistics 的功能。
2)SPSS界面提供的五个窗口:①数据编辑窗口:这个窗口主要用来处理数据和定义数据字典,它分为两个视图。
一个是用来显示数据的数据视图(数据视图用来显示数据集中的记录或个案),另外一个是变量视图(变量视图的功能是定义数据集的数据字典)。
②结果管理窗口:也称为结果视图或者结果浏览器,该窗口用于存放SPSS软件的分析结果。
分为左边目录区,是SPSS分析结果的目录;右边是内容区,显示与目录相应的内容。
③结果编辑窗口:是编辑分析结果的窗口。
选中要编辑的内容,双击或者点击右键选择“编辑内容”,选中的图形就会出现在“图表编辑器”中,可以开始编辑。
④语法编辑窗口:语法编程方式,能够完成窗口操作所能完成的所有任务,还可以完成许多窗口操作所不能完成的其他工作。
在这个窗口中,还可以调用开源软件R中的任何程序。
⑤脚本窗口:是用Sax Basic 语言编写的程序。
脚本可以使SPSS内部操作自动化,可以自定义结果格式,可以连接VB和VBA应用程序。
第二章数据文件的建立和管理1)数据管理的特点:数据编辑器的每一行数据称为一个个案,每一列数据代表个体属性,即变量。
SPSS复习资料一.名词解释(1)有效百分比:总数是剔除可缺失值等过滤因素的百分比.无效假设:是指没有处理效应的假设。
统计量:从样本中计算所得的数值称为统计量。
准确性:指在调查或试验中某一实验指标或性状的重复观测值与真值的接近程度。
方差:各个数据分别与其平均数之差的平方的和的平均数。
相关系数:用以反映变量之间相关关系密切程度的统计指标自由度:自由度指的是计算某一统计量时,取值不受限制的变量个数。
标准差:是方差的算术平方根,反应一个数据集的离散程度。
似然比:反映真实性的一种指标,属于同时反映灵敏度和特异度的复合指标。
卡平方定义:相互独立的多个正态离差平方值的总和。
无效假设:是指没有处理效应的假设。
个案加权:是指对变量,特别是频数变量赋以权重,常用于计数频数表资料,加权后的变量被说明为频数卡方统计量:是指数据的分布与所选择的预期或假设分布之间的差异的度量。
相关分析:相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系的统计分析方法非参数分析:非参数检验是在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法回归分析:指的是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
卡方检验:非参数检验检验的一种方法,来检验变量的几个取值所占百分比是否和期望的比例有统计学差异。
统计描述:对统计数据集的结构和总体情况进行描述,并不能深入了解统计数据的内部规律。
卡方测验的基本步骤:1.提出假设2.计算卡平方值3.确定显著水平4.确定最后结果单因素方差分析:单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显着差异和变动聚类分析:根据事物本身的特征研究个体分类的方法,聚类分析的原则是同一类中的个体有较大的相似性,不同类中的个体差异很大两个相关样本检验:同一个被测对象上测试两个或多个观测值的情况,这样的数据间就不再是相对独立的了,而是彼此相关,这种情况采用两个相关样本检验Ks,检验:检验样本来自正态分布均匀分布或泊松分布,总体的假设游程检验:根据由陈述所做的两分变量的随机性检验简答题1在SPPS中可以使用哪些方法输入数据?(1)通过手工录入数据;(2)可以将其他电子表格软件中的数据整列(行)的复制,然后粘贴到SPSS中;(3)通过读入其他格式文件数据的方式输入数据。