全国统一高考数学真题及逐题详细解析(文科)—广东卷
- 格式:doc
- 大小:1009.75 KB
- 文档页数:12
2024年广东高考数学真题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+3.已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥-,则x =()A.2- B.1- C.1D.24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m5.()A. B. C. D.6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D.[0,)+∞7.当[0,2]x πÎ时,曲线sin y x =与2sin 36y x π⎛⎫=- ⎪⎝⎭的交点个数为()A.3B.4C.6D.88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f < D.(20)10000f <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >> B.(2)0.5P X ><C.(2)0.5P Y >> D.(2)0.8P Y ><10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为427,求AD .18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.参考答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}355,{3,1,0,2,3}A x xB =-<<=--∣,则A B = ()A.{1,0}- B.{2,3} C.{3,1,0}-- D.{1,0,2}-【答案】A 【解析】【分析】化简集合A ,由交集的概念即可得解.【详解】因为{{}|,3,1,0,2,3A x x B =<<=--,且注意到12<<,从而A B = {}1,0-.故选:A.2.若1i 1zz =+-,则z =()A.1i --B.1i-+ C.1i- D.1i+【答案】C 【解析】【分析】由复数四则运算法则直接运算即可求解.【详解】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C.3.已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =()A.2-B.1- C.1D.2【答案】D 【解析】【分析】根据向量垂直的坐标运算可求x 的值.【详解】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ-=()A.3m -B.3m -C.3m D.3m【答案】A 【解析】【分析】根据两角和的余弦可求cos cos ,sin sin αβαβ的关系,结合tan tan αβ的值可求前者,故可求()cos αβ-的值.【详解】因为()cos m αβ+=,所以cos cos sin sin m αβαβ-=,而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=,故cos cos 2cos cos m αβαβ-=即cos cos m αβ=-,从而sin sin 2m αβ=-,故()cos 3m αβ-=-,故选:A.5.()A. B. C. D.【答案】B 【解析】【分析】设圆柱的底面半径为r ,根据圆锥和圆柱的侧面积相等可得半径r 的方程,求出解后可求圆锥的体积.【详解】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r=即=,故3r=,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0xx ax a xf xx x⎧---<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A.(,0]-∞ B.[1,0]- C.[1,1]- D. [0,)+∞【答案】B【解析】【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【详解】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()2021e ln1aa-⎧-≥⎪⨯-⎨⎪-≤+⎩,解得10a-≤≤,即a的范围是[1,0]-.故选:B.7.当[0,2]xπÎ时,曲线siny x=与2sin36y xπ⎛⎫=-⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C【解析】【分析】画出两函数在[]0,2π上的图象,根据图象即可求解【详解】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=-⎪⎝⎭的最小正周期为2π3T=,所以在[]0,2πx ∈上函数π2sin 36y x ⎛⎫=-⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:由图可知,两函数图象有6个交点.故选:C8.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >-+-,且当3x <时()f x x =,则下列结论中一定正确的是()A.(10)100f >B.(20)1000f >C.(10)1000f <D.(20)10000f <【答案】B 【解析】【分析】代入得到(1)1,(2)2f f ==,再利用函数性质和不等式的性质,逐渐递推即可判断.【详解】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >-+-,则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>,(8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>,(11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+>(14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;且无证据表明ACD 一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用(1)1,(2)2f f ==,再利用题目所给的函数性质()(1)(2)f x f x f x >-+-,代入函数值再结合不等式同向可加性,不断递推即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则()(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A.(2)0.2P X >>B.(2)0.5P X ><C.(2)0.5P Y >>D.(2)0.8P Y ><【答案】BC 【解析】【分析】根据正态分布的3σ原则以及正态分布的对称性即可解出.【详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误;因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<,而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误,故选:BC.10.设函数2()(1)(4)f x x x =--,则()A.3x =是()f x 的极小值点B.当01x <<时,()2()f x f x<C.当12x <<时,4(21)0f x -<-< D.当10x -<<时,(2)()f x f x ->【答案】ACD 【解析】【分析】求出函数()f x 的导数,得到极值点,即可判断A;利用函数的单调性可判断B;根据函数()f x 在()1,3上的值域即可判断C;直接作差可判断D.【详解】对A ,因为函数()f x 的定义域为R ,而()()()()()()22141313f x x x x x x =--+-=--',易知当()1,3x ∈时,()0f x '<,当(),1x ∞∈-或()3,x ∞∈+时,()0f x '>函数()f x 在(),1∞-上单调递增,在()1,3上单调递减,在()3,∞+上单调递增,故3x =是函数()f x 的极小值点,正确;对B,当01x <<时,()210x x x x -=->,所以210x x >>>,而由上可知,函数()f x 在()0,1上单调递增,所以()()2f x f x>,错误;对C,当12x <<时,1213x <-<,而由上可知,函数()f x 在()1,3上单调递减,所以()()()1213f f x f >->,即()4210f x -<-<,正确;对D,当10x -<<时,()()()()()()222(2)()12141220f x f x x x x x x x --=------=-->,所以(2)()f x f x ->,正确;故选:ACD.11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A.2a =- B.点在C 上C.C 在第一象限的点的纵坐标的最大值为1D.当点()00,x y 在C 上时,0042y x ≤+【答案】ABD 【解析】【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【详解】对于A:设曲线上的动点(),P x y ,则2x >-4x a -=,04a -=,解得2a =-,故A 正确.对于24x +=,而2x >-,()24x +=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C:由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D:当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.三、填空题:本题共3小题,每小题5分,共15分.12.设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为___________.【答案】32【解析】【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【详解】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x ya b-=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25b a=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:3213.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a __________.【答案】ln 2【解析】【分析】先求出曲线e x y x =+在()0,1的切线方程,再设曲线()ln 1y x a =++的切点为()()0,ln 1x xa ++,求出y ',利用公切线斜率相等求出0x ,表示出切线方程,结合两切线方程相同即可求解.【详解】由e x y x =+得e 1x y '=+,00|e 12x y ='=+=,故曲线e x y x =+在()0,1处的切线方程为21y x =+;由()ln 1y x a =++得11y x '=+,设切线与曲线()ln 1y x a =++相切的切点为()()00,ln 1x x a ++,由两曲线有公切线得0121y x '==+,解得012x =-,则切点为11,ln 22a ⎛⎫-+ ⎪⎝⎭,切线方程为112ln 21ln 222y x a x a ⎛⎫=+++=++- ⎪⎝⎭,根据两切线重合,所以ln 20a -=,解得ln 2a =.故答案为:ln 214.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为_________.【答案】12##0.5【解析】【分析】将每局的得分分别作为随机变量,然后分析其和随机变量即可.【详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==.从而()()()441234113382kk k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==;如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==.而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==.所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=.故答案为:12.【点睛】关键点点睛:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .【答案】(1)π3B =(2)【解析】【分析】(1)由余弦定理、平方关系依次求出cos ,sin C C ,最后结合已知sin C B=得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【小问1详解】由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得22222cos 222a b c C ab ab +-===,因为()0,πC ∈,所以sin 0C >,从而2sin 2C ==,又因为sin C B =,即1cos 2B =,注意到()0,πB ∈,所以π3B =.【小问2详解】由(1)可得π3B =,2cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ232162sin sin sin 124622224A ⎛⎫⎛⎫==+=⨯=⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而623136,4222a cbc +====,由三角形面积公式可知,ABC 的面积可表示为211316233sin 222228ABC S ab C c c c +==⋅⋅= ,由已知ABC 的面积为3+,可得23338c =,所以c =16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.【答案】(1)12(2)直线l 的方程为3260x y --=或20x y -=.【解析】【分析】(1)代入两点得到关于,a b 的方程,解出即可;(2)方法一:以AP 为底,求出三角形的高,即点B 到直线AP 的距离,再利用平行线距离公式得到平移后的直线方程,联立椭圆方程得到B 点坐标,则得到直线l 的方程;方法二:同法一得到点B 到直线AP 的距离,再设()00,B x y ,根据点到直线距离和点在椭圆上得到方程组,解出即可;法三:同法一得到点B 到直线AP 的距离,利用椭圆的参数方程即可求解;法四:首先验证直线AB 斜率不存在的情况,再设直线3y kx =+,联立椭圆方程,得到点B 坐标,再利用点到直线距离公式即可;法五:首先考虑直线PB 斜率不存在的情况,再设3:(3)2PB y k x -=-,利用弦长公式和点到直线的距离公式即可得到答案;法六:设线法与法五一致,利用水平宽乘铅锤高乘12表达面积即可.【小问1详解】由题意得2239941b a b =⎧⎪⎪⎨⎪+=⎪⎩,解得22912b a ⎧=⎨=⎩,所以12e ==.【小问2详解】法一:3312032APk -==--,则直线AP 的方程为132y x =-+,即260x y +-=,2AP ==,由(1)知22:1129x y C +=,设点B 到直线AP 的距离为d,则5352d ==,则将直线AP 沿着与AP 垂直的方向平移1255单位即可,此时该平行线与椭圆的交点即为点B ,设该平行线的方程为:20x y C ++=,5=,解得6C =或18C =-,当6C =时,联立221129260x y x y ⎧+=⎪⎨⎪++=⎩,解得03x y =⎧⎨=-⎩或332x y =-⎧⎪⎨=-⎪⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,当()0,3B -时,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当33,2B ⎛⎫--⎪⎝⎭时,此时12lk =,直线l 的方程为12y x =,即20x y -=,当18C =-时,联立2211292180x y x y ⎧+=⎪⎨⎪+-=⎩得22271170y y -+=,227421172070∆=-⨯⨯=-<,此时该直线与椭圆无交点.综上直线l 的方程为3260x y --=或20x y -=.法二:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,设()00,B x y,则220012551129x y =⎪+=⎪⎩,解得00332x y =-⎧⎪⎨=-⎪⎩或0003x y =⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一.法三:同法一得到直线AP 的方程为260x y +-=,点B 到直线AP的距离5d =,设(),3sin B θθ,其中[)0,2θ∈π1255=,联立22cos sin 1θθ+=,解得cos 21sin 2θθ⎧=-⎪⎪⎨⎪=-⎪⎩或cos 0sin 1θθ=⎧⎨=-⎩,即()0,3B -或33,2⎛⎫--⎪⎝⎭,以下同法一;法四:当直线AB 的斜率不存在时,此时()0,3B -,16392PAB S =⨯⨯= ,符合题意,此时32l k =,直线l 的方程为332y x =-,即3260x y --=,当线AB 的斜率存在时,设直线AB 的方程为3y kx =+,联立椭圆方程有2231129y kx x y =+⎧⎪⎨+=⎪⎩,则()2243240k x kx ++=,其中AP k k ≠,即12k ≠-,解得0x =或22443k x k -=+,0k ≠,12k ≠-,令22443k x k -=+,则2212943k y k -+=+,则22224129,4343k k B k k ⎛⎫--+ ⎪++⎝⎭同法一得到直线AP 的方程为260x y +-=,点B 到直线AP 的距离1255d =,5=,解得32k =,此时33,2B ⎛⎫-- ⎪⎝⎭,则得到此时12lk =,直线l 的方程为12y x =,即20x y -=,综上直线l 的方程为3260x y --=或20x y -=.法五:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当l 的斜率存在时,设3:(3)2PB y k x -=-,令()()1122,,,P x y B x y ,223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,消y 可得()()22224324123636270k x k k x k k +--+--=,()()()2222Δ24124433636270k kk k k =--+-->,且AP k k ≠,即12k ≠-,21222122241243,36362743k k x x k PB k k x x k ⎧-+=⎪⎪+==⎨--⎪=⎪+⎩,A 到直线PB距离192PAB d S ==⋅ ,12k ∴=或32,均满足题意,1:2l y x ∴=或332y x =-,即3260x y --=或20x y -=.法六:当l 的斜率不存在时,3:3,3,,3,2l x B PB A ⎛⎫=-= ⎪⎝⎭到PB 距离3d =,此时1933922ABP S =⨯⨯=≠ 不满足条件.当直线l 斜率存在时,设3:(3)2l y k x =-+,设l 与y 轴的交点为Q ,令0x =,则30,32Q k ⎛⎫-+⎪⎝⎭,联立223323436y kx k x y ⎧=-+⎪⎨⎪+=⎩,则有()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,()2223348336362702k x k k x k k ⎛⎫+--+--= ⎪⎝⎭,其中()()22223Δ8343436362702k k k k k ⎛⎫=--+--> ⎪⎝⎭,且12k ≠-,则2222363627121293,3434B B k k k k x x k k----==++,则211312183922234P B k S AQ x x k k +=-=+=+,解的12k =或32k =,经代入判别式验证均满足题意.则直线l 为12y x =或332y x =-,即3260x y --=或20x y -=.17.如图,四棱锥P ABCD -中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D --的正弦值为7,求AD .【答案】(1)证明见解析【解析】【分析】(1)先证出AD ⊥平面PAB ,即可得AD AB ⊥,由勾股定理逆定理可得BC AB ⊥,从而//AD BC ,再根据线面平行的判定定理即可证出;(2)过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,根据三垂线法可知,DFE ∠即为二面角A CP D --的平面角,即可求得tan DFE ∠=AD的长度表示出,DE EF ,即可解方程求出AD .【小问1详解】(1)因为PA ⊥平面ABCD ,而AD ⊂平面ABCD ,所以PA AD ⊥,又AD PB ⊥,PB PA P = ,,PB PA ⊂平面PAB ,所以AD ⊥平面PAB ,而AB ⊂平面PAB ,所以AD AB ⊥.因为222BC AB AC +=,所以BC AB ⊥,根据平面知识可知//AD BC ,又AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC .【小问2详解】如图所示,过点D 作DEAC ⊥于E ,再过点E 作EF CP ⊥于F ,连接DF ,因为PA ⊥平面ABCD ,所以平面PAC ⊥平面ABCD ,而平面PAC 平面ABCD AC =,所以DE ⊥平面PAC ,又EF CP ⊥,所以⊥CP 平面DEF ,根据二面角的定义可知,DFE ∠即为二面角A CP D --的平面角,即42sin 7DFE ∠=,即tan DFE ∠=因为AD DC ⊥,设AD x =,则CD =,由等面积法可得,42DE =,又242xCE -==,而EFC 为等腰直角三角形,所以2EF =,故242tan 4DFE x∠==x =AD =.18.已知函数3()ln(1)2xf x ax b x x=++--(1)若0b =,且()0f x '≥,求a 的最小值;(2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >-当且仅当12x <<,求b 的取值范围.【答案】(1)2-(2)证明见解析(3)23b ≥-【解析】【分析】(1)求出()min 2f x a '=+后根据()0f x '≥可求a 的最小值;(2)设(),P m n 为()y f x =图象上任意一点,可证(),P m n 关于()1,a 的对称点为()2,2Q m a n --也在函数的图像上,从而可证对称性;(3)根据题设可判断()12f =-即2a =-,再根据()2f x >-在()1,2上恒成立可求得23b ≥-.【小问1详解】0b =时,()ln2xf x ax x=+-,其中()0,2x ∈,则()()()112,0,222f x a x x x x x =+=+∈--',因为()22212x x x x -+⎛⎫-≤= ⎪⎝⎭,当且仅当1x =时等号成立,故()min 2f x a '=+,而()0f x '≥成立,故20a +≥即2a ≥-,所以a 的最小值为2-.,【小问2详解】()()3ln12x f x ax b x x=++--的定义域为()0,2,设(),P m n 为()y f x =图象上任意一点,(),P m n 关于()1,a 的对称点为()2,2Q m a n --,因为(),P m n 在()y f x =图象上,故()3ln 12m n am b m m=++--,而()()()()3322ln221ln 122m m f m a m b m am b m a m m -⎡⎤-=+-+--=-++-+⎢⎥-⎣⎦,2n a =-+,所以()2,2Q m a n --也在()y f x =图象上,由P 的任意性可得()y f x =图象为中心对称图形,且对称中心为()1,a .【小问3详解】因为()2f x >-当且仅当12x <<,故1x =为()2f x =-的一个解,所以()12f =-即2a =-,先考虑12x <<时,()2f x >-恒成立.此时()2f x >-即为()()3ln21102x x b x x +-+->-在()1,2上恒成立,设()10,1t x =-∈,则31ln 201t t bt t+-+>-在()0,1上恒成立,设()()31ln 2,0,11t g t t bt t t+=-+∈-,则()()2222232322311tbtbg t bt t t -++=-+=-'-,当0b ≥,232332320bt b b b -++≥-++=>,故()0g t '>恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当203b -≤<时,2323230bt b b -++≥+≥,故()0g t '≥恒成立,故()g t 在()0,1上为增函数,故()()00g t g >=即()2f x >-在()1,2上恒成立.当23b <-,则当01t <<<时,()0g t '<故在⎛ ⎝上()g t 为减函数,故()()00g t g <=,不合题意,舍;综上,()2f x >-在()1,2上恒成立时23b ≥-.而当23b ≥-时,而23b ≥-时,由上述过程可得()g t 在()0,1递增,故()0g t >的解为()0,1,即()2f x >-的解为()1,2.综上,23b ≥-.【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j -可分数列.(1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j -可分数列;(2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13-可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j -可分数列的概率为m P ,证明:18m P >.【答案】(1)()()()1,2,1,6,5,6(2)证明见解析(3)证明见解析【解析】【分析】(1)直接根据(),i j -可分数列的定义即可;(2)根据(),i j -可分数列的定义即可验证结论;(3)证明使得原数列是(),i j -可分数列的(),i j 至少有()21m m +-个,再使用概率的定义.【小问1详解】首先,我们设数列1242,,...,m a a a +的公差为d ,则0d ≠.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形()111,2,...,42k ka a a k m d-=+=+',得到新数列()1,2, (42)a k k m ==+',然后对1242,,...,m a a a +'''进行相应的讨论即可.换言之,我们可以不妨设()1,2,...,42k a k k m ==+,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和()j i j <,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的(),i j 就是()()()1,2,1,6,5,6.【小问2详解】由于从数列1,2,...,42m +中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①{}{}{}1,4,7,10,3,6,9,12,5,8,11,14,共3组;②{}{}{}15,16,17,18,19,20,21,22,...,41,4,41,42m m m m -++,共3m -组.(如果30m -=,则忽略②)故数列1,2,...,42m +是()2,13-可分数列.【小问3详解】定义集合{}{}410,1,2,...,1,5,9,13,...,41A k k m m =+==+,{}{}420,1,2,...,2,6,10,14,...,42B k k m m =+==+.下面证明,对142i j m ≤<≤+,如果下面两个命题同时成立,则数列1,2,...,42m +一定是(),i j -可分数列:命题1:,i A j B ∈∈或,i B j A ∈∈;命题2:3j i -≠.我们分两种情况证明这个结论.第一种情况:如果,i A j B ∈∈,且3j i -≠.此时设141i k =+,242j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124142k k +<+,即2114k k ->-,故21k k ≥.此时,由于从数列1,2,...,42m +中取出141i k =+和242j k =+后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}{}{}11111111222242,43,44,45,46,47,48,49,...,42,41,4,41k k k k k k k k k k k k ++++++++--+,共21k k -组;③{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,42m +是(),i j -可分数列.第二种情况:如果,i B j A ∈∈,且3j i -≠.此时设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈.则由i j <可知124241k k +<+,即2114k k ->,故21k k >.由于3j i -≠,故()()2141423k k +-+≠,从而211k k -≠,这就意味着212k k -≥.此时,由于从数列1,2,...,42m +中取出142i k =+和241j k =+后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①{}{}{}11111,2,3,4,5,6,7,8,...,43,42,41,4k k k k ---,共1k 组;②{}112121241,31,221,31k k k k k k k +++++++,{}121212232,222,32,42k k k k k k k +++++++,共2组;③全体{}11212124,3,22,3k p k k p k k p k k p +++++++,其中213,4,...,p k k =-,共212k k --组;④{}{}{}2222222243,44,45,46,47,48,49,410,...,41,4,41,42k k k k k k k k m m m m ++++++++-++,共2m k -组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含212k k --个行,4个列的数表以后,4个列分别是下面这些数:{}111243,44,...,3k k k k +++,{}12121233,34,...,22k k k k k k +++++,{}121212223,223,...,3k k k k k k +++++,{}1212233,34,...,4k k k k k ++++.可以看出每列都是连续的若干个整数,它们再取并以后,将取遍{}11241,42,...,42k k k +++中除开五个集合{}1141,42k k ++,{}121231,32k k k k ++++,{}1212221,222k k k k ++++,{}121231,32k k k k ++++,{}2241,42k k ++中的十个元素以外的所有数.而这十个数中,除开已经去掉的142k +和241k +以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,42m +是(),i j -可分数列.至此,我们证明了:对142i j m ≤<≤+,如果前述命题1和命题2同时成立,则数列1,2,...,42m +一定是(),i j -可分数列.然后我们来考虑这样的(),i j 的个数.首先,由于A B ⋂=∅,A 和B 各有1m +个元素,故满足命题1的(),i j 总共有()21m +个;而如果3j i -=,假设,i A j B ∈∈,则可设141i k =+,242j k =+,代入得()()2142413k k +-+=.但这导致2112k k -=,矛盾,所以,i B j A ∈∈.设142i k =+,241j k =+,{}12,0,1,2,...,k k m ∈,则()()2141423k k +-+=,即211k k -=.所以可能的()12,k k 恰好就是()()()0,1,1,2,...,1,m m -,对应的(),i j 分别是()()()2,5,6,9,...,42,41m m -+,总共m 个.所以这()21m +个满足命题1的(),i j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的(),i j 的个数为()21m m +-.当我们从1,2,...,42m +中一次任取两个数i 和()j i j <时,总的选取方式的个数等于()()()()424121412m m m m ++=++.31/31而根据之前的结论,使得数列1242,,...,m a a a +是(),i j -可分数列的(),i j 至少有()21m m +-个.所以数列1242,,...,m a a a +是(),i j -可分数列的概率m P 一定满足()()()()()()()()()22221111124214121412142221218m m m m m m m m P m m m m m m m m ⎛⎫+++ ⎪+-++⎝⎭≥=>=++++++++.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.。
2021年普通高等招生全国统一考试数学文试题〔卷,解析版〕本试题一共4页,21小题,满分是150分,考试用时120分钟。
考前须知:1.答卷前,所有考生必须用黑色字迹的钢笔或者签字笔将本人的姓名和考生号、试室号、座位号填写上在答题卡上。
需要用2B 铅笔将试卷类型〔A 〕填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处〞。
2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目选项之答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。
不按以上要求答题之答案无效。
4.答题选做题时,请先需要用2B 铅笔填涂选做题的题号对应的信息点,再答题。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
在在考试完毕之后以后,将试卷和答题卡一起交回。
参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 线性回归方程y bx a =+中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-,样本数据12,,,n x x x 的HY 差,(n s x x =++-,其中x ,y 表示样本均值.n 是正整数,那么1221()()n n n n n n a b a b a a b ab b -----=-++++.一、选择题:本大题一一共10小题,每一小题5分,满分是50分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的. 1.设复数z 满足1iz =,其中i 为虚数单位,那么z =A .i -B .iC .1-D .1 1.〔A 〕.1()iz i i i i -===-⨯- 2.集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,那么A B ⋂的元素个数为A .4B .3C .2D .12.〔C 〕.A B ⋂的元素个数等价于圆221x y +=与直线1x y +=的交点个数,显然有2个交点3.向量(1,2),(1,0),(3,4)===a b c .假设λ为实数,()λ+a b ∥c ,那么λ= A .14 B .12C .1D .2 3.〔B 〕.(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=124.函数1()lg(1)1f x x x=++-的定义域是 A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-⋃+∞ D .(,)-∞+∞4.〔C 〕.10110x x x -≠⎧⇒>-⎨+>⎩且1x ≠,那么()f x 的定义域是(1,1)(1,)-⋃+∞5.不等式2210x x -->的解集是A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞⋃+∞D .1(,)(1,)2-∞-⋃+∞正视图侧视图 图25.〔D 〕.21210(1)(21)02x x x x x -->⇒-+>⇒<-或者1x >,那么不等式的解集为1(,)(1,)2-∞-⋃+∞6.平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧⎪⎨⎪⎩≤≤给定.假设(,)M x y 为D 上的动点,点A的坐标为,那么z OMOA =⋅的最大值为A .3B .4C .. 6.〔B 〕.z y =+,即y z =+,画出不等式组表示的平面区域,易知当直线y z =+经过点2)时,z 获得最大值,max 24z =+=7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数一共有A .20B .15C .12D .107.〔D 〕.正五棱柱中,上底面中的每一个顶点均可与下底面中的两个顶点构成对角线,所以一个正五棱柱对角线的条数一共有5210⨯=条8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,那么C 的圆心轨迹为 A .抛物线 B .双曲线 C .椭圆 D .圆 8.〔A 〕.依题意得,C 的圆心到点与它到直线1y =-的间隔 心轨迹为抛物线9.如图1 ~ 3,某几何体的正视图〔主视图〕等边三角形,等腰三角形和菱形,那么该几何体的体积为A .B .4C .D .29.〔C 〕.该几何体是一个底面为菱形的四棱锥,菱形的面积122S =⨯⨯=,四棱锥的高为3,那么该几何体的体积11333V Sh ==⨯=10.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()fg ()x 和()f g ()x :对任意x ∈R ,()f g ()x =(())f g x ;()f g ()x =()()f x g x ,那么以下等式恒成立的是 A .(()fg h )()x =(()f h ()g h )()x B .(()f g h )()x =(()f h ()g h )()x C .(()fg h )()x =(()f g ()g h )()xD .(()f g h )()x =(()f g ()g h )()x 10.〔B 〕.对A 选项 (()fg h )()x =()f g ()()x h x (())()f g x h x = (()f h ()g h )()x =()f h (()()g h x )=()f h ((()()g x h x ) (()())(()())f g x h x h g x h x =,故排除A对B 选项 (()f g h )()x =()(())f g h x =(())(())f h x g h x(()f h ()g h )()x =()()()()f h x g h x (())(())f h x g h x =,应选B对C 选项 (()fg h )()x =()(())f g h x ((()))f g h x =(()f g ()g h )()x =()(()())()((()))f g g h x f g g h x = (((())))f g g h x =,故排除C对D 选项 (()f g h )()x =()()()()()()f g x h x f x g x h x =(()f g ()g h )()x =()()()()()()()()f g x g h x f x g x g x h x =,故排除D二、填空题:本大题一一共5小题,考生答题4小题,每一小题5分,满分是20分.〔一〕必做题〔9 ~ 13题〕11.{}n a 是递增的等比数列,假设22a =,434a a -=,那么此数列的公比q = .11.2.2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或者1q =-∵{}n a 是递增的等比数列,∴2q =12.设函数3()cos 1f x x x =+.假设()11f a =,那么()f a -= . 12.9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,那么33()()cos()1cos 11019f a a a a a -=--+=-+=-+=-13.为理解篮球爱好者小李的投篮命中率与打篮球时间是之间的关系,下表记录了小李某月1号到5号每天打篮球时间是x 〔单位:小时〕与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 . 13.0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y bx x ==--++++-===-+-+++-∑∑,0.47a y bx =-=∴线性回归方程0.010.47y x =+,那么当6x =时,0.53y = ∴预测小李该月6号打6小时篮球的投篮命中率为0.53〔二〕选做题〔14 ~ 15题,考生只能从中选做一题〕14.〔坐标系与参数方程选做题〕两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩ (t ∈)R ,它们的交点坐标为___________. 14..图4BAC DE F5cos sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(5501)x y -<≤≤≤且,254x t y t⎧=⎪⎨⎪=⎩表示抛物线245y x =22221(5501)5450145x y x y x x x y x ⎧+=-<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩且或者5x =-〔舍去〕,又因为01y ≤≤,所以它们的交点坐标为25(1,)515.〔几何证明选讲选做题〕如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =,EF ∥AB ,那么梯形ABFE 与梯形EFCD 的面积比为________. 15.75如图,延长,AD BC ,ADBC P =∵23CD EF =,∴49PCD PEF S S ∆∆= ∵24CD AB =,∴416PCD PEF S S ∆∆= ∴75ABEF EFCDS S =梯形梯形三、解答题:本大题一一共6小题,满分是80分.解答须写出文字说明、证明过程和演算PBAC DE F步骤.16.〔本小题满分是12分〕函数1()2sin()36f x x π=-,x ∈R .〔1〕求(0)f 的值;〔2〕设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值. 16.解:〔1〕(0)2sin()16f π=-=-〔2〕110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β== ∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯=17.〔本小题满分是13分〕在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n =的同学所得成绩,且前5位同学的成绩如下:〔1〕求第6位同学的成绩6x ,及这6位同学成绩的HY 差s ;〔2〕从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间〔68,75〕中的概率. 17.解:〔1〕61(7076727072)756x +++++=,解得690x = HY差C C E'6(7s x x =++-== 〔2〕前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠ 那么根本领件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)一共10种这5位同学中,编号为1、3、4、5号的同学成绩在区间〔68,75〕中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间〔68,75〕中〞那么A 中的根本领件有(1,2)、(2,3)、(2,4)、(2,5)一共4种,那么42()105P A == 18.〔本小题满分是13分〕图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右程度平移后得到的.,,,A A B B ''分别为CD ,C D '',DE ,D E ''的中点,1122,,,O O O O ''分别为CD ,C D '', DE ,D E ''的中点.〔1〕证明:12,,,O A O B ''四点一共面;〔2〕设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.C C'18.证明:〔1〕连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心 ∴,,,CD C D DE D E ''''是圆柱底面圆的直径 ∵,,A B B ''分别为C D '',DE ,D E ''的中点∴1290A O D B O D ''''''∠=∠= ∴1A O ''∥2BO '∵BB '//22O ',四边形22O O B B ''是平行四边形 ∴2BO ∥2BO ' ∴1A O ''∥2BO∴12,,,O A O B ''四点一共面〔2〕延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB '' ∵11O H A O ''''=∴1O H ''2B '',四边形12O O B H ''''是平行四边形 ∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''=∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '' ∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=∵11tan 2HH HO H O H '''∠=='',1tan 2A G A H G A H '''∠=='' ∴1tan tan 1HO H A H G ''''∠⋅∠=∴190HO H A H G ''''∠+∠= ∴1HO H G ''⊥易知12O O '',四边形12O O BH ''是平行四边形 ∴2BO '∥1HO ' ∴2BO H G ''⊥,H GH B H ''''=∴2BO '⊥平面H B G ''.19.〔本小题满分是14分〕设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性. 19.解:函数()f x 的定义域为(0,)+∞212(1)2(1)1()2(1)2(1)a a x a x f x a a x a x x---+'=+---=令2()2(1)2(1)1g x a a x a x =---+224(1)8(1)121644(31)(1)a a a a a a a ∆=---=-+=--① 当103a <<时,0∆>,令()0f x '=,解得x =那么当0x <<或者x >时,()0f x '>x <<时,()0f x '<那么()f x 在,)+∞上单调递增,在上单调递减② 当113a ≤≤时,0∆≤,()0f x '≥,那么()f x 在(0,)+∞上单调递增③ 当1a >时,0∆>,令()0f x '=,解得x =∵0x >,∴x =那么当0x <<时,()0f x '>当x >时,()0f x '<那么()f x 在上单调递增,在)+∞上单调递减20.〔本小题满分是14分〕设0b >,数列{}n a 满足1a b =,111n n n nba a a n --=+-(n ≥2).〔1〕求数列{}n a 的通项公式; 〔2〕证明:对于一切正整数n ,2n a ≤11n b ++.20.〔1〕解:∵111n n n nba a a n --=+-∴111n n n a ba n a n --=+- ∴1111n n n n a b a b--=⋅+ ① 当1b =时,111n n n n a a ---=,那么{}nn a 是以1为首项,1为公差的等差数列 ∴1(1)1nnn n a =+-⨯=,即1n a = ② 当0b >且1b ≠时,11111()11n n n n a b b a b--+=+-- 当1n =时,111(1)n n a b b b +=-- ∴1{}1n n a b +-是以1(1)b b -为首项,1b 为公比的等比数列 ∴111()11n n n a b b b+=⋅-- ∴111(1)1(1)nn nn n b a b b b b b -=-=--- ∴(1)1nn nn b b a b-=- 综上所述(1),01111nn n n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, 〔2〕证明:① 当1b =时,1212n n a b+=+=;② 当0b >且1b ≠时,211(1)(1)n n n b b b b b ---=-++++要证121n n a b +≤+,只需证12(1)11n n nn b b b b+-≤+-, 即证2(1)11n nn b b b b-≤+- 即证21211n n nn b b b b b --≤+++++ 即证211()(1)2n n n b b b b n b--+++++≥即证21121111()()2n nn n b b b b n b b b b --+++++++++≥∵21121111()()n nn n b b b b b b b b--+++++++++21211111()()()()n n n n b b b b b b b b--=++++++++122n b n -≥++=,∴原不等式成立 ∴对于一切正整数n ,2n a ≤11n b++.21.〔本小题满分是14分〕在平面直角坐标系xOy 上,直线l :2x =-交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足MPO AOP ∠=∠.〔1〕当点P 在l 上运动时,求点M 的轨迹E 的方程;〔2〕(1,1)T -,设H 是E 上动点,求HO HT +的最小值,并给出此时点H 的坐标; 〔3〕过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围.21.解:〔1〕如下图,连接OM ,那么PM OM =∵MPO AOP ∠=∠,∴动点M 满足MP l ⊥或者M 在x 的负半轴上,设(,)M x yxTxT① 当MP l⊥时,2MP x =+,OM =2x +=,化简得244y x =+(1)x ≥-② 当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或者0y =(1)x <- 〔2〕由〔1〕知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <-① 假设H 是抛物线上的动点,过H 作HN l ⊥于N由于l 是抛物线的准线,根据抛物线的定义有HO HN = 那么HO HT HN HT +=+当,,N H T 三点一共线时,HN HT +有最小值3TN =求得此时H 的坐标为3(,1)4--② 假设H 是x 的负半轴0y =(1)x <-上的动点 显然有3HO HT +>综上所述,HO HT +的最小值为3,此时点H 的坐标为3(,1)4-- 〔3〕如图,设抛物线顶点(1,0)A -,那么直线AT 的斜率12ATk =-∵点(1,1)T -在抛物线内部,∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点 那么直线1l 与轨迹E 的交点个数分以下四种情况讨论:① 当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点② 当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点③ 当0k =时,直线1l 与轨迹E 有且只有一个交点 ④ 当0k >时,直线1l 与轨迹E 有且只有两个不同的交点综上所述,直线1l 的斜率k 的取值范围是1(,](0,)2-∞-+∞励志赠言经典语录精选句;挥动**,放飞梦想。
普通高等学校招生全国统一考试(广东卷)数学(文科A 卷)解析本试卷共4页,21小题,满分150分.考试用时120分钟.锥体地 体积公式:13V Sh =.其中S 表示锥体地 底面积,h 表示锥体地 高.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出地 四个选项中,只有一项是符合题目要求地 . 1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =IA .{0}B .{0,2}C .{2,0}-图 1D .{2,0,2}-【解析】:先解两个一元二次方程,再取交集,选A ,5分到手,妙!2.函数lg(1)()1x f x x +=-地 定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞UD .[1,1)(1,)-+∞U 【解析】:对数真数大于零,分母不等于零,目测C ! 3.若()34i x yi i +=+,,x y R ∈,则复数x yi +地 模是 A .2 B .3 C .4 D .5 【解析】:复数地 运算、复数相等,目测4,3x y ==-,模为5,选D .4.已知51sin()25πα+=,那么cos α= A .25- B .15- C .15 D .25【解析】:考查三角函数诱导公式,图 2俯视图侧视图正视图51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭,选C.5.执行如图1所示地 程序框图,3,则输出s 地 值是A .1B .2C .4D .7【解析】选C.本题只需细心按程序框图运行一下即可.6.某三棱锥地 三视图如图2所示,则该三棱锥地 体积是A .16B .13C .23D .1【解析】由三视图判断底面为等腰直角三角形,三棱锥地 高为2,则111=112=323V ⋅⋅⋅⋅,选B.7.垂直于直线1y x =+且与圆221x y +=相切于第一象限地直线方程是 A .x y +-= B .10x y ++=C .10x y +-= D .0x y ++=【解析】本题考查直线与圆地 位置关系,直接由选项判断很快,圆心到直线地 距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求地 直线方程为:()0y x k k =-+>,再利用圆心到直线地 距离等于1r =,求得k =8.设l 为直线,,αβ是两个不同地 平面,下列命题中正确地 是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥【解析】基础题,在脑海里把线面可能性一想,就知道选B 了.9.已知中心在原点地 椭圆C 地 右焦点为(1,0)F ,离心率等于21,则C 地 方程是 A .14322=+y x B .13422=+y x C .12422=+y xD .13422=+y x【解析】基础题,1,2,c a b === D. 10.设r a 是已知地 平面向量且≠0r r a ,关于向量r a地 分解,有如下四个命题:①给定向量r b,总存在向量r c,使=+r r r a b c;②给定向量rb和r c ,总存在实数λ和μ,使λμ=+r r r a b c;③给定单位向量r b 和正数μ,总存在单位向量r c和实数λ,使λμ=+r r r a b c;④给定正数λ和μ,总存在单位向量r b和单位向量r c,使λμ=+r r r a b c;上述命题中地 向量r b,r c和r a在同一平面内且两两不共线,则真命题地 个数是A .1B .2C .3D .4【解析】本题是选择题中地 压轴题,主要考查平面向量地 基本定理和向量加法地 三角形法则. 利用向量加法地 三角形法则,易地 ①是对地 ;利用平面向量地 基本定理,易地 ②是对地 ;以a 地 终点作长度为μ地 圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错地 ;利用向量加法地 三角形法则,结合三角形两边地 和大于第三边,即必须=+λμλμ+≥b c a ,所以④是假命题.综上,本题选B.平面向量地 基本定理考前还强调过,不懂学生做得如何.【品味选择题】文科选择题答案:ACDCC BABDB.选择题3322再次出现!今年地 选择题很基础,希望以后高考年年出基础题!二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.设数列{}na 是首项为1,公比为2-地 等比数列,则1234||||a a a a +++=【解析】这题相当于直接给出答案了1512.若曲线2ln y axx=-在点(1,)a 处地 切线平行于x 轴,则a =.【解析】本题考查切线方程、方程地 思想.依题意''1112,210,2x y ax y a a x ==-=-=∴=13.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+地 最大值是.【解析】画出可行域如图,最优解为()1,4,故填 5 ; (二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C 地 极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴地 正半轴建立直角坐标系,则曲线C 地参数方程为 .【解析】本题考了备考弱点.讲参数方程地 时候,参数地 意义要理解清楚.先化成直角坐标方程()2211x y -+=,易地 则曲线C 地 参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数)15.(几何证明选讲选做题) 如图3,在矩形ABCD中,AB =3BC =,BE AC ⊥,垂足为E ,则ED = .【解析】本题对数值要敏感,由AB =3BC =,可知60BAC ∠=o从而30AE CAD =∠=o ,2DE ==.【品味填空题】选做题还是难了点,比理科还难些.图 3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数(),12f x x x Rπ⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭地 值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭. 【解析】(1)133124f ππππ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈⎪⎝⎭Q ,4sin 5θ==-,1cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=-⎪ ⎪⎪⎝⎭⎝⎭⎭.【解析】这个题实在是太简单,两角差地 余弦公式不要记错了.17.(本小题满分13分)从一批苹果中,随机抽取50个,其重量(单位:克)地频数分布表如下:(1) 根据频数分布表计算苹果地重量在[90,95)地频率;(2) 用分层抽样地方法从重量在[80,85)和[95,100)地苹果中共抽取4个,其中重量在[80,85)地有几个?(3) 在(2)中抽出地 4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个地概率.【解析】(1)苹果地重量在[)95,90地频率为20=0.4;50(2)重量在[)85,80地有54=1⋅个;5+15(3)设这4个苹果中[)85,80分段地为1,[)95分段地,100为2、3、4,从中任取两个,可能地情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)95中各有1个地,100事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以31P==.(A)62【解析】这个基础题,注意格式!18.(本小题满分13分)如图4,在边长为1地等边三角形ABC中,,D E分别是AB AC边上地点,AD AE,=,F是BC地Array于点G,将ABF∆沿AF折起,得到如图5图 4A BCF-,其中2BC =.(1) 证明:DE //平面BCF (2) 证明:CF ⊥平面ABF ;(3) 当23AD =时,求三棱锥F DEG-.【解析】(1)在等边三角形ABC 中,AD AE =AD AEDB EC∴=,在折叠后地 三棱锥A BCF -中也成立,//DE BC ∴ ,DE ⊄Q 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 地 中点,所以AF BC⊥①,12BF CF ==.Q在三棱锥A BCF-中,BC =222BCBF CF CF BF∴=+∴⊥②BF CF F CF ABF⋂=∴⊥Q 平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.11111113232333F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅= ⎝⎭【解析】这个题是入门级地 题,除了立体几何地 内容,还考查了平行线分线段成比例这个平面几何地 内容.19.(本小题满分14分)设各项均为正数地 数列{}na 地 前n 项和为nS ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1)证明:2a=(2) 求数列{}na 地 通项公式;(3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<L .【解析】(1)当1n =时,22122145,45a aa a =-=+,20naa >∴=Q(2)当2n ≥时,()214411n n Sa n -=---,22114444nn n n n aS S a a -+=-=--()2221442n n n n a a a a +=++=+,102nn n aa a +>∴=+Q∴当2n ≥时,{}na 是公差2d =地 等差数列.2514,,a a a Q 构成等比数列,25214aa a ∴=⋅,()()2222824aa a +=⋅+,解得23a=,由(1)可知,212145=4,1a aa =-∴=21312a a -=-=Q ∴{}na 是首项11a=,公差2d =地 等差数列.∴数列{}na 地 通项公式为21nan =-.(3)()()1223111111111335572121n n a aa a a a n n ++++=++++⋅⋅⋅-+L L11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦【解析】本题考查很常规,第(1)(2)两问是已知nS 求na ,{}na 是等差数列,第(3)问只需裂项求和即可,估计不少学生猜出通项公式,跳过第(2)问,作出第(3)问.本题易错点在分成1n =,2n ≥来做后,不会求1a ,没有证明1a 也满足通项公式.20.(本小题满分14分)已知抛物线C 地 顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=地 距离为2.设P 为直线l 上地 点,过点P 作抛物线C 地 两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 地 方程;(2) 当点()0,P x y 为直线l 上地 定点时,求直线AB 地 方程;(3) 当点P 在直线l 上移动时,求AF BF ⋅地 最小值.【解析】(1)依题意2d ==,解得1c =(负根舍去)∴抛物线C 地 方程为24xy=;(2)设点11(,)A x y ,22(,)B x y ,),(0y x P ,由24xy=,即214yx ,=得y '=12x . ∴抛物线C 在点A 处地 切线PA 地 方程为)(2111x x x y y -=-,即2111212x y x x y -+=.∵21141x y=, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=.①同理, 2022y x x y-=. ②综合①、②得,点1122(,),(,)A x y B x y 地 坐标都满足方程y x xy -=002.∵经过1122(,),(,)A x y B x y 两点地 直线是唯一地 ,∴直线AB 地 方程为y x xy-=002,即0220x x y y--=;(3)由抛物线地 定义可知121,1AF y BF y =+=+,所以()()121212111AF BF y yy y y y ⋅=++=+++联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y yx y y +-+=,2212001202,y y x y y y y ∴+=-=0020x y --=Q()222200000021=221AF BF y y x y y y ∴⋅=-++-+++220019=22+5=2+22y y y ⎛⎫++ ⎪⎝⎭∴当012y=-时,AF BF ⋅取得最小值为92【解析】2013广州模直接命中了这一题,广一模20题解法2正是本科第(2)问地 解法,并且广一模大题结构和高考完全一致. 21.(本小题满分14分) 设函数xkx xx f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 地 单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上地 最小值m 和最大值M . 【解析】:()'2321f x x kx =-+(1)当1k =时()'2321,41280f x x x =-+∆=-=-<()'0f x ∴>,()f x 在R 上单调递增.(2)当0k <时,()'2321f x x kx =-+,其开口向上,对称轴3kx =,且过()01,(i)当(241240k k k ∆=-=≤,即0k ≤<时,()'0fx ≥,()f x 在[],k k -上单调递增,从而当x k =时,()f x 取得最小值()m f k k == , 当x k=-时,()f x 取得最大值()3332M f k k k k k k=-=---=--.(ii )当(241240k k k ∆=-=+>,即k <时,令()'23210f x x kx =-+=解得:12x x ==,注意到210k xx <<<, (注:可用韦达定理判断1213x x ⋅=,1223kx x k +=>,从而210k x x <<<;或者由对称结合图像判断)()(){}()(){}12min ,,max ,m f k f x M f k f x ∴==- ()()()()32211111110f x f k x kx x k x k x -=-+-=-+>Q()f x ∴地 最小值()m f k k ==,()()()()()232322222222=[1]0f x f k x kx x k k k k x k x k k --=-+---⋅-+-++<Q()f x ∴地 最大值()32M f k k k =-=--综上所述,当0k <时,()f x 地 最小值()m f k k ==,最大值()32M f k k k =-=--解法2(2)当0k <时,对[],x k k ∀∈-,都有32332()()(1)()0f x f k x kx x k k k x x k -=-+-+-=+-≥,故()()f x f k ≥32332222()()()(221)()[()1]0f x f k x kx x k k k x k x kx k x k x k k --=-++++=+-++=+-++≤故()()f x f k ≤-,而 ()0f k k =<,3()20f k kk -=--> 所以 3max ()()2f x f k k k =-=--,min ()()f x f k k ==【解析】:看着容易,做着难!常规解法完成后,发现不用分类讨论,奇思妙解也出现了:结合图像感知x k = 时最小,x k =-时最大,只需证()()()f k f x f k ≤≤-即可,避免分类讨论.本题第二问关键在求最大值,需要因式分解比较深地 功力.。
{}02021年普通高等招生全国统一考试数学文试题〔卷,解析版〕本套试卷一共4页,21小题,满分是150分。
考试用时120分钟。
考前须知:1.答卷时,所有考生必须用黑色字迹的钢笔或者签字笔将本人的姓名和考生号、试室、座位号填写上在答题卡上。
需要用2B 铅笔将试卷类型〔B 〕填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处〞。
2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目选项之答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在答题卡各题指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。
不按以上要求答题之答案无效。
4.答题选作题时,请先需要用2B 铅笔填涂选做题的题号对应的信息点,再答题。
5.考生必须保持答题卡的整洁。
在在考试完毕之后以后,将试卷和答题卡一起交回。
参考公式:锥体的体积公式Sh V 31=,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题一一共10小题,每一小题5分,满分是50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.{}3,2,1,0=A ,{}4,2,1=B 那么集合=⋃B AA. {}4,3,2,1,0B. {}4,3,2,1C. {}2,1D. 解:并集,选A.)1lg()(-=x x f 的定义域是A.),2(+∞B. ),1(+∞C. ),1[+∞D. ),2[+∞ 解:01>-x ,得1>x ,选B.x x x f -+=33)(与x x x g --=33)(的定义域均为R ,那么A. )(x f 与)(x g 与均为偶函数B.)(x f 为奇函数,)(x g 为偶函数C. )(x f 与)(x g 与均为奇函数D.)(x f 为偶函数,)(x g 为奇函数 解:由于)(33)()(x f x f x x=+=----,故)(x f 是偶函数,排除B 、C由题意知,圆心在y 轴左侧,排除A 、C在AO Rt 0∆,210==k A OA ,故50510500=⇒==O O O A ,选D7.假设一个椭圆长轴的长度、短轴的长度和焦距成等差数列,那么该椭圆的离心率是 A.54 B.53 C. 52 D. 51{}d c b a,,,上定义两种运算○+和○*如下○+ a b c d aabcdb bb bb ccb cb ddbbd那么d ○*a (○+=)cA.aB.bC.cD.d解:由上表可知:a (○+c c =),故d ○*a (○+=)c d ○*a c =,选A二、填空题:本大题一一共5小题,考生答题4小题,每一小题5分,满分是20分。
图 2俯视图侧视图正视图普通高等学校招生全国统一考试(广东卷)数学(文科A 卷)解析从今以后,不再是大学特学综合科,而是大学特学数学科了!让别的科扼杀学生的能力吧,数学出基础题就好——感恩广东今年数学出题老师——湛江-农垦-小徐注(QQ:808068)本试卷共4页,21小题,满分150分.考试用时120分钟. 锥体的体积公式:13V Sh =.其中S 表示锥体的底面积,h 表示锥体的高.ks5u 一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T = A .{0} B .{0,2} C .{2,0}- D .{2,0,2}- 【解析】:先解两个一元二次方程,再取交集,选A ,5分到手,妙! 2.函数lg(1)()1x f x x +=-的定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞D .[1,1)(1,)-+∞ 【解析】:对数真数大于零,分母不等于零,目测C ! 3.若()34i x yi i +=+,,x y R ∈,则复数x yi +的模是 A .2 B .3 C .4 D .5【解析】:复数的运算、复数相等,目测4,3x y ==-,模为5,选D. 4.已知51sin()25πα+=,那么cos α= A .25- B .15- C .15 D .25【解析】:考查三角函数诱导公式,51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭,选C. 5.执行如图1所示的程序框图,若输入n 的值为3,则输出s 的值是 A .1 B .2 C .4 D .7 【解析】选C.本题只需细心按程序框图运行一下即可. 6.某三棱锥的三视图如图2所示,则该三棱锥的体积是 A .16 B .13 C .23D .1 【解析】由三视图判断底面为等腰直角三角形,三棱锥的高为2,则11=112=323V ⋅⋅⋅⋅,选B. 图 17.垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是A .0x y +-=B .10x y ++=C .10x y +-=D .0x y ++=【解析】本题考查直线与圆的位置关系,直接由选项判断很快,圆心到直线的距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:()0y x k k =-+>,再利用圆心到直线的距离等于1r =,求得k =.8.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 【解析】基础题,在脑海里把线面可能性一想,就知道选B 了. 9.已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是 A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x【解析】基础题,1,2,c a b === D.10.设 a 是已知的平面向量且≠0 a ,关于向量a 的分解,有如下四个命题:①给定向量 b ,总存在向量 c ,使=+a b c ;②给定向量 b 和 c ,总存在实数λ和μ,使λμ=+a b c ;ks5u③给定单位向量 b 和正数μ,总存在单位向量 c 和实数λ,使λμ=+a b c ;④给定正数λ和μ,总存在单位向量 b 和单位向量 c ,使λμ=+a b c ;上述命题中的向量 b , c 和a 在同一平面内且两两不共线,则真命题的个数是A .1B .2C .3D .4【解析】本题是选择题中的压轴题,主要考查平面向量的基本定理和向量加法的三角形法则. 利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以a 的终点作长度为μ的圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须=+λμλμ+≥b c a ,所以④是假命题.综上,本题选B.平面向量的基本定理考前还强调过,不懂学生做得如何.【品味选择题】文科选择题答案:ACDCC BABDB.选择题3322再次出现!今年的选择题很基础,希望以后高考年年出基础题!二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.设数列{}n a 是首项为1,公比为2-的等比数列,则1234||||a a a a +++= 【解析】这题相当于直接给出答案了1512.若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a = .【解析】本题考查切线方程、方程的思想.依题意''1112,210,2x y ax y a a x ==-=-=∴= 13.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+的最大值是.【解析】画出可行域如图,最优解为()1,4,故填 5 ; (二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C 的极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为 .【解析】本题考了备考弱点.讲参数方程的时候,参数的意义要理解清楚.先化成直角坐标方程()2211x y -+=,易的则曲线C 的参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数) 15.(几何证明选讲选做题)如图3,在矩形ABCD中,AB =3BC =,BE AC ⊥,垂足为E ,则ED = . 【解析】本题对数值要敏感,由AB =3BC =,可知60BAC ∠=从而302AE CAD =∠= ,2DE ==. 【品味填空题】选做题还是难了点,比理科还难些.图 3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数(),12f x x x R π⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭的值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭.【解析】(1)133124f ππππ⎛⎫⎛⎫⎛⎫=-==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,4sin 5θ==-, 1cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=- ⎪ ⎪⎪⎝⎭⎝⎭⎭.【解析】这个题实在是太简单,两角差的余弦公式不要记错了.17.(本小题满分13分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率. 【解析】(1)苹果的重量在[)95,90的频率为20=0.450; (2)重量在[)85,80的有54=15+15⋅个; (3)设这4个苹果中[)85,80分段的为1,[)100,95分段的为2、3、4,从中任取两个,可能的情况有:图 4(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)100,95中各有1个的事件为A ,则事件A 包含有(1,2)(1,3)(1,4)共3种,所以31(A)62P ==. 【解析】这个基础题,我只强调:注意格式!18.(本小题满分13分)如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =.(1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ;ks5u (3) 当23AD =时,求三棱锥F DEG -的体积F V -【解析】(1)在等边三角形ABC 中,AD AE =AD AEDB EC∴=,在折叠后的三棱锥A BCF -中 也成立,//DE BC ∴ ,DE ⊄ 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 的中点,所以AF BC ⊥①,12BFCF ==. 在三棱锥A BCF -中,2BC =,222BC BF CF CF BF ∴=+∴⊥②BF CF F CF ABF ⋂=∴⊥ 平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.111111132323323324F DEG E DFG V V DG FG GF --⎛⎫∴==⋅⋅⋅⋅=⋅⋅⋅⋅⋅= ⎪ ⎪⎝⎭【解析】这个题是入门级的题,除了立体几何的内容,还考查了平行线分线段成比例这个平面几何的内容.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列. (1)证明:2a =(2) 求数列{}n a 的通项公式; (3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++< . 【解析】(1)当1n =时,22122145,45a a a a =-=+,20n a a >∴=(2)当2n ≥时,()214411n n S a n -=---,22114444n n n n n a S S a a -+=-=--()2221442n n n n a a a a +=++=+,102n n n a a a +>∴=+∴当2n ≥时,{}n a 是公差2d =的等差数列.2514,,a a a 构成等比数列,25214a a a ∴=⋅,()()2222824a a a +=⋅+,解得23a =, 由(1)可知,212145=4,1a a a =-∴=21312a a -=-= ∴ {}n a 是首项11a =,公差2d =的等差数列.∴数列{}n a 的通项公式为21n a n =-. (3)()()1223111111111335572121n n a a a a a a n n ++++=++++⋅⋅⋅-+ 11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦【解析】本题考查很常规,第(1)(2)两问是已知n S 求n a ,{}n a 是等差数列,第(3)问只需裂项求和即可,估计不少学生猜出通项公式,跳过第(2)问,作出第(3)问.本题易错点在分成1n =,2n ≥来做后,不会求1a ,没有证明1a 也满足通项公式.20.(本小题满分14分)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (3) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.【解析】(1)依题意d ==1c =(负根舍去) ∴抛物线C 的方程为24x y =;(2)设点11(,)A x y ,22(,)B x y ,),(00y x P ,由24xy =,即214y x ,=得y '=12x . ks5u ∴抛物线C 在点A 处的切线PA 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=. ∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ② 综合①、②得,点1122(,),(,)A x y B x y 的坐标都满足方程 y x xy -=002. ∵经过1122(,),(,)A x y B x y 两点的直线是唯一的, ∴直线AB 的方程为y x xy -=002,即00220x x y y --=; (3)由抛物线的定义可知121,1AF y BF y =+=+, 所以()()121212111AF BF y y y y y y ⋅=++=+++联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y y x y y +-+=,2212001202,y y x y y y y ∴+=-=0020x y --=()222200000021=221AF BF y y x y y y ∴⋅=-++-+++220019=22+5=2+22y y y ⎛⎫++ ⎪⎝⎭∴当012y =-时,AF BF ⋅取得最小值为92【解析】2013广州模直接命中了这一题,广一模20题解法2正是本科第(2)问的解法,并且广一模大题结构和高考完全一致. 紫霞仙子:我的意中人是个盖世英雄,有一天他会踩着七色云彩来娶我,我只猜中了前头,可是我却猜不中这结局……形容这次高考,妙极!21.(本小题满分14分)设函数x kx x x f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 的单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上的最小值m 和最大值M . 【解析】:()'2321fx x kx =-+(1)当1k =时()'2321,41280fx x x =-+∆=-=-<()'0f x ∴>,()f x 在R 上单调递增.(2)当0k <时,()'2321fx x kx =-+,其开口向上,对称轴3k x = ,且过()01,(i)当(241240k k k ∆=-=≤,即0k <时,()'0f x ≥,()f x 在[],k k -上单调递增,从而当x k =时,()f x 取得最小值()m f k k == , 当x k =-时,()f x 取得最大值()3332M f k k k k k k =-=---=--.(ii)当(241240k k k ∆=-=+>,即k <()'23210f x x kx =-+=解得:12x x ==,注意到210k x x <<<,(注:可用韦达定理判断1213x x ⋅=,1223kx x k +=>,从而210k x x <<<;或者由对称结合图像判断) ()(){}()(){}12min ,,max ,m f k f x M f k f x ∴==- ()()()()32211111110f x f k x kx x k x k x -=-+-=-+>()f x ∴的最小值()m f k k ==,()()()()()232322222222=[1]0f x f k x kx x k k k k x k x k k --=-+---⋅-+-++<()f x ∴的最大值()32M f k k k =-=--综上所述,当0k <时,()f x 的最小值()m f k k ==,最大值()32M f k k k =-=--解法2(2)当0k <时,对[],x k k ∀∈-,都有32332()()(1)()0f x f k x kx x k k k x x k -=-+-+-=+-≥,故()()f x f k ≥32332222()()()(221)()[()1]0f x f k x kx x k k k x k x kx k x k x k k --=-++++=+-++=+-++≤故()()f x f k ≤-,而 ()0f k k =<,3()20f k k k -=-->所以 3max ()()2f x f k k k =-=--,min ()()f x f k k ==ks5u【解析】:看着容易,做着难!常规解法完成后,发现不用分类讨论,奇思妙解也出现了:结合图像感知x k = 时最小,x k =-时最大,只需证()()()f k f x f k ≤≤-即可,避免分类讨论.本题第二问关键在求最大值,需要因式分解比较深的功力,这也正符合了2012年高考年报的“对中学教学的要求——重视高一教学与初中课堂衔接课”.新|课|标|第|一|网。
绝密★启用前 试卷类型:B 普通高等学校招生全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.作答选做题时。
请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={1,2,4},则集合A B=A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}2.函数,()lg(1)f x x =-的定义域是A .(2,+∞)B .(1,+∞)C .[1,+∞)D .[2,+∞)3.若函数()33x x f x -=+与()33x x g x -=-的定义域均为R ,则A .()f x 与()g x 均为偶函数B .()f x 为奇函数,()g x 为偶函数C .()f x 与()g x 均为奇函数D .()f x 为偶函数,()g x 为奇函数4.已知数列{n a }为等比数列,n S 是它的前n 项和,若2·a a 31=2a ,且4a 与72a 的等差中项为54,则S5=w_w w. k#s5_u.c o*mw_w*w.k_s_5 u.c*o*mA .35B .33C .31D .29 5.若向量(1,1)a =r ,(2,5)b =r ,(3,)c x =r 满足条件(8)30a b c -⋅=r r r,则x =A .6B .5C .4D .36.若圆心在x 轴上、的圆O 位于y 轴左侧,且与直线20x y +=相切,则圆O 的方程是w_w w. k#s5_u.c o*mA.22(5x y+=B.22(5x y++=w_w*w.k_s_5 u.c*o*mC.22(5)5x y-+=D.22(5)5x y++=7.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是w_w w. k#s5_u.c o*mA.45B.35C.25D.158.“x>0”成立的A.充分非必要条件B.必要非充分条件w_w*w.k_s_5 u.c*o*mC.非充分非必要条件D.充要条件9.如图1,ABCV为正三角形,'''////AA BB CC,''''32CC BB CC AB⊥===平面ABC且3AA,则多面体'''ABC A B C-的正视图(也称主视图)是w_w*w.k_s_5 u.c*o*m10.在集合{a,b,c,d}上定义两种运算⊕和⊗如下:w_w w. k#s5_u.c o*m那么d⊗()a c⊕=A.a B.b C.c D.d二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,若1x ,2x ,3x ,4x ,分别为1,1.5,1.5,2,则输出的结果s 为 . w_w*w.k_s_5 u.c*o*m12.某市居民20xx ~ 家庭年平均收入x (单位:万元)与年平均支出Y (单位:万元)的统计资料如下表所示:w_w w. k#s5_u.c o*m根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.13.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a=1,,A+C=2B ,则sinA= . w_w w. k#s5_u.c o*m(二)选做题(14、15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB=AD=a ,CD=2a,点E ,F 分别为线段AB ,AD 的中点,则EF= .15.(坐标系与参数方程选做题)在极坐标系(ρ,θ)(02θπ≤<)中,曲线()cos sin 1ρθθ+=与()sin cos 1ρθθ-=的交点的极坐标为 . w_w*w.k_s_5 u.c*o*m三、解答题:本大题共6小题,满分80分。
广东高考文科数学试卷及答案解析(word版)2021年普通高等学校招生全国统一考试(广东卷)(广东教育厅)数学(文科)一、多项选择题1.已知集合m??2,3,4?,n??0,2,3,5?,则ma.?0,2?答案:bN(). D3,5? B2,3? C3,4?2.已知复数z满足(3?4i)z?25,则z?().a.?3?4i答案:d提示:z?b.?3?4ic.3?4id.3?4i 2525(?3i4)2?5i(34)=??3.因此,D.3?4i(?3i4)?(3i4)253.已知向量a?(1,2),b(3,1),则b?a?().a.(?2,1)答案:bb、(2,?1)c.(2,0)d.(4,3)?十、2岁?8.4.变量X和Y是否满足约束条件?0 x?4,那么Z?2倍?Y的最大值等于()?0岁?3.a、 7b。
8c。
10天。
11答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10.选c.5.下列函数为奇函数地是().a.2?x答:a132x2cosx?1xsinxx?2b.c.d.x2x提示:设f(x)?x2?111?x则,fx(的定义域为)r且,?f(?x)?2??x?xx222?f(x)为奇函数故选,a.??2fx(),6.为了了解1000名学生的学习情况,采用系统抽样的方法,抽取容量为40的样本,分段间隔为()答:C提示:分段间隔为1000?25.40b。
40摄氏度。
25d。
二十1/87.在哪里?在ABC中,与角a、B和C相对应的边分别是a、B和C,所以“a?B”是“Sina?SINB”a的()。
充分条件和必要条件C。
必要条件和非充分条件回答:提示:从正弦定理了解AB?,a、新浪和新浪都是正数,?A.B新浪?辛布。
西那辛布。
充分和不必要的条件D.不充分和不必要的条件x2y2x2y28.若实数k满足0?k?5,则曲线??1与曲线??1的().165?k16?k5a.实半轴长相等b.虚半轴长相等c.离心率相等答案:d提示:0?k?5,?5?k?0,16?k?0,从而两曲线均为双曲线,又16?(5?k)?21?k?(16?k)?5,故两双曲线的焦距相等,选d.9.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1?l2,l2//l3,l3?l4,则下列结论一定正确的是().a.l1?l4c.l1与l4既不垂直也不平行答案:d10.对任意复数?1,?2,定义?1??2=?1?2,其中?2是?2的共轭复数,对任意复数z1,z2,z3有如下四个命题:①(z1?z2)?z3?(z1?z3)?(z2?z3);③(z1?z2)?z3?z1?(z2?z3);d、等焦距b.l1//L4D l1和L4之间的位置关系不确定②z1?(z2?z3)?(z1?z2)?(z1?z3);④z1?z2?z2?z1则真命题地个数是()a、 1b。
普通高等学校招生全国统一考试数学文试题(广东卷,含答案)本试卷共4页,21小题,满分150分。
考试用时120分钟。
注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2. 选择题每小题选出答案后,用2B铅笔将答题卡上对应题目悬想的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3. 费选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡个项目指定区域内相应位置上;如需改动,先花掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4. 作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,在作答。
漏涂、错涂、多涂的,答案无效。
5. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
参考公式:锥体的体积公式V=13Sh,其中S是锥体的底面积,h是锥体的高。
一、选择题:本大题共10小题,每小题5分,满分50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U=R,则正确表示集合M={—1,0,1}和N={210x x+=}关系的韦恩(Venn)图是2.下列n的取值中,使i n =1(i是虚数单位)的是A.n=2 B.n=3 C.n=4 D.n=53.已知平面向量a =(x,1),b =(—x,x2),则向量a+bA.平行于x轴B.平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线4.若函数()y f x =是函数()x 0y a ≠=a >,且a 1的反函数,且(2)1f =,则()f x = A .2log x B .12x C . 12log x D .22x - 5.已知等比数列{}n a 的公比为正数,且23952a a a •=,2a =1,则1a =A .12B C . D .26.给定下列四个命题:①若一个平面内的两条直线与另外一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直。
绝密★启用前试卷种类:B2021年一般高等学校招生全国一致考试〔广东卷〕数学〔文科〕分析版V 1Sh,此中S 为锥体的底面积, h为锥体的高.参照公式:锥体体积公式3n(x i x)(y i y)bi1nx )2线性回归方程ybxa中系数计算公式i1(x i ,ay bx ,样本数据x 1,x 2,1[(x 1x )2 (x 2x )2(x n x)2],xn 的标准差,n此中x,y表示样本均值.n 是正整数,那么a nb n (a b)(a n1 a n2b ab n2 b n1).一、选择题:本大题共10小题,每题 5分,总分值 50分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.设复数z 知足iz1,此中i为虚数单位,那么A .i B.iC.1D.1ii【分析】z(i)2.会合A{(x,y)|x,y 为实数,且x 221},B{(x,y)|x,y 为实数,且xy1},那么AB的元素个数为A .4B.3C .2D .1【分析】会合A 表示由圆21表示直线 y x 上全部点的会合,∵直上全部点构成的会合,会合线过园内点〔0,0〕,∴直线与圆有两个交点,故答案为C .3.向量a(1,2),b (1,0),c(3,4).假定为实数,(ab )∥c,那么1A .4B.2C.1D.2【分析】ab (1,2),由(ab )∥c ,得64(1)0,解得1,故答案为B 。
2第1页共14页1l g(1x )f (x)4.函数1x的定义域是A .(,1)B.(1,)C.(1,1)(1,)D.(,)1x0且x1,那么f(x)的定义域是(1,1)(1,),故答案【分析】要使函数存心义,那么xx110为C。
5.不等式2x2x10的解集是(1,1)B.(1,)C.(,1)(2,)(,1)(1,)A.2D.2【分析】2x2x10(x1)(2x1)0x1或x1,那么不等式的解集为(,1)(1,),22故答案为D。
一、选择题(本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若集合{}1,1M =-,{}2,1,0N =-,则M N =( )A .{}0,1-B .{}0C .{}1D .{}1,1-2.已知i 是虚数单位,则复数()21i +=( )A .2-B .2C .2i -D .2i3.下列函数中,既不是奇函数,也不是偶函数的是( )A .2sin y x x =+B .2cos y x x =-C .122x xy =+ D .sin 2y x x =+ 4.若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .25.设C ∆AB 的内角A ,B ,C 的对边分别为a ,b ,c .若2a =,23c =,3cos 2A =,且b c <, 则b =( )A .3B .2C .22D .36.若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交7.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .18.已知椭圆222125x y m +=(0m >)的左焦点为()1F 4,0-,则m =( ) A .9 B .4 C .3 D .29.在平面直角坐标系x y O 中,已知四边形CD AB 是平行四边形,()1,2AB =-,()D 2,1A =,则D C A ⋅A = ( )A .2B .3C .4D .510.若集合(){},,,04,04,04,,,p q r s p s q s r s p q r s E =≤<≤≤<≤≤<≤∈N 且,(){}F ,,,04,04,,,t u v w t u v w t u v w =≤<≤≤<≤∈N 且,用()card X 表示集合X 中的元素个数,则 ()()card card F E +=( )A .50B .100C .150D .200二、填空题(本大题共5小题,考生作答4小题,每小题5分,满分20分.)(一)必做题(11~13题)11.不等式2340x x --+>的解集为 .(用区间表示) 12.已知样本数据1x ,2x ,⋅⋅⋅,n x 的均值5x =,则样本数据121x +,221x +,⋅⋅⋅,21n x +的均值为 . 13.若三个正数a ,b ,c 成等比数列,其中526a =+,526c =-,则b = .(二)选做题(14、15题,考生只能从中选作一题)14.(坐标系与参数方程选做题)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x t y t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 .15.(几何证明选讲选做题)如图1,AB 为圆O 的直径,E 为AB 的延长线上一点,过E 作圆O 的切线,切点为C ,过A 作直线C E 的垂线,垂足为D .若4AB =,C 23E =,则D A = .三、解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16.(本小题满分12分)已知tan 2α=.(1)求tan 4πα⎛⎫+ ⎪⎝⎭的值; (2)求2sin 2sin sin cos cos 21ααααα+--的值. 17.(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图2.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数; (3)在月平均用电量为[)220,240,[)240,260,[)260,280,[]280,300的四组用户中,用分层抽样的 方法抽取11户居民,则月平均用电量在[)220,240的用户中应抽取多少户?18.(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.19.(本小题满分14分)设数列{}n a 的前n 项和为n S ,n *∈N .已知11a =,232a =,354a =,且当2n ≥ 时,211458n n n n S S S S ++-+=+.(1)求4a 的值;(2)证明:112n n a a +⎧⎫-⎨⎬⎩⎭为等比数列; (3)求数列{}n a 的通项公式.20.(本小题满分14分)已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B .(1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围; 若不存在,说明理由.21.(本小题满分14分)设a 为实数,函数()()()21f x x a x a a a =-+---.(1)若()01f ≤,求a 的取值范围;(2)讨论()f x 的单调性;(3)当2a ≥时,讨论()4f x x+在区间()0,+∞内的零点个数.。
2014年普通高等学校招生全国统一考试(广东B 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}5,3,2,0,4,3,2==N M ,则N M I =( )A .{}5,3B .{}4,3C . {}3,2D . {}2,0 2.已知复数z 满足25)43(=-z i ,则=z ( )A .i 43+B . i 43-C . i 43+-D . i 43--3.已知向量)1,3(),2,1(==b a ρρ,则=-a b ρρ( )A .)3,4(B . )0,2(C . )1,2(-D . )1,2(-4.若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≤+304082y x y x 则y x z +=2的最大值等于( )A . 11B .10C . 8D . 7 5.下列函数为奇函数的是( )A .xx 22+ B . 1cos 2+x C . x x sin 3D .x x212-6.为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .20B .25C .40D .507.在ABC ∆中,角A,B,C 所对应的边分别为,,,c b a 则“b a ≤”是 “B A sin sin ≤”的( ) A .充分必要条件 B .充分非必要条件 C .必要非充分条件 D .非充分非必要条件8.若实数k 满足05k <<,则曲线221165x y k -=-与曲线221165x y k -=-的( ) A .焦距相等 B . 离心率相等 C .虚半轴长相等 D . 实半轴长相等9.若空间中四条两两不同的直线1234,,,l l l l ,满足122334,,,l l l l l l ⊥⊥∥则下列结论一定正确的是( )A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定10.对任意复数12,,w w 定义1212,ωωωω*=其中2ω是2ω的共轭复数,对任意复数123,,z z z 有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*; ③123123()();z z z z z z **=**④1221z z z z *=*; 则真命题的个数是( ) A .4 B .3 C .2 D .1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11—13题)11.曲线53xy e =-+在点()0,2-处的切线方程为________.12.从字母,,,,a b c d e 中任取两个不同字母,则取字母a 的概率为________.13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.(二)选做题(14-15题,考生只能从中选做一题)选做题(14-15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)在极坐标系中,曲线1C 与2C 的方程分别为θθρsin cos 22=与1cos =θρ,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线1C 与2C 交点的直角坐标为________15.(几何证明选讲选做题)如图1,在平行四边形ABCD 中,点E 在AB 上且AC AE EB ,2=与DE 交于点F 则______=∆∆的周长的周长AEF CDF三.解答题:本大题共6小题,满分80分 16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且5()122f π= (1) 求A 的值;(2) 若()()(0,)2f f πθθθ--=∈,求()6f πθ-17.(本小题满分13分)某车间20名工人年龄数据如下表:.(1) 求这20名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3) 求这20名工人年龄的方差.18.(本小题满分13分)如图2,四边形ABCD 为矩形,PD ⊥平面ABCD ,AB=1,BC=PC=2,作如图3折叠:折痕EF ∥DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 在线段AD 上的点记为M ,并且MF ⊥CF .(1) 证明:CF ⊥平面MDF ; (2) 求三棱锥M-CDE 的体积.19.(本小题满分14分)设各项均为正数的数列{}n a 的前n 项和为n S ,且n S 满足()()*∈=+--+-N n n n S n n S n n ,033222(1)求1a 的值;(2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a Λ20.(本小题满分14分)已知椭圆()01:2222>>=+b a by a x C 的一个焦点为()0,5,离心率为35。
(1)求椭圆C 的标准方程;(2)若动点()00,y x P 为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程. 21. (本小题满分14分) 已知函数321()1()3f x x x ax a R =+++∈(1) 求函数()f x 的单调区间;(2) 当0a <时,试讨论是否存在011(0,)(,1)22x ∈U ,使得01()()2f x f =参考答案一、选择题1.C 解析:本题考查集合的基本运算,属于基础题. {}3,2=N M I ,故选C.[解析2]绝对送分题。
答案为B 。
因为集合为高中教材的第一个内容。
也基本上是各省市的必考内容,放在第一小题给人信心。
虽然为送分题,但仍然会有个别同学拿不到分,原因主要是粗心引起。
2.A 解析:本题考查复数的除法运算,属于基础题.()i i i i i z 43)43(43)43(254325+=+-+=-=.故选A. [解析2]同样的送分题。
一般解法是将左边Z 的复数除到右边。
秒杀方法是两边同时乘以,口算得到结果D 。
3.C 解析:本题考查向量的基本运算,属于基础题.)1,2()21,13(-=--=-.故选C.[解析2]又一送分题,由向量减法法则秒杀。
答案为B 。
4.B 解析:本题考查线性规划问题。
在平面直角坐标系中画图,作出可行域,可得该可行域是由(0,0),(0,3),(2,3),(4,2),(4,0)组成的五边形。
由于该区域有限,可以通过分别代这五个边界点进行检验,易知当x=4,y=2时,z=2x+y 取得最大值10。
本题也可以通过平移直线x y 2-=,当直线z x y +-=2经过(4,2)时,截距达到最大,即z 取得最大值10.故选答案B.[解析2]基础题,一般做法画出可行区域。
求出交点(2,3),(4,2)。
得最大值为C 。
此题容易错选成D ,即将(4,3)代入,要注意(4,3)在区域之外。
5.D 解析:本题考察函数的奇偶性.对于A ,()()x x x x x x 222222+±≠+=+---,非奇非偶,对于B ,1cos 21)cos(2+=+-x x ,为偶函数;对于C,x x x x x x sin )sin ()sin()(333=-⋅-=--, 为偶函数; D 中函数的定义域为R ,关于原点对称,且xx---212=-=-x x 22=-x x 221 )212(x x --=为奇函数. 故答案为D 。
[解析2]选B 。
又一送分题。
一种做法是用奇函数的性质。
容易得出结果。
另一秒杀方法是用0代入,只有B 的结果为0.6.B 解析:本题考查系统抽样的特点。
分段的间隔为25401000=,故答案为B. [解析2]由系统抽样的概念,先进行分组,每组为1000除以40即每组25名学生,故分段时隔为25.选C 。
7.A 解析:本题考查正弦定理的应用。
由于,2sin sin R BbA a ==所以,sin 2,sin 2B R b A R a == 所以B A B R A R b a sin sin sin 2sin 2≤⇔≤⇔≤,故“b a ≤”是 “B A sin sin ≤”的充要条件,故选答案为A.[解析2]由大边对大角,或由正弦定理都可以秒杀。
答案为A 。
8.A 解析:本题可以采用一般法和特殊法,一般法在这里不赘述,令4=k ,则这两个曲线方程分别为111622=-y x 和151222=-y x ,它们分别对应的17512,171162221=+==+=c c ,故21c c =。
所以它们的焦距相等,故答案为A.[解析2]由已知可得两曲线均为双曲线,在又曲线中C 是最长的。
故选D 。
9.D 解析:本题考查空间中线线的位置关系。
以正方体为模型,易知1l 和4l 的位置关系可能有14l l ⊥ 或41//l l ,故1l 与4l 的位置关系不确定.故答案为D.[解析2]线与线的位置关系,放在选择的倒数第二题,相对来说有一定难度。
可以想象一下以笔为直线,将L1和L4放在课桌面上,第二条和第三条与课桌面垂直,问题得到解决。
此题需要一定的空间想象能力。
10.C 解析:对于①,()=*+321z z z ()32313231321z z z z z z z z z z z *+*=+=+ 对于②,()()321321z z z z z z +=+*.令bi a z +=2,di c z +=3,则()()i d b c a z z +++=+32,则()()i d b c a z z +-+=+3232z z di c bi a +=-+-=,所以()()31213121321321321)(z z z z z z z z z z z z z z z z z *+*=+=+=+=+*③()()()321321321321z z z z z z z z z z z z ==*=**()231321321321)(z z z z z z z z z z z z ==*=**故()()321321z z z z z z **≠**④12122121,z z z z z z z z =*=*,故1221z z z z *≠* 故答案为C.[解析2]此题为创新题,另一种说法是定义新运算。
解法较多。
基本解法可以用特殊值法,如取三个已知复数分别代入。
另一个秒杀的方法是,前9个题的结果是1A ,3B ,2C ,3D ,按照历年广东文科的分布规律最后一题应选A 。