数学竞赛促进大学数学教与学
- 格式:pdf
- 大小:173.25 KB
- 文档页数:3
全国大学生数学竞赛百度简介中国大学生数学竞赛该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。
编辑本段竞赛大纲中国大学生数学竞赛竞赛大纲(2009年首届全国大学生数学竞赛)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:Ⅰ、数学分析部分一、集合与函数1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.二、极限与连续1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用.3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).三、一元函数微分学1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor公式(Peano余项与Lagrange余项).3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.四、多元函数微分学1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.五、一元函数积分学1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:型,型.2. 定积分及其几何意义、可积条件(必要条件、充要条件:)、可积函数类.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、非负时的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet 判别法、无界函数广义积分概念及其收敛性判别法.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.六、多元函数积分学1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).3.重积分的应用(体积、曲面面积、重心、转动惯量等).4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.5.第一型曲线积分、曲面积分的概念、基本性质、计算.6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke 公式,两类线积分、两类面积分之间的关系.七、无穷级数1. 数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.2. 函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.3.幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.4.Fourier级数三角级数、三角函数系的正交性、2及2周期函数的Fourier级数展开、 Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理.Ⅱ、高等代数部分一、多项式1. 数域与一元多项式的概念2. 多项式整除、带余除法、最大公因式、辗转相除法3. 互素、不可约多项式、重因式与重根.4. 多项式函数、余数定理、多项式的根及性质.5. 代数基本定理、复系数与实系数多项式的因式分解.6. 本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.7. 多元多项式及对称多项式、韦达(Vieta)定理.二、行列式1. n级行列式的定义.2. n级行列式的性质.3. 行列式的计算.4. 行列式按一行(列)展开.5. 拉普拉斯(Laplace)展开定理.6. 克拉默(Cramer)法则.三、线性方程组1. 高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.2. n维向量的运算与向量组.3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.4. 向量组的极大无关组、向量组的秩.5. 矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.6. 线性方程组有解判别定理、线性方程组解的结构.7. 齐次线性方程组的基础解系、解空间及其维数四、矩阵1. 矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.4. 分块矩阵及其运算与性质.5. 初等矩阵、初等变换、矩阵的等价标准形.6. 分块初等矩阵、分块初等变换.五、双线性函数与二次型1. 双线性函数、对偶空间2. 二次型及其矩阵表示.3. 二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法.4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.5. 正定、半正定、负定二次型及正定、半正定矩阵六、线性空间1. 线性空间的定义与简单性质.2. 维数,基与坐标.3. 基变换与坐标变换.4. 线性子空间.5. 子空间的交与和、维数公式、子空间的直和.七、线性变换1. 线性变换的定义、线性变换的运算、线性变换的矩阵.2. 特征值与特征向量、可对角化的线性变换.3. 相似矩阵、相似不变量、哈密尔顿-凯莱定理.4. 线性变换的值域与核、不变子空间.八、若当标准形1.矩阵.2. 行列式因子、不变因子、初等因子、矩阵相似的条件.3. 若当标准形.九、欧氏空间1. 内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.2. 标准正交基、正交矩阵、施密特(Schmidt)正交化方法.3. 欧氏空间的同构.4. 正交变换、子空间的正交补.5. 对称变换、实对称矩阵的标准形.6. 主轴定理、用正交变换化实二次型或实对称矩阵为标准形.7. 酉空间.Ⅲ、解析几何部分一、向量与坐标1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.2. 坐标系的概念、向量与点的坐标及向量的代数运算.3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.5. 应用向量求解一些几何、三角问题.二、轨迹与方程1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.2.空间曲线方程的普通形式和参数方程形式及其关系.3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.三、平面与空间直线1.平面方程、直线方程的各种形式,方程中各有关字母的意义.2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.四、二次曲面1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程.2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.4.根据给定直线族求出它表示的直纹面方程,求动直线和动曲线的轨迹问题.五、二次曲线的一般理论1.二次曲线的渐进方向、中心、渐近线.2.二次曲线的切线、二次曲线的正常点与奇异点.3.二次曲线的直径、共轭方向与共轭直径.4.二次曲线的主轴、主方向,特征方程、特征根.5.化简二次曲线方程并画出曲线在坐标系的位置草图.(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: .4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7. 初等函数的幂级数展开式.8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数关于举办第三届全国大学生数学竞赛的通知(这是10年的通知,今年的第四届大学生数学竞赛通知还没有下达,可借鉴的看一看)各省、市、自治区数学会、解放军院校协作中心数学联席会:为了培养人才、服务教学、促进高等学校数学课程的改革和建设,增加大学生学习数学的兴趣,培养分析、解决问题的能力,发现和选拔数学创新人才,为青年学子提供一个展示基础知识和思维能力的舞台,经中国数学会批准,第三届全国大学生数学竞赛由上海同济大学承办。
数学竞赛思想促进中学数学教学的探讨数学竞赛是一项需要通过创新思维和探究性学习来解决数学问题的活动。
这种思维方式和学习方式与传统的教学方法不同。
传统的数学教育通常是由老师讲解定理、公式和解题方法,而竞赛强调学生自主学习和探究,在解决问题的过程中不断进步和提高。
因此,这种方式非常适合现代数学教育的需求。
数学竞赛具有以下几方面的作用:1. 提高学生的解决问题的能力。
比赛中常常需要解决一些比较复杂的问题,要求学生不仅深入理解数学知识,还需要灵活运用这些知识,从而最终得出正确答案。
因此,这种方法可以增强学生的解题能力,培养学生的逻辑思维和分析问题的能力。
2. 激发学生的学习兴趣。
比赛能够让学生感受到自己在学习中的成长和进步,这种成长和进步的感受可以激发学生的学习兴趣,让学生对数学产生更多的兴趣和热情。
3. 提高学生的数学素养。
数学竞赛涉及到的内容更加深入和广泛,可以有效地提高学生的数学素养,让学生在数学领域拥有更广泛的视野。
4. 增强学生的自信心。
数学竞赛是一项比较公平的竞赛,每个人都有机会获胜。
当学生在比赛中获胜或取得好的成绩时,会对自己能力产生更大的信心,增强自信心。
数学竞赛可以促进中学数学教学的发展。
它可以使得教师更加注重学生的个性化发展,让学生在更大程度上自主学习和探究,并且创新思维在实践中得到了充分的发扬和展现。
这种方法可以使得学生更好的理解数学知识和掌握数学技能,提高学生成绩和成绩的稳定性。
但是,在实际教学中,教师也要具备一定的竞赛知识和竞赛技巧。
教师需要引导学生为竞赛做准备,提供相应的教学资源和指导售后服务,帮助学生理解题目,积极参与竞赛。
此外,在平时的课堂教学中,也需要注重培养学生的创新思维,鼓励学生在课余时间积极参与数学竞赛、活动,力争使学生在数学学习中不断进步和改善不足。
总之,数学竞赛促进了数学教学的改进和发展,使得学生的数学素养和解题能力提高了不少。
因此,中学教师应该进一步增强竞赛意识和竞赛技巧,积极引导学生参加数学竞赛,营造积极向上的数学竞赛氛围,从而为教育创新和提高学生数学素养做出积极贡献。
2023年数学竞赛心得体会竞赛数学心得体会(9篇) 我们在一些事情上受到启发后,可以通过写心得体会的方式将其记录下来,它可以帮助我们了解自己的这段时间的学习、工作生活状态。
心得体会可以帮助我们更好地认识自己,了解自己的优点和不足,从而不断提升自己。
以下我给大家整理了一些优质的心得体会范文,希望对大家能够有所帮助。
数学竞赛心得体会篇一第一段:引入竞赛数学的重要性(140字)竞赛数学,作为数学领域中的一项重要活动,旨在锻炼学生的思维能力和解决问题的能力。
随着竞争日益激烈,参与竞赛数学已成为许多学生提升自己的重要途径。
在我经历了多次的竞赛数学后,我深深地意识到了它对于我的成长和发展的重要性。
第二段:挑战解决问题思维方式的经验(240字)竞赛数学不同于课堂上的数学学习,它更加注重的是提高解决问题的思维能力。
在竞赛中,面对各种复杂的数学题目,我学会了从不同的角度去思考问题,并且善于找到其中的规律和突破口。
比如,有时候题目看似非常复杂,但是只需找到一个简单的关键点,就能迅速解决问题。
通过这样的训练,我的解决问题的思维方式得到了极大的丰富和深化,我对于各种问题的处理能力也得到了显著的提升。
第三段:提升数学知识广度和深度的收获(240字)竞赛数学让我对于数学的知识广度和深度有了更全面的了解。
在竞赛过程中,我遇到了很多新颖而有挑战性的问题,这些问题不仅仅考察了我对于基本概念的理解,还对我对于知识的灵活运用和扩展能力提出了更高的要求。
通过一次次的竞赛,我牢固地懂得了数学各个领域的知识结构和联系,对于数学的兴趣和热爱也愈发增加。
第四段:培养耐心和抗压能力的意义(240字)竞赛数学注重思维的灵活性和时间的效率性,这给参加竞赛的学生带来了巨大的心理压力。
我在竞赛中深刻体会到了时间的紧迫和题目带来的压力。
但是通过一次次的挑战,我逐渐培养了处理情绪和良好心态的能力,学会了在有限的时间内保持冷静思考和高效解题。
这种抗压能力不仅在竞赛中有效,也让我在生活中处理问题时能够更好地应对各种挑战和压力。
大学生数学竞赛在高等数学教改中的应用高等数学肩负着提高学生的抽象思维能力和逻辑思维能力的重任,下面是小编搜集整理的一篇探究大学生数学竞赛应用的论文范文,欢迎阅读参考。
随着科学技术的迅猛发展和竞争的日益激烈,人们必须掌握一定的数学知识才能提高社会竞争力。
英国着名哲学家培根说:数学是打开科学大门的钥匙。
高等数学作为人们认识世界的基础学科,不仅能提供数学思想方法、理论知识,而且能锻炼人的分析问题、解决问题的思维能力,更为后续学习奠定重要的基础,因此如何学好高等数学至关重要。
本文将结合近几年的教学实践浅,谈如何利用大学生数学竞赛进行教学方法改革以提高高等数学的教学效果。
一、大学生高等数学竞赛的提出长期以来,学生对高等数学持有偏见,他们认为高等数学枯燥、冰冷、抽象,学习数学就是概念、性质、定理、证明、结论和应用,从而一谈到高等数学,就望而却步。
同时,由于高等数学内容多,课时少,教师多采用传统的教学模式,重视知识的继承与积累[1],以教为主,优点是教师可以系统地把所有的知识点传授给学生,为后继课程的学习打下坚实的基础;缺点是学生被动地听,没有积极思考,容易产生厌烦心理。
其结果是,虽然大部分学生靠这种灌输记忆的形式基本上掌握了高等数学的理论知识,提高了数学水平,但在教学中并没有培养学生的独立思考和创新能力,也没有提高学生的数学素质。
为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才,中国数学会决定从2009年起每年举办一次全国大学生数学竞赛。
该项赛事不仅能发现和选拔优秀数学人才,而且能为进一步促进高等学校数学课程建设的改革和发展积累经验。
利用每年一次的大学生高等数学竞赛,不仅能够激励学生学习数学的兴趣,提高学生数学水平,还能培养他们分析问题、解决问题的能力。
同时高等数学竞赛也是常规数学教学的有益补充[2],教师可以利用高等数学竞赛结合高等数学教学实践改进传统的高等数学教学方法,促进课程改革的推进,提高教学质量。
关于大学生数学竞赛促进创新型人才培养的研究数学竞赛的开展十分有助于提高学生学习数学的主动性,通过这种活动使学生学会了从不同角度来分析数学问题,解题的思维更灵活了。
为培养人才、服务教学促进高等学校数学课程的改革和建设,增加大学生学习数学的兴趣,培养同学们分析问题、解决问题的能力,发现和选拔数学创新人才,为青年学子提供一个展示数学基础知识和思维能力的舞台。
因此,在培养创新人才方面数学竞赛起着积极的推动作用,是拓宽大学创新人才培养途径很好的切入点。
[1]1.大学开展数学竞赛的价值性分析笔者认为,在高科技产品日新月异的信息时代,数学是科学技术发展的必备技术工具,是各门学科发展的基础和升华。
因此数学教育在现化教育中所占据地位举足轻重。
数学竞赛的举办和发展为数学教育增添了新的活力,提供了新的契机,发掘了新的人才。
从微观角度来说,为了提高学生的创新思维和发散性思维。
大学生数学竞赛应与课堂教学相互配合,相互渗透,但又有着课堂教学所无法代替的重要作用。
首先,数学竞赛能够巩固学生在课内所学的知识、扩大学生的视野、拓宽解题思路、增强逻辑推理能力以及解题和运用数学知识解决实际问题的能力;其次,数学竞赛能够帮助学生掌握正确的学习方法,促使大学数学教学更好地进行;再次,数学竞赛培训对提高学生学习兴趣,促进思维能力发展,增强探索精神和创新才能皆有促进作用;最后,数学竞赛在发现和发挥大学生的特长,选拔和培养具有数学天赋的学生等方面也有着积极的意义。
2.创新型人才培养和数学竞赛关系阐述数学竞赛过程中方法的多样性,奠定了创新能力培养的基础。
数学竞赛的过程锻炼创新思维能力。
数学竞赛就是运用数学的方法解决实际问题的全过程,不仅涉及数学方法的介绍,更涉及对问题的分析与简化、对方法的运用与检验、对相关算法与软件的选择等,是锻炼学生用新的思维来解决问题的过程。
而学生拥有综合分析能力的体现就是具有较强的创新能力。
大学生解决具体实际问题具有创新意识,要把实际问题转化为数学问题,用数学的眼光角度进行定性与定量分析,把所学的数学知识应用到实际中。
简介:全国大学生数学竞赛旨在培养学生们对高等数学的热爱,增加高等院校教师和学生对高等数学的重视程度。
由于是由原北京市数学竞赛发展而来,2009年举办的全国首届大学生数学竞赛也是第二十届北京市数学竞赛。
编辑本段|回到顶部具体介绍:竞赛组委会由各大高校教职员工和致力于高等数学教学的教研员组成,主要吸收了在北京市举办了二十届的数学竞赛经验,希望能够办成与全国大学生数学建模竞赛,相同规模影响的比赛。
2008年,12月27日—28日,全国高校大学生数学竞赛筹备会议在北京航空航天大学新主楼会议中心第四会议室举行。
中国数学会副理事长巩馥洲,中国数学会秘书长、北京数学会理事长王长平以及来自北京大学、复旦大学、北京航空航天大学、国防科技大学等国内十余所著名大学的数学学院院长(系主任)参加会议。
我校郑志明副校长、教务处陈强处长出席了会议。
会议开幕式由中国数学会普及委员会常务副主任高宗升主持。
会议上中国数学会秘书长王长平发表讲话,指出举办全国数学竞赛意义重大,有利于发现和选拔优秀人才。
办好竞赛不应以赢利为目的,可以借鉴北京市高校大学数学竞赛的成功经验。
各与会人员集思广益对全国高校大学生数学竞赛的组织工作、参赛对象、竞赛内容、报名方法、奖励办法等方面对工作进行了详细研究,制定了具体办法。
希望通过此竞赛促进高校数学课的教学改革和建设,激发在校大学生学习数学的热情,促进大学对创新人才的选拔和培养。
会议最终决定:全国高校第一届大学生数学竞赛将于2009年11月在全国高校同时举行。
之后各大高校都积极准备,组织相关学生进行暑假培训。
更有甚者还开了动员大会进行誓师。
下图为桂林电子科技大学数计学院的动员大会图:编辑本段|回到顶部参赛对象:在校大学生。
竞赛分为三个组别:甲组:数学专业组,含数学与应用数学、信息与计算科学专业的学生。
乙组:非数学专业组。
丙组:经济类(北京赛区特有组别)。
数学专业学生不得参加非数学专业组的竞赛。
编辑本段|回到顶部竞赛内容:甲组:《数学分析》(50%)、《高等代数》(35%)、《解析几何》(15%)。
第十一届“全国大学生数学竞赛”简介全国大学生数学竞赛是由中国数学会主办的大学生专业技能竞赛活动,旨在进一步推动和促进高等学校数学的教学改革和课程建设,激发和培养广大学生学习数学的兴趣,发现和选拔数学创新人才,为青年学子提供一个展示自我的舞台。
一、竞赛的方式与时间安排第十一届全国大学生数学竞赛分初赛和决赛两个阶段。
分区初赛于2019年10月下旬在四川赛区进行,竞赛委员会负责统一命题,各赛区数学会组织考试。
全国决赛于2020年3月举行。
二、奖项的设立:设初赛(以省、市、自治区作为赛区)奖与决赛奖。
预赛奖:每个赛区的获奖总名额不超过总参赛人数的25%(其中一等奖、二等奖、三等奖分别占各类获奖总人数的20%、30%、50%)。
颁发“第八届全国大学生数学竞赛预赛*等奖”证书。
决赛奖:参加全国决赛的总人数不超过300人。
每个赛区参加决赛的名额不少于3名,由各赛区在赛区一等奖获得者中推选。
最后入选名单由竞赛工作小组批准。
决赛阶段的评奖等级按绝对分数评奖。
颁发“第八届全国大学生数学竞赛决赛*等奖”证书。
预赛奖和决赛奖证书均加盖“中国数学会普及工作委员会”的公章,获奖证书由承办单位统一印制。
三、全国竞赛内容:省级预赛只考高等数学内容。
全国决赛时在预赛的基础上增加线性代数内容。
(考分约占总分的15%--20%)。
四、全国大学生数学竞赛官网全国大学生数学竞赛网站/中国大学生数学竞赛(非数学专业类)竞赛内容一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立。
2.函数的性质:有界性、单调性、周期性和奇偶性。
3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数。
4.数列极限与函数极限的定义及其性质、函数的左极限与右极限。
5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较。
6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限。
7.函数的连续性(含左连续与右连续)、函数间断点的类型。
全国大学生数学竞赛全国大学生数学竞赛是中国教育部主办的一项重要赛事,旨在提高大学生数学素质、培养数学科技创新人才,促进数学教育改革与发展。
该竞赛覆盖全国各高校,参赛学生的数学知识和解题能力都会得到锻炼和提高。
数学竞赛是一种评价学生数学水平的有效方式,既能激发学生学习数学的兴趣,又能展现学生的数学才华。
全国大学生数学竞赛不仅考察学生的基本数学知识,还倾向于培养学生的数学思维能力和解决复杂问题的能力。
竞赛的内容涉及到数学的各个领域,包括数论、代数、几何、概率与统计等。
题目不仅要求学生具备熟练的计算能力,还要求学生具备分析问题、拓展思路、创新解题等能力。
竞赛题目通常具有一定的难度,能够增强学生的自学能力和解决问题的能力。
全国大学生数学竞赛的选拔过程分为校内选拔和校外选拔两个阶段。
在校内选拔中,各高校会组织内部数学竞赛,评选出表现优异的学生参加校外选拔。
校外选拔是在全国范围内进行的,参赛学生需要经过一系列的层层选拔,直至获得最终的名次。
参加全国大学生数学竞赛对于学生来说是一次重要的机会,不仅可以与全国各地的优秀学生交流学习,还能获得奖金和荣誉。
优秀的成绩还可以作为申请研究生、出国留学等方面的加分项,对于学生未来的发展具有重要意义。
然而,要在全国大学生数学竞赛中取得好成绩并不容易。
首先,需要具备扎实的数学基础知识和分析思维能力。
其次,要有充分的备考时间,进行系统的复习和实战训练。
此外,还需要学会合理规划时间,合理安排每道题目的解答时间,从而在有限的时间内完成尽可能多的题目。
在备考期间,可以参加学校组织的数学竞赛培训班,或者参加一些数学竞赛的辅导课程,从中获取宝贵的经验和解题技巧。
同时,多做一些历年真题,熟悉竞赛的题型和难度,对于备考有很大的帮助。
总之,全国大学生数学竞赛是提高大学生数学素质、培养数学人才的一项重要赛事。
参加竞赛不仅可以锻炼学生的数学能力,还可以为个人发展增添亮点。
希望广大学生能够充分利用这个机会,努力备战,取得优异的成绩。
中国大学生数学竞赛竞赛大纲(数学专业类)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。
1. 竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。
“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。
1. 竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。
(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下:Ⅰ、数学分析部分1. 集合与函数2. 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理.3. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.4. 3.函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质.5. 极限与连续6. 1.数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质).7. 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用.8. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.9. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性).10. 一元函数微分学11. 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.12. 2.微分学基本定理:Fermat定理,Rolle定理,Lagrange定理,Cauchy定理,Taylor 公式(Peano余项与Lagrange余项).13. 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(L'Hospital)法则、近似计算.14. 多元函数微分学15. 1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与Taylor公式.16. 2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.17. 3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).18. 4.极值问题(必要条件与充分条件),条件极值与Lagrange乘数法.19. 一元函数积分学20. 1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分:型,型.21. 2. 定积分及其几何意义、可积条件(必要条件、充要条件:)、可积函数类.22. 3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L公式及定积分计算、定积分第二中值定理.23. 4.无限区间上的广义积分、Canchy收敛准则、绝对收敛与条件收敛、非负时的收敛性判别法(比较原则、柯西判别法)、Abel判别法、Dirichlet判别法、无界函数广义积分概念及其收敛性判别法.24. 5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积),其他应用.25. 多元函数积分学26. 1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一般坐标变换).27. 2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).28. 3.重积分的应用(体积、曲面面积、重心、转动惯量等).29. 4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.30. 5.第一型曲线积分、曲面积分的概念、基本性质、计算.31. 6.第二型曲线积分概念、性质、计算;Green公式,平面曲线积分与路径无关的条件.32. 7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke公式,两类线积分、两类面积分之间的关系.33. 无穷级数34. 1. 数项级数级数及其敛散性,级数的和,Cauchy准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的Leibniz判别法;一般项级数的绝对收敛、条件收敛性、Abel判别法、Dirichlet判别法.1. 函数项级数函数列与函数项级数的一致收敛性、Cauchy准则、一致收敛性判别法(M-判别法、Abel 判别法、Dirichlet判别法)、一致收敛函数列、函数项级数的性质及其应用.1. 幂级数幂级数概念、Abel定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、Taylor级数、Maclaurin级数.1. Fourier级数三角级数、三角函数系的正交性、2及2周期函数的Fourier级数展开、Beseel不等式、Riemanm-Lebesgue定理、按段光滑函数的Fourier级数的收敛性定理.Ⅱ、高等代数部分1. 多项式2. 1. 数域与一元多项式的概念3. 2. 多项式整除、带余除法、最大公因式、辗转相除法4. 3. 互素、不可约多项式、重因式与重根.5. 4. 多项式函数、余数定理、多项式的根及性质.6. 5.代数基本定理、复系数与实系数多项式的因式分解.7. 6. 本原多项式、Gauss引理、有理系数多项式的因式分解、Eisenstein判别法、有理数域上多项式的有理根.8. 7. 多元多项式及对称多项式、韦达(Vieta)定理.9. 行列式10. 1. n级行列式的定义.11. 2. n级行列式的性质.12. 3. 行列式的计算.13. 4. 行列式按一行(列)展开.14. 5.拉普拉斯(Laplace)展开定理.15. 6. 克拉默(Cramer)法则.16. 线性方程组17. 1.高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解.18. 2. n维向量的运算与向量组.19. 3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.20. 4. 向量组的极大无关组、向量组的秩.21. 5.矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.22. 6. 线性方程组有解判别定理、线性方程组解的结构.23. 7.齐次线性方程组的基础解系、解空间及其维数24. 矩阵25. 1. 矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.26. 2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.27. 3. 矩阵的逆、伴随矩阵、矩阵可逆的条件.28. 4. 分块矩阵及其运算与性质.29. 5.初等矩阵、初等变换、矩阵的等价标准形.30. 6. 分块初等矩阵、分块初等变换.31. 双线性函数与二次型32. 1. 双线性函数、对偶空间33. 2. 二次型及其矩阵表示.34. 3. 二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法.35. 4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.36. 5.正定、半正定、负定二次型及正定、半正定矩阵37. 线性空间38. 1.线性空间的定义与简单性质.39. 2. 维数,基与坐标.40. 3. 基变换与坐标变换.41. 4. 线性子空间.42. 5. 子空间的交与和、维数公式、子空间的直和.43. 线性变换44. 1. 线性变换的定义、线性变换的运算、线性变换的矩阵.45. 2. 特征值与特征向量、可对角化的线性变换.46. 3.相似矩阵、相似不变量、哈密尔顿-凯莱定理.47. 4. 线性变换的值域与核、不变子空间.48. 若当标准形49. 1.矩阵.50. 2. 行列式因子、不变因子、初等因子、矩阵相似的条件.51. 3. 若当标准形.52. 欧氏空间53. 1.内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.54. 2. 标准正交基、正交矩阵、施密特(Schmidt)正交化方法.55. 3. 欧氏空间的同构.56. 4. 正交变换、子空间的正交补.57. 5. 对称变换、实对称矩阵的标准形.58. 6. 主轴定理、用正交变换化实二次型或实对称矩阵为标准形.59. 7. 酉空间.Ⅲ、解析几何部分1. 向量与坐标2. 1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.3. 2. 坐标系的概念、向量与点的坐标及向量的代数运算.4. 3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.5. 4. 向量的数量积、向量积和混合积的定义、几何意义、运算性质、计算方法及应用.6. 5. 应用向量求解一些几何、三角问题.7. 轨迹与方程8. 1.曲面方程的定义:普通方程、参数方程(向量式与坐标式之间的互化)及其关系.9. 2.空间曲线方程的普通形式和参数方程形式及其关系.10. 3.建立空间曲面和曲线方程的一般方法、应用向量建立简单曲面、曲线的方程.11. 4.球面的标准方程和一般方程、母线平行于坐标轴的柱面方程.12. 平面与空间直线13. 1.平面方程、直线方程的各种形式,方程中各有关字母的意义.14. 2.从决定平面和直线的几何条件出发,选用适当方法建立平面、直线方程.15. 3.根据平面和直线的方程,判定平面与平面、直线与直线、平面与直线间的位置关系.16. 4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程.17. 二次曲面18. 1.柱面、锥面、旋转曲面的定义,求柱面、锥面、旋转曲面的方程.19. 2.椭球面、双曲面与抛物面的标准方程和主要性质,根据不同条件建立二次曲面的标准方程.20. 3.单叶双曲面、双曲抛物面的直纹性及求单叶双曲面、双曲抛物面的直母线的方法.21. 4.根据给定直线族求出它表示的直纹面方程,求动直线和动曲线的轨迹问题.22. 二次曲线的一般理论23. 1.二次曲线的渐进方向、中心、渐近线.24. 2.二次曲线的切线、二次曲线的正常点与奇异点.25. 3.二次曲线的直径、共轭方向与共轭直径.26. 4.二次曲线的主轴、主方向,特征方程、特征根.27. 5.化简二次曲线方程并画出曲线在坐标系的位置草图.。