集合知识点总结材料及习题
- 格式:doc
- 大小:601.00 KB
- 文档页数:16
完整版)人教版高一数学必修一集合知识点以及习题高一数学必修第一章集合1.集合的概念集合是指一定范围内、确定的、可区别的事物,将其作为一个整体来看待,就叫做集合,简称集。
其中的各事物叫作集合的元素或简称元。
集合的元素具有三个特性:确定性、互异性和无序性。
确定性指元素是明确的,如世界上最高的山。
互异性指元素是不同的,如由HAPPY的字母组成的集合{H,A,P,Y}。
无序性指元素的排列顺序不影响集合的本质,如{a,b,c}和{a,c,b}是同一个集合。
集合可以用大括号{…}表示,如{我校的篮球队员}、{太平洋,大西洋,印度洋,北冰洋}。
集合也可以用拉丁字母表示,如A={我校的篮球队员},B={1,2,3,4,5}。
集合的表示方法有列举法和描述法。
常用的数集及其记法有:非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。
2.集合间的关系集合间有包含关系和相等关系。
包含关系又称为“子集”,表示一个集合的所有元素都属于另一个集合。
如果集合A的所有元素都属于集合B,则称A是B的子集,记作A⊆B。
如果A和B是同一集合,则称A是B的子集,记作A⊆B。
反之,如果集合A不包含于集合B,或集合B不包含于集合A,则记作A⊈B或B⊈A。
相等关系表示两个集合的元素完全相同,记作A=B。
真子集是指如果A⊆B,且A≠B,则集合A是集合B的真子集,记作A⊂B(或B⊃A)。
如果XXX且B⊆C,则A⊆C。
如果XXX且B⊆A,则A=B。
空集是不含任何元素的集合,记为Φ。
规定空集是任何集合的子集,空集是任何非空集合的真子集。
3.集合的运算集合的运算包括交集、并集和补集。
交集是由所有属于A 且属于B的元素所组成的集合,记作A∩B。
并集是由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B。
补集是由S中所有不属于A的元素所组成的集合,记作A的补集。
如果S是一个集合,A是S的一个子集,则A的补集为由S中所有不属于A的元素组成的集合。
高一集合知识点和练习一、集合的概念集合是高中数学中的一个重要概念,它是指具有某种特定性质的具体的或抽象的对象汇集成的总体。
简单来说,集合就是把一些确定的、不同的对象放在一起。
比如说,我们可以把所有的自然数组成一个集合,也可以把一个班级里所有的男生组成一个集合。
集合中的对象称为元素。
如果一个元素 a 属于集合 A,我们记作a∈A;如果一个元素 b 不属于集合 A,我们记作 b∉A。
集合通常用大写字母表示,如A、B、C 等;元素用小写字母表示,如 a、b、c 等。
二、集合的表示方法1、列举法就是把集合中的元素一一列举出来,写在大括号内。
例如,由 1,2,3 这三个数字组成的集合,可以表示为{1,2,3}。
2、描述法用集合所含元素的共同特征来表示集合。
具体格式为{代表元素|元素所满足的条件}。
比如,所有小于 5 的正整数组成的集合,可以表示为{x|x 是小于 5 的正整数}。
3、图示法(韦恩图)用一个封闭的曲线来表示集合,曲线内部的点表示集合中的元素。
这种方法直观形象,有助于我们理解集合之间的关系。
三、集合的性质1、确定性集合中的元素必须是确定的,不能模棱两可。
例如,“个子高的同学”不能构成一个集合,因为“个子高”没有明确的标准。
2、互异性集合中的元素不能重复。
例如,{1,1,2}不能算作一个集合,应该写成{1,2}。
3、无序性集合中的元素没有顺序之分。
例如,{1,2,3}和{3,2,1}表示的是同一个集合。
四、集合间的关系1、子集如果集合 A 中的所有元素都属于集合 B,那么集合 A 称为集合 B 的子集,记作 A⊆B。
例如,集合 A ={1,2},集合 B ={1,2,3},则 A 是 B 的子集。
特别地,当 A⊆B 且 B⊆A 时,称集合 A 与集合 B 相等,记作 A =B。
2、真子集如果集合 A 是集合 B 的子集,且存在元素 x∈B 但 x∉A,那么集合A 称为集合 B 的真子集,记作 A⊂B。
集合知识点及经典例题一、知识点整理 ㈠集合有关概念1、集合与元素的关系元素与集合的关系:属于“∈”;不属于∉ 2、集合中元素的三个特性: ⑴元素的确定性如:世界上最高的山⑵元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y}例题:①设P 、Q 为两个非空实数集合,定义集合P+Q={|,}a b a P b Q +∈∈,若{0,2,5}P =,}6,2,1{=Q ,则P+Q 中元素的有________个。
(答:8)非空集合}5,4,3,2,1{⊆S ,且满足“若S a ∈,则S a ∈-6”,这样的S 共有__个(答:7) ⑶元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3、集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} ⑴用英文字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} ⑵集合的表示方法:列举法与描述法。
1)列举法:{a,b,c ……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R| x-3>2} ,{x| x-3>2}例题:{}x y x lg |=—函数的定义域;{}x y y lg |=—函数的值域;{}x y y x lg |),(=—函数图象上的点集,例题:设集合{|M x y ==,集合N ={}2|,y y x x M =∈,则M N = ___(答:[4,)+∞); ⑶语言描述法:例:{不是直角三角形的三角形} ⑷Venn 图:⑸常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 复数 C 4、集合的分类:⑴有限集 含有有限个元素的集合 ⑵无限集 含有无限个元素的集合⑶空集 不含任何元素的集合 例:{x|x 2=-5}5、集合间的基本关系⑴“包含”关系—子集:数学表达式:若对任意B x A x ∈⇒∈,则B A ⊆ 注意:B A ⊆有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
集 合一.【课标要求】1.集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用二.【命题走向】有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn 图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。
考试形式多以一道选择题为主。
预测高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。
具体三.【要点精讲】1.集合:某些指定的对象集在一起成为集合(1)集合中的对象称元素,若a 是集合A 的元素,记作;若b 不是集合A 的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性;确定性:设A 是一个给定的集合,x 是某一个具体对象,则或者是A 的元素,或者不是A 的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关;(3)表示一个集合可用列举法、描述法或图示法;列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
一、集合:1.定义: 把研究的对象统称为元素, 把一些元素组成的总体叫做集合。
2、集合与元素的关系:(1)如果a是集合A的元素,就说a属于集合A, 记作a A;(2)如果a不是集合A的元素, 就说a不属于集合A , 记作a A。
3.常见集合:(1)非负整数集(或自然数集) :N ;(2)正整数集合:或;(3)整数集合:Z, (4)有理数集合:Q;(5)实数集合:R.注意: (1)自然数集N含有0;(2)整数集Z、有理数Q、实数集R内排除0的集合分别表示为: Z*或Z+、Q*或Q+、R*或R+。
4、集合三要素: 确定性、互异性、无序性。
5、集合的分类: (1)有限集——含有有限个元素的集合。
(2)无限集——含有无限个元素的集合。
特别地, 不含任何元素的集合叫做空集, 记作。
6.集合的表示方法:(1)列举法——把集合中的元素一一列举出来的方法。
如{x1, x2, …, xn}。
(2)描述法: { x | p(x) }有时也可写成{ x: p(x) }。
(3)文氏图(又叫韦恩图): (4)区间表示法知识点二: 集合之间的关系1.子集:一般地, 对于两个集合A.B, 如果集合A中任意一个元素都是集合B中的元素, 则称集合A是集合B的子集。
记作:A B或(B A).性质: ①A(特别地);②A A ;③若A B,B C,则A C。
2.集合相等:只要构成两个集合的元素是一样的, 就称这两个集合相等性质: A=B A B,B A3.真子集: 如果集合,但存在元素,且,则称集合A是集合B的真子集..记作:A B A B,A B性质:①若A ,则有A。
②如果A B,B C, 那么A C。
③规定: 空集合是任何集合的子集.4.子集的性质①A A, 即任何一个集合都是它本身的子集②如果A B, B A, 那么A B③如果A B, B C, 那么A C④如果A B, B C, 那么A C二空集1.不含任何元素的集合叫做空集, 记作.2.空集是任何集合的子集, 是任何非空集合的真子集。
集合一、知识点: 1、元素:(1)集合中的对象称为元素,若a 是集合A 的元素,记作A a ∈;若b 不是集合A 的元素,记作A b ∉;(2)集合中对象元素的性质:确定性、互异性、无序性; (3)集合表示方法:列举法、描述法、图示法; (4)常用数集:R Q Z N N N ;;;;;*+ 2、集合的关系: 子集 相等 3、全集交集 并集 补集4、集合的性质:(1);,,A B B A A A A A ⋂=⋂=⋂=⋂φφ (2) ;,A B B A A A ⋃=⋃=⋃φ (3) );()(B A B A ⋃⊆⋂(4);B B A A B A B A =⋃⇔=⋂⇔⊆(5));()()(),()()(B C A C B A C B C A C B A C S S S S S S ⋂=⋃⋃=⋂二、典型例题例1. 已知集合}33,)1(,2{22++++=a a a a A ,若A ∈1,求a 。
例2. 已知集合M ={}012|2=++∈x ax R x 中只含有一个元素,求a 的值。
例3. 已知集合},01|{},06|{2=+==-+=ax x B x x x A 且B A ,求a 的值。
\例4. 已知方程02=++c bx x 有两个不相等的实根x 1, x 2. 设C ={x 1, x 2}, A ={1,3,5,7,9}, B ={1,4,7,10},若C B C C A =Φ= ,,试求b ,c 的值。
例5. 设集合}121|{},52|{-≤≤+=≤≤-=m x m x B x x A ,(1)若Φ=B A , 求m 的范围;(2)若A B A = , 求m 的范围。
例6. 已知A ={0,1}, B ={x|x ⊆A},用列举法表示集合B ,并指出集合A 与B 的关系。
三、练习题1. 设集合M =,24},17|{=≤a x x 则( ) A. M a ∈ B. M a ∉ C. a = M D. a > M2. 有下列命题:①}{Φ是空集 ② 若N b N a ∈∈,,则2≥+b a ③ 集合}012|{2=+-x x x 有两个元素 ④ 集合},100|{Z x N x x B ∈∈=为无限集,其中正确命题的个数是( )A. 0B. 1C. 2D. 3 3. 下列集合中,表示同一集合的是( ) A. M ={(3,2)} , N ={(2,3)} B. M ={3,2} , N ={(2,3)}C. M ={(x ,y )|x +y =1}, N ={y|x +y =1}D.M ={1,2}, N ={2,1}4. 设集合}12,4{},1,3,2{22+-+=+=a a a N a M ,若}2{=N M , 则a 的取值集合是( ) A.}21,2,3{- B. {-3}C. }21,3{-D. {-3,2}5. 设集合A = {x| 1 < x < 2}, B = {x| x < a}, 且B A ⊆, 则实数a的范围是( )A. 2≥aB. 2>aC. 1≤aD. 1>a 6. 设x ,y ∈R ,A ={(x ,y )|y =x}, B =}1|),{(=x yy x , 则集合A ,B 的关系是( )A. A BB. B AC. A =BD. A ⊆B7. 已知M ={x|y =x 2-1} , N ={y|y =x 2-1}, 那么M ∩N =( ) A. Φ B. M C. N D. R8. 已知 A = {-2,-1,0,1}, B = {x|x =|y|,y ∈A}, 则集合B =_________________9. 若A B },01|{},023|{22⊆=-+-==+-=且a ax x x B x x x A ,则a 的值为_____10. 若{1,2,3}⊆A ⊆{1,2,3,4,5}, 则A =____________11. 已知M ={2,a ,b}, N ={2a ,2,b 2},且M =N 表示相同的集合,求a ,b 的值12. 已知集合B,A }02|{},04|{22⊆>--=<++=且x x x B p x x x A 求实数p 的范围。
集合知识点及题型归纳总结知识点精讲一、集合的有关概念 1.集合的含义与表示某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素. (2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现. (3)无序性:集合与其组成元素的顺序无关.如{}{},,,,a b c a c b =. 3.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图、数轴)和区间法. 4.常用数集的表示R 一实数集 Q 一有理数集 Z 一整数集 N 一自然数集*N 或N +一正整数集 C 一复数集二、集合间的关系1.元素与集合之间的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种. 空集:不含有任何元素的集合,记作∅. 2.集合与集合之间的关系 (1)包含关系.子集:如果对任意a A A B ∈⇒∈,则集合A 是集合B 的子集,记为A B ⊆或B A ⊇,显然A A ⊆.规定:A ∅⊆.(2)相等关系.对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A B =. (3)真子集关系.对于两个集合A 与B ,若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB 或B A .空集是任何集合的子集,是任何非空集合的真子集.三、集合的基本运算集合的基本运算包括集合的交集、并集和补集运算,如表11-所示.IA{|IA x x =1.交集由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂,即{}|A B x x A x B ⋂=∈∈且.2.并集由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,即{}|A B x x A x B ⋃=∈∈或.3.补集已知全集I ,集合A I ⊆,由I 中所有不属于A 的元素组成的集合,叫做集合A 相对于全集I 的补集,记作IA ,即{}|I A x x I x A =∈∉且.四、集合运算中常用的结论 1.集合中的逻辑关系 (1)交集的运算性质.A B B A ⋂=⋂,A B A ⋂⊆,A B B ⋂⊆ A I A ⋂=,A A A ⋂=,A ⋂∅=∅. (2)并集的运算性质.A B B A ⋃=⋃,A A B ⊆⋃,B A B ⊆⋃ A I I ⋃=,A A A ⋃=,A A ⋃∅=. (3)补集的运算性质.()II A A =,I I ∅=,I I =∅ ()I A A ⋂=∅,()I A A I ⋃.补充性质:II I A B A A B B A B B A A B ⋂=⇔⋃=⇔⊆⇔⊆⇔⋂=∅.(4)结合律与分配律.结合律:()()A B C A B C ⋃⋃=⋃⋃ ()()A B C A B C ⋂⋂=⋂⋂. 分配律:()()()A B C A B A C ⋂⋃=⋂⋃⋂ ()()()A B C A B A C ⋃⋂=⋃⋂⋃. (5)反演律(德摩根定律).()()()II I A B A B ⋂=⋃()()()II I A B A B ⋃=⋂.即“交的补=补的并”,“并的补=补的交”. 2.由*(N )n n ∈个元素组成的集合A 的子集个数A 的子集有2n 个,非空子集有21n -个,真子集有21n -个,非空真子集有22n -个.3.容斥原理()()()()Card A B Card A Card B Card A B ⋃=+-⋂.题型归纳及思路提示I AA题型1 集合的基本概念思路提示:利用集合元素的特征:确定性、无序性、互异性. 例1.1 设,a b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( ) A .1 B .1- C .2 D .2-解析:由题意知{}01,,a b a ∈+,又0a ≠,故0a b +=,得1ba=-,则集合{}{}1,0,0,1,a b =-,可得1,1,2a b b a =-=-=,故选C 。
集合知识点+练习题第⼀章集合§ 1.1集合基础知识点:1.集合的定义: ⼀般地,我们把研究对象统称为兀素,⼀些兀素组成的总体叫集合,也简称集2.表⽰⽅法:集合通常⽤⼤括号{}或⼤写的拉丁字母A,B,C…表⽰,⽽元素⽤⼩写的拉丁字母a,b,c…表⽰。
3.集合相等: 构成两个集合的兀素完全⼀样。
4. 常⽤的数集及记法:⾮负整数集(或⾃然数集),记作N ;正整数集,记作N*或N + ;N内排除0的集.整数集,记作Z ;有理数集,记作Q;实数集,记作R ;5. 关于集合的元素的特征⑴确定性:给定⼀个集合,那么任何⼀个兀素在不在这个集合中就确定了。
⼥⼝:“地球上的四⼤洋”(太平洋,⼤西洋,印度洋,北冰洋)。
“中国古代四⼤发明”(造纸,印刷,⽕药,指南针)可以构成集合,其元素具有确定性;⽽“⽐较⼤的数”,“平⾯点P周围的点”⼀般不构成集合,因为组成它的兀素是不确定的.⑵互异性:⼀个集合中的兀素是互不相冋的,即集合中的兀素是不重复出现的。
如:⽅程(x-2)(x-1)2=0的解集表⽰为1,2 ,⽽不是1, 1,2⑶⽆序性:即集合中的元素⽆顺序,可以任意排列、调换。
练1:判断以下元素的全体是否组成集合,并说明理由:⑴⼤于3⼩于11的偶数;⑵我国的⼩河流;⑶⾮负奇数;⑷⽅程x2+仁0的解;⑸徐州艺校校2011级新⽣;⑹⾎压很⾼的⼈;⑺著名的数学家;⑻平⾯直⾓坐标系内所有第三象限的点6. 元素与集合的关系:(元素与集合的关系有“属于”及“不属于”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a A。
例如,(1)A表⽰“ 1~20以内的所有质数”组成的集合,则有 3 € A , 4 A,等等。
(2)A={2 , 4, 8, 16},贝U 4_A, 8_A, 32 A.典型例题例1⽤“ €”或“”符号填空:⑴ 8_ N ; ⑵ 0 ___ N; ⑶-3 ___ Z ; ⑷ 2_Q;⑸设A为所有亚洲国家组成的集合,则中国_A,美国_________ A,印度_____A,英国A。
集合知识点总结带例题一、基本概念1. 集合集合是由一些确定的对象构成的整体。
集合是一个无序的整体,它只关心集合中包含的元素,与元素的排列顺序无关。
2. 元素集合中的个体称为元素,元素可以是任何事物或对象,例如数字、字母、集合等。
3. 空集一个不包含任何元素的集合称为空集,通常用符号∅ 或 {} 表示。
4. 包含关系若集合 A 中的所有元素都是集合 B 中的元素,则称集合 A 包含在集合 B 中,通常用符号A⊆B 表示。
5. 相等关系若集合 A 包含在集合 B 中,并且集合 B 包含在集合 A 中,则称集合 A 和集合 B 相等,通常用符号 A=B 表示。
6. 子集若集合 A 包含在集合 B 中,且集合 A 不等于集合 B,则称集合 A 是集合 B 的子集,通常用符号A⊂B 表示。
7. 并集若集合 A 和集合 B 的元素都包含在一个新的集合中,则称该集合为 A 和 B 的并集,通常用符号A∪B 表示。
8. 交集若集合 A 和集合 B 的公共元素构成一个新的集合,则称该集合为 A 和 B 的交集,通常用符号A∩B 表示。
9. 完全集一个包含所有可能元素的集合称为完全集。
10. 互斥集若集合 A 和集合 B 没有共同的元素,则称集合 A 和集合 B 互斥。
二、运算1. 并集对于两个集合 A 和 B,它们的并集是一个包含 A 和 B 所有元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∪B={1,2,3,4,5}。
2. 交集对于两个集合 A 和 B,它们的交集是一个包含 A 和 B 共同元素的集合。
例如:A={1,2,3}, B={3,4,5} 则A∩B={3}。
3. 补集对于一个集合 A,它在另一个集合 U 中的补集是指 U 中不属于 A 的元素所组成的集合,通常用符号 A' 或 A^c 表示。
4. 差集对于两个集合 A 和 B,它们的差集是包含在 A 中但不包含在 B 中的元素所组成的集合,通常用符号 A-B 表示。
集合123412n x A x B A B A B A n A ∈∉⎧⎪⎪⎨⎪⎪⎩∈⇒∈⊆()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。
、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/nA A ABC A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ⎧⎪⎧⎪⎪⎪⊆⎪⎪⎨⎪⊆⊆⊆⎨⎪⎪⎪⎩⎪⎪⊆≠∈∉⎪⊆⊇⇔=⎪⎩⋂=∈∈⋂=⋂∅=∅⋂=⋂⋂⊆真子集有个。
、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。
真子集:若且(即至少存在但),则是的真子集。
集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ⎧⎪⎨⋂⊆⊆⇔⋂=⎪⎩⎧⋃=∈∈⎪⎨⋃=⋃∅=⋃=⋃⋃⊇⋃⊇⊆⇔⋃=⎪⎩⋃=+⋂=∈∉=⋂=∅⋃==⋂=⋃,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ⎧⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⋃=⋂⎪⎪⎩⎩⎩⎩一、集合有关概念 1. 集合的含义2. 集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——(不)属于关系 (1)集合用大写的拉丁字母A 、B 、C …表示元素用小写的拉丁字母a 、b 、c …表示(2)若a 是集合A 的元素,就说a 属于集合A,记作a ∈A;若不是集合A的元素,就说a不属于集合A,记作a∉A;4.集合的表示方法:列举法与描述法。
(1)列举法:将集合中的元素一一列举出来,写在大括号内表示集合的方法格式:{ a,b,c,d }适用:一般元素较少的有限集合用列举法表示(2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
格式:{x |x满足的条件}例如:{x R| x-3>2} 或{x| x-3>2}适用:一般元素较多的有限集合或无限集合用描述法表示注意:常用数集及其记法:非负整数集(即自然数集)记作:N={0,1,2,3,…}正整数集 N*或 N+ = {1,2,3,…}整数集Z {…,-3,-2,-1,0,1,2,3,…}有理数集Q实数集R有时,集合还用语言描述法和Venn图法表示例如:语言描述法: {不是直角三角形的三角形}Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x∈R|x2=-5}二、集合间的基本关系1.“包含”关系—子集定义:若对任意的x∈A,都有x∈B,则称集合A是集合B的子集,A⊆(或B⊇A)记为B注意:①BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
②符号∈与⊆的区别反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A 2.“相等”关系:A=B定义:如果A B 同时 B A 那么A=B实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”3.真子集:如果A B,且存在元素x∈B,但x∉A,那么就说集合A是集合B的真子集,记作A B(或B A)4.性质①任何一个集合是它本身的子集。
A A②如果 A B, B C ,那么 A C③如果A B 同时 B A 那么A=B5. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A I B(读作‘A交B’),即A I B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A Y B(读作‘A并B’),即A Y B={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSxx∉∈且A I A=AA I Φ=Φ A I B=B I A A I B ⊆A A I B ⊆B AB ﹤=﹥A I B=AA Y A=A A Y Φ=A A Y B=B Y A A Y B ⊇A A Y B ⊇BA B ﹤=﹥A Y B=B第一章:集合与函数的概念第一课时:集合 集合的含义与表示集合的含义:我们一般把研究对象统称为元素,把一些元素组成的总体叫做集合,简称集。
通常用大写字母A 、B 、C 等表示集合,用小写字母a 、b 、c 等表示元素,元素与集合之间的关系是属于和不属于。
元素a 属于集合A ,记做a ∈A ,反之,元素a 不属于集合A ,记做a ∉A 。
集合中的元素的特征:①确定性:如世界上最高的山;②互异性:由HAPPY 的字母组成的集合{H,A,P,Y};③无序性:如集合{a 、b 、c}和集合{b 、a 、c}是同一个集合。
集合的分类:①根据集合中元素的个数可分为有限集、无限集和空集。
②根据集合中元素的属性可分为数集、点集、序数对等。
本节精讲:一. 如何判断一些对象是否组成一个集合:判断一组对象能否组成集合,主要是要看这组对象是否是确定的,即对任何一个对象,要么在这组之中,要么不在,二者必居其一,如果这组对象是确定的,那么,这组对象就能够组成一个集合。
例:看下面几个例子,判断每个例子中的对象能否组成一个集合。
(1)大于等于1,且小于等于100的所有整数;(2)方程x2=4的实数根;(3)平面内所有的直角三角形;(4)正方形的全体;(5)∏的近似值的全体;(6)平面集合中所有的难证明的题;(7)著名的数学家;(8)平面直角坐标系中x轴上方的所有点。
解:练习:考察下列各组对象能否组成一个集合,若能组成集合,请指出集合中的元素,若不能,请说明理由:(1)平面直角坐标系内x轴上方的一些点;(2)平面直角坐标系内以原点为圆心,以1为半径的园内的所有的点;(3)一元二次方程x2+bx-1=0的根;(4)平面内两边之和小于第三边的三角形(5)x2,x2+1,x2+2;(6)y=x,y=x+1,y=ax2+bx+c(a≠0);(7)2x2+3x-8=0,x2-4=0,x2-9=0;(8)新华书店中意思的小说全体。
二.有关元素与集合的关系的问题:确定元素与集合之间的关系,即元素是否在集合中,还要看元素的属性是否与集合中元素的属性相同。
例:集合A={y|y=x2+1},集合B={(x,y)| y=x2+1},(A、B中x∈R,y∈R)选项中元素与集合之间的关系都正确的是()A、2∈A,且2∈BB、(1,2)∈A,且(1,2)∈BC、2∈A,且(3,10)∈BD、(3,10)∈A,且2∈B解:C练习:Q;∏ Q; 0 R+; 1 {(x,y)|y=2x-3}; -8 Z;三.有关集合中元素的性质的问题:集合中的元素有三个性质:分别是①确定性②互异性③无序性例:集合A是由元素n2-n,n-1和1组成的,其中n∈Z,求n的取值范围。
解:n是不等于1且不等于2的整数。
练习:1.已知集合M={a,a+d,a+2d},N={a,aq,aq2},a≠0,且M与N中的元素完全相同,求d和q的值。
2. 已知集合A={x ,xy ,1},B={x 2,x+y,0},若A=B ,则x 2009+y 2010的值为 ,A=B= . 3. (1)若-3∈{a-3,2a-1,a 2-4}求实数a 的值; (2)若mm +-11 ∈{m},求实数m 的值。
4.已知集合M={2,a,b},N={2a,2,b 2},且M=N,求a,b 的值。
5.已知集合A={x|ax 2+2x+1=0,a ∈R},(1)若A 中只有一个元素,求a 的值; (2)若A 中至多有一个元素,求a 的取值范围。
四.集合的表示法:三种表示方法 练习;1. 用列举法表示下列集合。
(1) 方程 x 2+y 2=2d 的解集为 ; x-y=0(2)集合A={y|y=x 2-1,|x|≤2,x ∈Z}用列举法表示为 ;(3)集合B={x+18∈Z|x ∈N}用列举法表示为 ; (4)集合C={x|=aa ||+b b ||,a ,b 是非零实数}用列举法表示为 ;2.用描述法表示下列集合。
(1)大于2的整数a 的集合; (2)使函数y=()()111+-x x x 有意义的实数x 的集合;(3){1、22、32、42、…}3.用Venn 图法表示下列集合及他们之间的关系:(1)A={四边形},B={梯形},C={平行四边形},D={菱形},E={矩形},F={正方形};(2)某班共30人,其中15人喜欢篮球,10人喜欢兵乓球,8人对这两项运动都不喜欢,则喜欢篮球但不喜欢乒乓球的人数为 ,用Venn 图表示为: 。
五.有关集合的分类:六.集合概念的综合问题: 练习 1. 若{}t tt∈+-13,则t 的值为 _____________; 2. 设集合A={y|y=x 2+ax+1,x ∈R},B={(x,y)|y= x 2+ax+1, x ∈R },试求当参数a=2时的集合A 和B ; 3. 已知集合A={x|ax 2-3x+2=0,a ∈R},求(1)若集合A 为空集,则a 的取值范围;(2)若集合A 中只有一个元素,求a 的值,并写出集合A ;(3)若集合A 中至少有一个元素,则a 的取值范围。
课后作业:1.判断下列各组对象能否组成集合: (1)不等式320x +>的整数解的全体; (2)我班中身高较高的同学; (3)直线21y x =-上所有的点; (4)不大于10且不小于1的奇数。