浙江省2008年初中数学初赛模拟卷
- 格式:doc
- 大小:269.00 KB
- 文档页数:12
宁波市2008年初中升学考试模拟卷数 学试 卷 Ⅰ一、选择题(本题有12小题,每小题3分,共36分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)1. 9的算术平方根是 【 】 (A )±3 (B(C )3 (D )-32. 如果内切两圆的半径分别为4cm 和6cm , 则两圆的圆心距为 【 】 (A )2cm (B ) 5cm (C )10cm (D )20cm3.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是【 】(A )012=+x (B )0122=++x x (C )0322=++x x (D )0322=-+x x 4.下列计算中不正确...的是 【 】 (A )(-2)0=1(B )2-1=-2 (C )(a+b)2=a 2+2ab+b 2(D )2a 2·3a 3=6a 55.如图是由5个大小相同的正方体摆成的立方体图形,它的左视图...是【 】 (A) (B) (C) (D) 6.如图:圆的直径AB 垂直弦CD 于P ,且P 是半径OB 的中点, 6CD cm =,则直径AB 的长是【 】(A)7.一次函数5+-=x y 图象与反比例函数xy 6=图象的交点情况是【 】 (A) 只有一个交点,坐标是(2,3) (B)只有一个交点,坐标是(-1,6)(C) 有两个交点,坐标是(2,3)、(3,2) (D)没有交点 8.下列命题中的真命题是【 】(A) 对角线互相垂直的四边形是菱形 (B) 中心对称图形都是轴对称图形 (C) 两条对角线相等的梯形是等腰梯形 (D) 等腰梯形是中心对称图形9.一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到O 1A 的中点2A 处,第三次从2A 点跳动到O 2A 的中点3A 处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为【 】x o A 4A 3A 2A 1APPPP(A) (B) n 112- (C)n+11 2⎛⎫ ⎪⎝⎭(D) n 1210.亮亮想制作一个圆锥模型,这个模型的侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底。
某某省余姚市2008年初中毕业生中考数学学业考试模拟考试题有三个大题,26个小题,满分为120分,考试时间为120分钟。
一、选择题(每小题3分,共36分) 1.、3-2计算的结果是( ) A .-9 B .-6 C .-91 D .912.用科学记数法表示180000的结果是( )A .18×104B .1.8×105C .0.18×106D .1.8×1063.下列图形中,不是中心对称图形的是( ) A .等边三角形 B .矩形 C .菱形 D .正方形4.加热一定量的水时,如果将温度与加热量的关系用图表示,一开始是直线,但是当到达100℃时,温度会持续一段时间,而后因为沸腾后汽化需要吸收大量热量,图形就完全变了,反应这一现象正确的图形是( )5.用配方法解一元二次方程x 2-2x-m=0,配方后得到的方程应该是( ) A .(x-1)2=m 2+2 B .(x-1)2=m-1 C .(x-1)2=m+1D .(x-1)2=1-m6.已知⊙O 的直径AB 与弦AC 的夹角为35°,过C 点的切线PC 与AB 的延长线交于点P ,则∠P 等于( ).A . 15° B. 20° C. 25° D. 30° 7.同时转动如图所示的甲、乙两个转盘,则两个转盘所转到的两个数字之和为奇数的概率( ).A . !B . 三 c . 三 D . 三8.已知二次函数Y=ax 2+bx+C 的图象如右图所示,则a 、b 、c 满足( ) A .a<0,b<0,C>O B .a<0,b<0,c<0 C .a<0,b>0,c>0 D .a>0,b<0,c>09.在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存。
现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为l :2:3:5,若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是( ) A .甲 B .乙 C .丙 D .丁10.如图所示,一X 长方形的纸条放在一个圆心为0的圆上,各线段的长度如图上所标(单位:厘米),则线段AB 的长为( )厘米。
2012年浙江初中数学竞赛初赛试题第一试一、选择题:(本题满分42分,每小题7分)1.已知1a =,b =2c =,那么,,a b c 的大小关系是 ( )A. a b c <<B. a c b <<C. b a c <<D.b c a <<2.方程222334x xy y ++=的整数解(,)x y 的组数为 ( ) A .3. B .4. C .5. D .6.3.已知正方形ABCD 的边长为1,E 为BC 边的延长线上一点,CE =1,连接AE ,与CD 交于点F ,连接BF 并延长与线段DE 交于点G ,则BG 的长为 ( )A .3B .3C .3D .34.已知实数,a b 满足221a b +=,则44a ab b ++的最小值为 ( )A .18-.B .0.C .1.D .98. 5.若方程22320x px p +--=的两个不相等的实数根12,x x 满足232311224()x x x x +=-+,则实数p 的所有可能的值之和为 ( )A .0.B .34-.C .1-.D .54-. 6.由1,2,3,4这四个数字组成四位数abcd (数字可重复使用),要求满足a c b d +=+.这样的四位数共有 ( )A .36个.B .40个.C .44个.D .48个.二、填空题:(本题满分28分,每小题7分)1.已知互不相等的实数,,a b c 满足111a b c t b c a +=+=+=,则t = . 2.使得521m ⨯+是完全平方数的整数m 的个数为 .3.在△ABC 中,已知AB =AC ,∠A =40°,P 为AB 上一点,∠ACP =20°,则BC AP = . 4.已知实数,,a b c 满足1abc =-,4a b c ++=,22243131319a b c a a b b c c ++=------,则222a b c ++= .第二试 (A )一、(本题满分20分)已知直角三角形的边长均为整数,周长为30,求它的外接圆的面积.二.(本题满分25分)如图,PA 为⊙O 的切线,PBC 为⊙O 的割线,A D ⊥OP 于点D .证明:2AD BD CD =⋅.三.(本题满分25分)已知抛物线216y x bx c =-++的顶点为P ,与x 轴的正半轴交于A 1(,0)x 、B 2(,0)x (12x x <)两点,与y 轴交于点C ,PA 是△ABC 的外接圆的切线.设M 3(0,)2-,若AM//BC ,求抛物线的解析式.。
2008年全国初中数学竞赛天津赛区初赛试卷(3月16日上午9∶00~11∶00)一、选择题(本大题共5小题,每小题6分,满分30分.每小题均给出了代号为A 、B 、C 、D 的四个选项,其中只有一个选项是正确的.请将正确选项的代号填入题后的括号里)(1)若11=-m m,则mm +1的值等于( ).(A )25 (B )25-(C )5- (D )5(2)甲、乙两人同时从A 地出发沿同一条路线去B 地,若甲用一半的时间以每小时a 千米的速度行走,另一半时间以每小时b 千米的速度行走;而乙用每小时a 千米的速度走了一半的路程,另一半的路程以每小时b 千米的速度行走(a ,b 均大于0且b a ≠).则( ).(A )甲先到达B 地 (B )乙先到达B 地 (C )甲乙同时到达B 地 (D )甲乙谁先到达B 地不确定(3)如图,已知□ABCD 中,E 、F 分别为边AB 、AD 上的点,EF 与对角线AC 交于点P .若ba EBAE =,nm FDAF =(a 、b 、m 、n 均为正数),则PCAP 的值为( ).(A )bman am + (B )bman bn +C(C )bman am am ++ (D )bnbm an bn ++(4)如图,在△ABC 中,已知︒=∠45BAC ,若BC AD ⊥于点D ,且2=BD ,3=CD ,则△ABC 的面积为( ). (A )25 (B )5 (C )215 (D )15(5)一项“过关游戏”规定:在第n 关要掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于43n,则算过关,否则,不算过关.现有下列说法:①过第一关是必然事件; ②过第二关的概率为3635;③可以过第四关; ④过第五关的概率大于0. 其中,正确说法的个数为( ).(A )4个 (B )3个 (C )2个 (D )1个二、填空题(本大题共5小题,每小题6分,满分30分.把答案填在题中横线上)(6)若关于x 的函数a x a x a y 4)14()3(2+---=的图象与坐标轴有两个交点,则a 的值为 . (7)如图,在△ABC 中,已知︒=∠40B ,︒=∠30BAD ,若CD AB =,则ACD ∠的大小为 (度).(8)如图,有五个圆顺次相外切,且又都与直线a 、b 相切,如果其中最小圆与最 大圆的直径分别为18和32,那么⊙3O 的直径为 .(9)已知四个实数d c b a ,,,,且d c b a ≠≠,.若四个关系式:22=+ac a ,22=+bc b ,第(8)题图第(7)题图ABDC 第(4)题图ABDC42=+ac c ,42=+ad d同时成立,则d c b a 2326+++的值等于 .(10)已知n m ,都是正整数,若301≤≤≤n m ,且mn 能被21整除,则满足条件的数对),(n m 共有 个.三、解答题(本大题共3小题,每小题满分20分,共60分)(11)(本小题满分20分)已知b a 、为实数,且322=++b ab a ,若22b ab a +-的最大值是m ,最小值是n ,求n m +的值.(12)(本小题满分20分)如图,在△ABC 中,已知BC AC =, 20=∠C ,E D 、分别为边AC BC 、上的点,若 20=∠CAD , 30=∠CBE ,求ADE ∠的大小.CBDAE已知n 个正整数n x x x ,,,21 满足200821=+++n x x x ,求这n 个正整数乘积nx x x 21的最大值.(13)(本小题满分20分)2008年全国初中数学竞赛天津赛区初赛试题参考答案及评分标准一、选择题(本大题共5小题,每小题6分,满分30分) (1)若11=-m m,则mm+1的值等于( D ).(A ) 25 (B ) 25-(C ) 5- (D )5 【解】∵11=-m m ,∴11>+=m m,即0>m ,m m =.∴5414)1()1(22=+=+-=+m mm m,∴51=+m m .(2)甲、乙两人同时从A 地出发沿同一条路线去B 地,若甲用一半的时间以每小时a 千米的速度行走,另一半时间以每小时b 千米的速度行走;而乙用每小时a 千米的速度走了一半的路程,另一半的路程以每小时b 千米的速度行走(a ,b 均大于0且b a ≠).则( A ).(A )甲先到达B 地 (B )乙先到达B 地 (C )甲乙同时到达B 地 (D )甲乙谁先到达B 地不确定 【解】由已知,设A 、B 两地相距s 千米,则甲走完全程所用的时间为ba s +2,乙走完全程所用的时间为abb a s bs as 2)(22+=+.∵0)(2)()(2])(4[2)(222<+--=++-=+-+b a ab b a s b a ab b a ab s abb a s ba s (b a ≠).∴甲所用的时间少,甲先到达B 地.(3)如图,已知□ABCD 中,E 、F 分别为边AB 、AD 上的点,EF 与对角线AC 交于点P .若ba EB AE =,nm FDAF =(a 、b 、m 、n 均为正数),则PCAP 的值为( C ).(A )bman am + (B )bman bn +(C )bman am am ++ (D )bnbm an bn ++【解】延长FE 、CB 交于点G .∵□ABCD 中,BC AD //, ∴△AEF ∽△BEG ,有ba BGAF BEAE ==,即△AFP ∽△CGP ,有PCAP CGAF =.∵FD AF BG AD BG BC BG CG ++=+=+=. 由nm FDAF =,得AFmn FD =.∴bman am am AFm n AF AF ab AFPCAP ++=++=.(4)如图,在△ABC 中,已知︒=∠45BAC ,若BC AD ⊥于点D ,且2=BD ,3=CD ,则△ABC 的面积为( D ). (A )25 (B ) 5 (C )215 (D )15【解】如图,过点C 作AB CE ⊥于点E ,则△BCE ∽△BAD ,∴ADCE ABBC =.若设h AD =,则由2=BD ,3=CD ,∴在Rt △ABD 中,2224hADBDAB +=+=,在Rt △ACD 中,2229hAD CDAC +=+=.又∵在Rt △ACE 中,由︒=∠45BAC , 得BAC AC CE ∠⋅=sin ,∴2292⋅+=h CE .而5=+=CD BD BC ,∴hh h2294522⋅+=+,即0363724=+-h h .解得1=h 或6=h (负值舍去). 当1=h 时, 得BAC ∠为钝角,舍去,∴6=h . ∴S △ABC 15652121=⨯⨯=⋅=h BC .(5)一项“过关游戏”规定:在第n 关要掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于43n,则算过关,否则,不算过关. 现有下列说法:①过第一关是必然事件; ②过第二关的概率为3635;③可以过第四关; ④过第五关的概率大于0.AEBDC其中,正确说法的个数为( B ).(A )4个 (B )3个 (C )2个 (D )1个 【解】要过第一关,点数需大于43,显然,抛掷一颗骰子一次至少有1点,故①对;要过第二关,点数之和需大于49,即点数之和至少是3.而抛掷两次的点数之和至少为2,因此,不能过第二关的只有一种可能:就是两次抛掷的点数均为1,即两次抛掷的36种可能结果中,有35种结果可以过第二关.所以,过第二关的概率为3635,故②对;要过第四关,点数之和需大于4120434=,若每次抛出的点数均为6,则点数之和412024>,所以第四关是可以通过的,故③对;要过第五关,点数之和需大于435,显然是不可能的,所以,过第5关是不可能事件,概率为0,说法④错.综上①②③正确.二、填空题(本大题共5小题,每小题6分,满分30分.)(6)若关于x 的函数a x a x a y 4)14()3(2+---=的图象与坐标轴有两个交点,则a 的值为 3,0或401-.【解】当03=-a ,即3=a 时,原函数变为1211+-=x y ,其图象与坐标轴有两个交点. 当03≠-a ,即3≠a 时,原函数为二次函数,其图象与y 轴一定有一个交点)4,0(a ,若此交点不是原点,由已知,其图象与x 轴只能有一个交点,所以)3(16)14(2=---=∆a a a ,解得401-=a ;若此交点是原点,则0=a ,此时函数为x x y +-=23,其图象必与x 轴有两个不同的交点.综上可知a 的值为3,0或401-.(7)如图,在△ABC 中,已知︒=∠40B ,︒=∠30BAD ,若CD AB =,则ACD ∠的大小为 40°(度).【解】如图,将△ABD 沿AD 所在直线对折,使点B 落在点E 位置,得△AED ,AE 与CD 交于点O . ∵△AED ≌△ABD ,∴︒=∠=∠301BAD ,︒=∠=∠402B . 由4∠为△ABD 的一个外角,得︒=∠+∠=∠704B BAD . ∴在△ADE 中,︒=∠+∠+∠-︒=∠40)421(1803. ∴32∠=∠,有OE OD =.又∵AE 为AB 沿AD 对折得到,有AB AE =, 已知CD AB =,∴AE CD =.∴OE AE OD CD -=-.即OA OC =.∴5∠=∠ACD . ∵在△ABC 中,︒=∠+∠+∠+∠+∠18051ACD BAD B , ∴︒=︒-︒-︒-︒=∠40)303040180(21ACD .(8)如图,有五个圆顺次相外切,且又都与直线a 、b 相切,如果其中最小圆与最大圆的直径分别为18和32,那么⊙3O 的直径为 24 .【解】如图,设五个圆⊙1O ,⊙2O ,⊙3O ,⊙4O ,⊙5O 的半径分别为1r ,2r ,3r ,4r ,5r .过点1O 、2O 、3O 作直线a 的垂线,垂足分别为1A ,2A ,3A .连接1O 3O ,显然圆心2O 在1O 3O 上,作2211A O B O ⊥于点1B ,3322A O B O ⊥于点2B ,则△121B O O ∽△232B O O . ∴23123221B O B O O O O O =, 即23123221r r r r r r r r --=++,可得2312r r r r =同理,3423r r r r =,4534r r r r =.设kr r =12,有12kr r =,123r k r =,134r k r =,145r k r =.∵92181==r ,162325==r ,∴342=k ,∴123=r . ∴⊙3O 的直径为24.(9)已知四个实数d c b a ,,,,且d c b a ≠≠,.若四个关系式:22=+ac a ,22=+bc b ,42=+ac c ,42=+ad d同时成立,则d c b a 2326+++的值等于 0 .12【解】由022)()(22=-=+-+bc b ac a ,044)()(22=-=+-+ad d ac c ,得0))((=++-c b a b a ,0))((=++-d c a d c .因为d c b a ≠≠,,所以0=++c b a ,0=++d c a .可得)(c a d b +-==. 又642)()(22=+=+++ac c ac a ,242)()(22-=-=+-+ac c ac a , 得6±=+c a ,2))((-=+-c a c a . 当6=+c a 时,得36-=-c a .解得362,36==c a . 当6-=+c a 时,得36=-c a .解得362,36-=-=c a .所以,02)(4364362326=-=+-+=++=+++c a c a c a b c a d c b a .(10)已知n m ,都是正整数,若301≤≤≤n m ,且mn 能被21整除,则满足条件的数对),(n m 共有多少 57 个. 【解】因为正整数n m ,满足mn 能被21整除,且301≤≤≤n m ,若21=m ,则30,,22,21 =n .满足条件的数对),(n m 有10个. 若21≠m ,当21=n 时,20,,2,1 =m .满足条件的数对),(n m 有20个. 当21≠n 时,因为7321⨯=,①如果b n a m 7,3==,其中b a ,都是正整数,且3,7≠≠b a , 得30731≤≤≤b a .1=b 时,2,1=a ;2=b 时,4,3,2,1=a ;4=b 时,9,8,6,5,4,3,2,1=a .满足条件的数对),(n m 有14842=++个.②如果b n a m 3,7==,其中b a ,都是正整数,且7,3≠≠b a , 得30371≤≤≤b a .3=b ,4时,a 的值均为1;5=b ,6,8,9时,a 的值均为1,2; 10=b 时,a 的值为1,2,4.满足条件的数对),(n m 有1332412=+⨯+⨯个.综上,满足条件的数对),(n m 共有5713142010=+++个. 三、解答题(本大题共3小题,每小题满分20分,共60分)(11)已知b a 、为实数,且322=++b ab a ,若22b ab a +-的最大值是m ,最小值是n ,求n m +的值.【解】设k b ab a =+-22,则由⎪⎩⎪⎨⎧=+-=++.,32222k b ab a b ab a 得23k ab -=. ………………………………5分于是 29233)()(222k k ab b ab a b a -=-+=+++=+,而 2)(b a +≥0,有29k -≥0,所以 k ≤9. ………………………………10分 这样29k b a -±=+,23k ab -=,实数b a 、可以看作是一元二次方程023292=-+-k x k x的两个根. ……15分判别式233234292-=-⨯-⎪⎪⎭⎫⎝⎛-=∆k k k ≥0, 所以 k ≥1, 有1≤k ≤9.所以22b ab a +-的最大值是9=m ,最小值1=n ,10=+n m . ………………………………20分(12)如图,在△ABC 中,已知BC AC =, 20=∠C ,E D 、分别为边AC BC 、上的点,若, 20=∠CAD 30=∠CBE ,求ADE ∠的大小. 【解】如图,过点D 作DG ∥BA ,交AC 于点G ,连接BG 与AD 交于点H ,则GHDH BH AH BG AD ===,,.∵在△ABC 中,BC AC =, 20=∠C , ∴ 80=∠=∠CBA CAB .有 602080=-=∠-∠=∠CAD CAB HAB .CB D A EGF H∴△ABH 、△GDH 均为正三角形. ………………………5分 ∵在△ABE 中,由 503080=-=∠-∠=∠CBE CBA EBA , 得 505080180180=--=∠-∠-=∠EBA CAB AEB . ∴EBA AEB ∠=∠.有AE AB =.∴AH AE =. ① ………………………………10分 过点D 作DF ∥BE ,交AC 于点F ,则△GDF ∽△ABE .有DG FG =. ∴DH FG =. ②①+②,得AD DH AH FG AE =+=+. ③ 又∵在△ABC 中,由 20=∠=∠C CAD ,得CD AD =. 而由CG CD =,可得FG CF CG AD +==. ④∴比较③、④,可得CF AE =. ………………………………15分 综上,有△AED ≌△CFD .得CDF ADE ∠=∠. ∵AFD ∠为△CFD 的一个外角, 50=∠=∠AEB AFD , ∴ 302050=-=∠-∠=∠C AFD CDF .∴ 30=∠ADE . ……………………………… 20分 (13)已知n 个正整数n x x x ,,,21 满足200821=+++n x x x ,求这n 个正整数乘积nx x x 21的最大值.【解】 设n x x x 21的最大值为M ,由于200821=+++n x x x ,显然M 中的每一个i x 均大于1,n i ,,2,1 =. 若其中有i x ≥4,可将i x 分成2-i x 和2两个数,考察它们的乘积,有 )4(422)2(-+=-=⨯-i i i i x x x x ≥i x ,这样所有大于或等于4的正整数i x 分成2-i x 和2两个数后,其和不变,但使得乘积变大. ………………………5分于是,在最大值n x x x M 21=中不可能出现大于或等于4的正整数, 故 2=i x 或3=i x ,这就是说M 可以写成q p 32⋅的形式. ……………10分 又因为33222+=++, 但2332<,即在乘积中用2个3替代3个2可使乘积增大,所以 p ≤2. …………………15分 又2266832008++⨯=,所以668232⋅=M …………………20分。
2005年全国初中数学联赛初赛试卷3月25日下午2:30-4:30或3月26日上午9:00-11:301、若a 、b 为实数,则下列命题中正确的是( )(A )a >b ⇒a 2>b 2 (B)a ≠b ⇒a 2≠b 2 (C)|a|>b ⇒a 2>b 2 (D)a >|b|⇒a2>b 22、已知:a+b+c=3,a 2+b 2+c 2=3,则a 2005+b 2005+c 2005的值是( )(A ) 0 (B) 3 (C) 22005 (D)3·220053、有一种足球是由若干块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,(如图),如果缝制好的这种足球黑皮有12块,则白皮有( )块。
(A) 16 (B) 18 (C) 20 (D) 224、在Rt △ABC 中,斜边AB=5,而直角边BC 、AC 之长是一元二次方程x 2-(2m -1)x+4(m -1)=0的两根,则m 的值是( )(A )4 (B )-1 (C )4或-1 (D )-4或15、在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数,当直线y=x -3与y=kx+k 的交点为整数时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个6、如图,直线x=1是二次函数 y=ax 2+bx+c 的图像的对称轴,则有( ) (A )a+b+c=0 (B )b >a+c (C )c >2b (D )abc <0 二、填空题 (每小题7分,共计28分)1、已知:x 为非零实数,且1122x x -+ = a , 则 2x 1x+=_____________。
2、已知a 为实数,且使关于x 的二次方程x 2+a 2x+a = 0有实根,则该方程的根x 所能取到的最大值是_______________________.3、p 是⊙o 的直径AB 的延长线上一点,PC 与⊙o 相切于点C ,∠APC 的角平分线交AC 于Q ,则 则∠PQC = _________.4、对于一个自然数n ,如果能找到自然数a 和b ,使n=a+b+ab ,则称n 为一个“好数”,例如: 3=1+1+1×1,则3是一个“好数”,在1~20这20个自然数中,“好数”共有__________个。
杭州市十三中学2008年初中教学质量模拟检测
数学
答题卷
一.选择题(本大题共10小题, 每小题3分, 共30分)
二.填空题(每小题4分,共24分)
11. . 12..
13.(1) ;(2) . 14.(1) ;(2)
.
15. . 16. .
三.解答题(本大题有8个小题,共66分)
17.(本小题满分6分)
18.(本小题满分6分)
(1)化简)25(522
-⋅-x x
x x
(2)计算
+433tan 30°-0)2
1(-
19.(本小题满分6分)
解:(1)该班有 名学生.
(2)频数分布直方图括号中空缺数字是 ;
(3)在扇形统计图中,骑车人数所占的圆心角度数是 ; (4)若全年级有500人,估计该年级步行人数是 .
20.(本小题满分8分)
21.(本小题满分8分)
22.(本小题满分8分)
23.(本小题满分12分) 解:(1)
(2) 2003年股东的平均利润是工人的平均工资的 倍.
(3)
24.(本小题满分12分)。
B C (第2题) N2006年全国初中数学竞赛(浙江赛区)初赛试题参考答案一、选择题(共8小题,每小题5分,满分40分)1.答案:D解:解方程组,得⎪⎩⎪⎨⎧-=-=.526,543a y a x 只需⎩⎨⎧>-<-;026,043a a 或⎩⎨⎧<->-.026,043a a 即a <34或a >3. 2.答案:B解:连结BE ,分别过E ,F 作A C 的平行线交BC 于点M 和N ,则EM =1,BM =3,MN =33134-=--.∴ 小三角形的周长是632=++MN MN MN cm .3.答案:C解:能组成三角形的只有(1,7,7)、(2,6,7)、(3,5,7)、(3,6,6)、 (4,4,7)、(4,5,6)、(5,5,5)七种.4.答案:D解:将抛物线C 再变回到抛物线A :即将抛物线1)1(22-+=x y 向下平移1个单位,再向右平移2个单位,得到抛物线2)1(22--=x y ,而抛物线2)1(22--=x y 关于x 轴对称的抛物线是2)1(22+--=x y .5.答案:A解:四册教材任取两册共有6种不同的取法,取出的两册是一套教材的共有4种不同的取法,故所求概率是3264=. 6.答案:A解: 经实验或按下述方法可求得顶点C ,E 和F 棋子不可能停到.设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是()121321+=++++k k k ,应停在第()p k k 7121-+格,这里p 是整数,且使0≤()p k k 7121-+≤6,分别取k =1,2,3,4,5,6,7,时,()p k k 7121-+=1,3,6,3,1,0,0,发现第2,4,5格没有停棋.若7<k ≤10,设t k +=7(t =1,2,3)代入可得,()p k k 7121-+=()1217++t t m ,由此可知,停棋的情形与t k =时相同.故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到.7.答案:B解:假设有整数根,不妨设它的根是2k 或2k +1(k 为整数),分别代入原方程得方程两边的奇偶性不同的矛盾结果,所以排除A ;若a ,b ,c 分别取4,8,3则排除C ,D .8.答案:C解:每个2×2小方格图形有4种不同的画法,而位置不同的2×2 小方格图形共有12个,故画出不同位置的L 形图案个数是12×4=48.二、填空题(共6小题,每小题5分,满分30分)9.答案:512 解:不难证明其公共弦就是直角三角形斜边上的高(设为h ),则5h =3×4,h =512. 10.答案:35%或65%(答对一个给3分)解:如果平均数小于中位数,那么小于平均数的数据有35个;如果平均数大于中位数,那么小于平均数的数据有65个,所以这组数据中小于平均数的数据占这100个数据的百分比是35%或65%.11.答案:10解:不难验证,a 2=b 2+c 2.所以△ABC 是直角三角形,其中a 是斜边.b sin B +c sin C =a b b ⋅+ac c ⋅=a b c 22+=a a 2=a =10. 12.答案:00720031 解:方程组()⎩⎨⎧++=-+=k x k y k kx y 1,1的解为⎩⎨⎧-=-=.1,1y x 直线的交点是()1,1--. 直线1y kx k =+-,1y k x k =++()与x 轴的交点分别是(kk -1,0)、 (1+-k k ,0).11121+---⨯-⨯=k k k k S k =11121+-k k .所以 1232006S S S S ++++ =⎪⎪⎭⎫ ⎝⎛-++-+-+-00721006214131312121121 =0072003100721121=⎪⎭⎫ ⎝⎛-⨯. 13.答案:22 解:连结DM 并延长交EF 于N ,则△ADM ≌△ENM ,∴FN =1,则FM 是等腰直角△DFN 的底边上的E (第8题)高,所以FM =22. 14.答案:463 解:设这个等腰三角形的腰为x ,底为y ,分为的两部分边长分别为n 和2n ,得⎪⎩⎪⎨⎧=+=+;22,2n y x n x x 或⎪⎩⎪⎨⎧=+=+.2,22n y x n x x 解得⎪⎩⎪⎨⎧==;35,32n y n x 或⎪⎩⎪⎨⎧==.3,34n y n x ∵ 35322n n <⨯(此时不能构成三角形,舍去),∴ 取⎪⎩⎪⎨⎧==,3,34n y n x 其中n 是3的倍数. 三角形的面积2223663)6()34(321n n n n S =-⨯⨯=∆.对于23663n S =∆, 当n ≥0时,∆S 随着n 的增大而增大,故当n =3时,463=∆S 取最小. 三、解答题(共4题,分值依次为12分、12分、12分和14分,满分50分)15.(12分)解:将b a 24+=代入210ab c +-=,得2b 2+4b +c 21-=0, ……………2分 ∴ 22622c b -±-=. …………………………………2分 ∵ b ,c 都是整数,∴ 只能取⎩⎨⎧==;1,011c b ⎩⎨⎧-==;1,022c b ⎩⎨⎧=-=;1,233c b ⎩⎨⎧-=-=1,244c b ,…4分 相对应a 1=4,a 2=4,a 3=0,a 4=0.故所求a b c ++的值有4个:5,3,1-,3-. ……………………………4分16.(12分)解:设分配给甲店铺A 款式服装x 件(x 取整数,且5≤x ≤30),则分配给甲店铺B 款式服装(30x -)件,分配给乙店铺A 款式服装(35-x )件,分配给乙店铺B 款式服装[25-(30x -)]= (x 5-)件,总毛利润(设为y 总)为:y 总=30x +40(30x -)+27(35x -)+36(x 5-)= x -+1 965.………………………4分 乙店铺的毛利润(设为y 乙)应满足:y 乙=27(35x -)+36(x 5-)≥950,得x ≥9520.…………………………………3分 对于y 总=x -+1 965,y 总随着x 的增大而减小,要使y 总最大,x 必须取最小值,又x ≥9520,故取x =21.即分配给甲店铺A ,B 两种款式服装分别为21件和9件,分配给乙店铺A ,B 两种款式服装分别为14件和16件,此时既保证了乙店铺获毛利润不小于950元,又保证了在此前提下王老板获取的总毛利润最大, ………………………………………3分 其最大的总毛利润为:y 总最大=21-+1 965=1 944(元).…………………………2分n -1 (第17题)17.(12分)解:(1) 一个圆沿着线段的一个端点无滑动地滚动到另一个端点,圆自身转动的圈数=(线段的长度÷圆的周长)圈.因此若不考虑⊙O 滚动经过n 个顶点的情况,则⊙O 自身恰好转动了一圈. ……………………………………………3分现证明,当⊙O 在某边的一端,滚动经过该端点(即顶点)时,⊙O 自身转动的角度恰好等于n 边形在这个顶点的一个外角. 如图所示,设∠A 2 A 1 A n 为钝角,已知A n A 1是⊙O 的切线,⊙O 滚动经过端点A 1后到⊙O '的位置,此时A 1A 2是⊙O '的切线,因此OA 1⊥A n A 1,O 'A 1⊥A 1 A 2.当⊙O 转动至⊙O '时,则∠γ 就是⊙O 自身转动的角度.∵∠γ +∠β =90º,∠α+∠β =90º,∴∠γ =∠α .即⊙O 滚动经过顶点A 1自身转动的角度恰好等于顶点A 1的一个外角. ………………………3分 对于顶点是锐角或直角的情况,类似可证.(注:只证明直角的情况,只给2分) ∵ 凸n 边形的外角和为360º,∴ ⊙O 滚动经过n 个顶点自身又转动了一圈.………………………………3分 ∴ ⊙O 自身转动了两圈.(2) ⊙O 自身转动的圈数是)1(+ab 圈. …………………………………………3分 18.(14分)解:(1) 该二次函数图象的顶点P 是在某条抛物线上. ……………………2分求该抛物线的函数表达式如下:利用配方,得y =(x +m +1)2m m 32--,顶点坐标是P (1--m ,m m 32--).……………………2分方法一:分别取m =0,1-,1,得到三个顶点坐标是P 1(1-,0)、P 2(0,2)、 P 3(2-,4-),过这三个顶点的二次函数的表达式是y =2x -+x +2. …………3分 将顶点坐标P (1--m ,m m 32--)代入y =-x 2+x +2的左右两边,左边=m m 32--, 右边=(-1--m )2+(1--m )+2=m m 32--,∴ 左边=右边.即无论m 取何值,顶点P 都在抛物线y =2x -+x +2上.即所求抛物线的函数表达式是y =2x -+x +2.…3分 (注:如果没有“左边=右边”的证明,那么解法一最多只能得4分)方法二:令1--m =x ,将m =1--x 代入m m 32--,得(-1--x )2-3(1--x )=2x -+x +2.………………………………………………3分 即所求抛物线的函数表达式是y =2x -+x +2上. ………………………………3分(2) 如果顶点P (1--m ,m m 32--)在直线y =x +1上,则m m 32--=1--m +1, …………………………………2分即m m 22-=. ∴ m =0或 m =2-.∴当直线y =x +1经过二次函数y =x 2+2(m +1)x m -+1图象的顶点P 时,m 的值是2-或0. ………………2分。
2005年全国初中数学联赛初赛试卷3月25日下午2:30-4:30或3月26日上午9:00-11:30一、选择题:(每小题7分,共计42分)1、若a、b为实数,则下列命题中正确的是()(A)a>b⇒a2>b2; (B)a≠b⇒a2≠b2; (C)|a|>b⇒a2>b2; (D)a>|b|⇒a2>b22、已知:a+b+c=3,a2+b2+c2=3,则a2005+b2005+c2005的值是()(A)0 (B) 3 (C) 22005(D)3·220053、有一种足球是由若干块黑白相间的牛皮缝制而成,黑皮为正五边形,白皮为正六边形,(如图),如果缝制好的这种足球黑皮有12块,则白皮有()块。
(A) 16 (B) 18 (C) 20 (D) 224、在Rt△ABC中,斜边AB=5,而直角边BC、AC之长是一元二次方程x2-(2m-1)x+4(m-1)=0的两根,则m的值是()(A)4 (B)-1 (C)4或-1 (D)-4或15、在直角坐标系中,横坐标都是整数的点称为整点,设k为整数,当直线y=x-3与y=kx+k 的交点为整数时,k的值可以取()(A)2个(B)4个(C)6个(D)8个6、如图,直线x=1是二次函数y=ax2+bx+c的图像的对称轴,则有()(A)a+b+c=0 (B)b>a+c (C)c>2b (D)abc<0 二、填空题:(每小题7分,共计28分)1、已知:x为非零实数,且1122x x-+= a, 则2x1x+=_____________。
2、已知a为实数,且使关于x的二次方程x2+a2x+a = 0有实根,则该方程的根x所能取到的最大值是_______________________.3、p是⊙o的直径AB的延长线上一点,PC与⊙o相切于点C,∠APC的角平分线交AC于Q,则∠PQC = _________.4、对于一个自然数n,如果能找到自然数a和b,使n=a+b+ab,则称n为一个“好数”,例如:3=1+1+1×1,则3是一个“好数”,在1~20这20个自然数中,“好数”共有__个。
2008年全国初中数学竞赛浙江赛区初赛模拟试题(本卷满分120分,考试时间120分钟,允许使用科学计算器。
)一、选择题(共8小题,每小题5分,计40分。
每小题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个正确,请将它前面的代号填入题后的括号内,多选、少选、不选皆不得分。
)1.关于x 的方程ax 2+bx+c=0的根为2和3,则方程ax 2-bx -c=0的根为( ) A . -2,-3 B. -6,1 C.2,-3 D. -1,6 2.已知动点P 在边长为2的正方形ABCD 的边上沿着A -B -C -D 匀速运动,x 表示点P 由A 点出发所经过的路程,y 表示△APD 的面积,则y 和x 之间函数关系的图像大致为 ( )A B C D3.将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若所得的和中没有一个数字是偶数,则称这个数为“奇和数”。
那么,所有的三位数中,“奇和数”有多少个? ( ) A.200 B.120 C.160 D.100 4.设a 、b 、c 均为正数,若ac bc b a b a c +<+<+,则a 、b 、c 三个数的大小关系是 ( )A.c<a<b B.b<c<a C.a<b<c D.c<b<a5.三角形的三内角A 、B 、C 的对边长分别是a 、 b 、 c(a 、 b 、 c 都是素数),且满足a +b +c =16,又设∠A 是最小内角。
则cosA 的值是( ) A .71 B .72 C.4947D.条件不足,无法计算 6.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体躯干(由脚底至肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉.如果某女士身高为1.60m ,躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为 ( ) A.2.5cm B.5.1cm C.7.5cm D.8.2cm 7.如图2,一个边长分别为3cm 、4cm 、5cm 的直角三角形的一个顶点与正方形的顶点B 重合,另两个顶点分别在正方形的两条边AD 、DC 上,那么这个正方形的面积是( )。
A .15162cm 2B 。
16152cm 2C .16172cm 2 D.17162cm 28.将抛物线y=2x 2-12x+22绕点(5,2)旋转1800后得到的新抛物线与坐标轴的交点个数是 ( ) A .3 B .2 C .1 D.0二、填空题(共6小题,每小题5分,计30分。
)9.已知两圆的圆心分别在(2,0)、(0,2),半径都是2。
则两圆公共部分的面积是 .10.如果三位数abc 满足a <b <c 或a >b >c ,则称这个三位数为“严格排序三位数”。
那么,从所有三位数中任意取出一个恰好是“严格排序三位数”的概率是 .11.若()f n 为21n +(n 是任意正整数)的各位数字之和,如2141197+=,19717++=,则(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,k 是正整数,则2008(8)f = .12.已知三个正整数x ,y ,z 的最小公倍数是300,并且满足⎩⎨⎧=+-=-+032023222z y x z y x ,则此方程组的解(x ,y ,z )= 。
13.如果一个圆的直径和它的一条弦长分别为a 、b ,且这条弦的弦心距是正有理数,又已知a 、b 都是两位正整数,它们的十位数字和个位数字刚好互换位置。
则a 2+b 2 的值是 。
14.抛物线y=n(n+1)x 2-(3n+1)x +3与直线y =-nx +2的两个交点的横坐标345A BCDEF ͼ2分别是x 1、x 2,记d n =∣x 1-x 2 ∣.则代数式d 1+d 2+d 3+……+d 2009的值是 。
三、解答题(共4小题,第15、16、17题每题12分,第18题14分,计50分。
)15.已知a 1、a 2、a 3、a 4、a 5、a 6、a 7这七个实数满足下列三个方程: ⑴a 1+4a 2+9a 3+16a 4+25a 5+36a 6+49a 7=2008, ⑵4a 1+9a 2+16a 3+25a 4+36a 5+49a 6+64a 7=208,⑶9a 1+16a 2+25a 3+36a 4+49a 5+64a 6+81a 7=28。
试求下列代数式的值: 16a 1+25a 2+36a 3+49a 4+64a 5+81a 6+100a 7。
16.请你利用直角坐标平面上任意两点(x 1,y 1)、(x 2,y 2)间的距离公式221221)()(y y x x d -+-= 解答下列问题:已知:反比例函数xy 2=与正比例函数x y =的图象交于A 、B 两点(A 在第一象限), 点F 1(-2,-2)、F 2(2,2)在直线x y =上。
设点P (x 0,y 0)是反比例函数xy 2=图象上的任意一点,记点P 与F 1、F 2两点的距离之差d =︱P F 1- P F 2︱.试比较线段AB 的长度与d 的大小,并由此归纳出双曲线的一个重要定义(用简练的语言表述)。
17.△ABC 的内切圆分别切BC 、CA 、AB 三边于D 、E 、F ,G 是EF 上的一点,且 DG ⊥EF ,求证:DG 平分∠BGC .18.观察下列图形:①②③如果按这个规律一直排到第n个图形,请探究下列问题:⑴设第n个图形和第n-1个图形中所有三角形的个数分别为a n、a n-1,问:它们之间有什么数量关系?请写出这个关系式。
⑵请你用含n的代数式来表示a n,并证明你的结论。
2008年全国初中数学竞赛浙江赛区初赛模拟试题参考答案及评分标准一、选择题(共8小题,每小题5分,计40分。
每小题的答案中有且只有一个正确,多选、少选、不选皆不得分。
)1.关于x 的方程ax 2+bx+c=0的根为2和3,则方程ax 2-bx -c=0的根是( B ) A . -2,-3 B. -6,1 C.2,-3 D. -1,6 2.已知动点P 在边长为2的正方形ABCD 的边上沿着A -B -C -D 匀速运动,x 表示点P 由A 点出发所经过的路程,y 表示△APD 的面积,则y 和x 之间函数关系的图像大致为 ( A )A B C D3.将一个三位数的三个数字顺序颠倒,将所得到的数与原数相加,若所得的和中没有一个数字是偶数,则称这个数为“奇和数”。
那么,所有的三位数中,“奇和数”有多少个? ( D ) A.200 B.120 C.160 D.100 4.设a 、b 、c 均为正数,若ac bc b a b a c +<+<+,则a 、b 、c 三个数的大小关系是 ( A )A.c<a<b B.b<c<a C.a<b<c D.c<b<a5.三角形的三内角A 、B 、C 的对边长分别是a 、 b 、 c(a 、 b 、 c 都是素数),且满足a +b +c =16,又设∠A 是最小内角。
则cosA 的值是( C ) A .71 B .72 C.4947D.条件不足,无法计算 6.美是一种感觉,本应没有什么客观的标准,但在自然界里,物体形状的比例却提供了在匀称与协调上的一种美感的参考,在数学上,这个比例称为黄金分割.在人体躯干(由脚底至肚脐的长度)与身高的比例上,肚脐是理想的黄金分割点,也就是说,若此比值越接近0.618,就越给别人一种美的感觉.如果某女士身高为1.60m ,躯干与身高的比为0.60,为了追求美,她想利用高跟鞋达到这一效果,那么她选的高跟鞋的高度约为 ( C ) A.2.5cm B.5.1cm C.7.5cm D.8.2cm7.如图2,一个边长分别为3cm 、4cm 、5cm 的直角三角形的一个顶点与正方形的顶点B 重合,另两个顶点分别在正方形的两条边AD 、DC 上,那么这个正方形的面积是( D )。
A .15162cm 2B 。
16152cm 2C .16172cm 2 D.17162cm 28.将抛物线y=2x 2-12x+22绕点(5,2)旋转1800后得到的新抛物线与坐标轴的交点个数是 ( B ) A .3 B .2 C .1 D.0二、填空题(共6小题,每小题5分,计30分。
每小题应填的正确答案唯一,多填则不给分;分数未约分或化成小数都给分。
)9.已知两圆的圆心分别在(2,0)、(0,2),半径都是2。
则两圆公共部分的面积是 42-π .10.如果三位数abc 满足a <b <c 或a >b >c ,则称这个三位数为“严格排序三位数”。
那么,从所有三位数中任意取出一个恰好是“严格排序三位数”的概率是7517. 11.若()f n 为21n +(n 是任意正整数)的各位数字之和,如2141197+=,19717++=,则(14)17f =;记1()()f n f n =,21()(())f n f f n =,…,1()(())k k f n f f n +=,k 是正整数,则2008(8)f = 11 .12.已知三个正整数x ,y ,z 的最小公倍数是300,并且满足⎩⎨⎧=+-=-+032023222z y x z y x ,则此方程组的解(x ,y ,z )= (20,60,100) 。
13.如果一个圆的直径和它的一条弦长分别为a 、b ,且这条弦的弦心距是正有理数,又已知a 、b 都是两位正整数,它们的十位数字和个位数字刚好互换位置。
则a 2+b 2 的值是 7361 。
345A BCDEF ͼ214.抛物线y=n(n+1)x 2-(3n+1)x +3与直线y =-nx +2的两个交点的横坐标分别是x 1、x 2,记d n =∣x 1-x 2 ∣.则代数式d 1+d 2+d 3+……+d 2009的值是20102009 。
三、解答题(共4小题,第15、16、17题每题12分,第18题14分,计50分。
每题的得分严格按评分标准给分,不要再分步给中间分;另外的解法也同样按此标准给分。
)15.已知a 1、a 2、a 3、a 4、a 5、a 6、a 7这七个实数满足下列三个方程: ⑴a 1+4a 2+9a 3+16a 4+25a 5+36a 6+49a 7=2008, ⑵4a 1+9a 2+16a 3+25a 4+36a 5+49a 6+64a 7=208,⑶9a 1+16a 2+25a 3+36a 4+49a 5+64a 6+81a 7=28。