第十七章-----在无界区域上定义的函数PPT课件
- 格式:ppt
- 大小:914.00 KB
- 文档页数:13
函数的概念课件在数学中,函数是一个核心的概念。
它描述了变量之间的依赖关系,用函数的观点去看待问题,是数学学习中一个极为重要的思想方法。
因此,大家要认真理解函数的概念,掌握函数的基本性质,为后续学习做好准备。
函数是数学中的一种关系,它把一个数集中的元素与另一个数集中的元素对应起来,其中对应的规则称为对应关系。
我们可以用解析式、图象、表格等多种形式来表示函数。
例如,如果y是x的函数,那么可以用y=x^2表示一个二次函数。
(1)函数的单调性:在区间(a,b)上,如果对于任意x1<x2,都有f(x1)<f(x2),则称f(x)在(a,b)上单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则称f(x)在(a,b)上单调递减。
(2)函数的奇偶性:如果对于函数f(x)的定义域内的任意x,都有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x)的定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数。
(3)函数的值域:函数值的取值范围称为函数的值域。
(2)定义域为[0,∞),值域为[1,∞)解:(1)在区间(-∞,0)上单调递减,在区间(0,∞)上单调递增。
本节课我们学习了函数的概念和基本性质,掌握了函数的表示方法,了解了函数的单调性、奇偶性和值域等概念。
希望大家能够认真领会函数的思想方法,为后续学习做好准备。
函数是高中数学的核心概念,是数学学习中不可或缺的一部分。
函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。
本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。
通过本课件的学习,学生应能理解函数的基本概念,掌握函数的定义和性质,能够判断一个映射是否为函数,并能够根据函数的定义和性质解决一些基本问题。
函数的定义:我们将介绍函数的定义,包括自变量、因变量和对应关系。
通过举例和反例,帮助学生理解函数的定义。
函数的概念课件(公开课)一、引言在数学领域中,函数是一个基本且重要的概念,它描述了两个量之间的依赖关系。
函数的概念起源于17世纪,经过几百年的发展,已经成为数学、自然科学和工程技术等领域不可或缺的工具。
本课件旨在阐述函数的基本概念、性质和应用,帮助大家深入理解函数的本质,为后续学习打下坚实基础。
二、函数的定义与表示1.函数的定义函数是一种特殊的关系,它将一个集合(称为定义域)中的每个元素对应到另一个集合(称为值域)中唯一的元素。
用数学符号表示为:f:X→Y,其中X表示定义域,Y表示值域。
函数通常用f(x)表示,x为自变量,f(x)为因变量。
2.函数的表示方法(1)解析法:直接给出函数的解析式,如f(x)=x²。
(2)表格法:列出定义域中部分元素的值和对应的函数值,如:x-f(x)-1-12-43-9(3)图象法:绘制函数的图象,展示函数的变化趋势。
三、函数的性质1.基本性质(1)单调性:函数在定义域内的某个区间上,随着自变量的增加(或减少),函数值单调增加(或减少)。
(2)奇偶性:若对于任意的x,都有f(-x)=f(x),则称函数为偶函数;若对于任意的x,都有f(-x)=-f(x),则称函数为奇函数。
(3)周期性:若存在非零常数T,使得对于任意的x,都有f(x+T)=f(x),则称函数具有周期性,T为函数的周期。
2.极值与最值(1)极值:在函数的定义域内,若存在某个点x₀,使得在x₀的某邻域内,f(x₀)为最大值或最小值,则称f(x₀)为函数的极大值或极小值。
(2)最值:在函数的定义域内,若存在某个点x₀,使得对于任意的x,都有f(x₀)≥f(x)(或f(x₀)≤f(x)),则称f(x₀)为函数的最大值(或最小值)。
四、函数的应用1.数学分析函数是数学分析的基础,微积分中的导数、积分等概念都是建立在函数的基础上。
通过对函数的求导、积分等运算,可以研究函数的性质、解决实际问题。
2.应用数学函数在物理学、生物学、经济学等领域的模型建立中具有重要意义。