七年级数学上册第四章基本平面图形
- 格式:doc
- 大小:508.50 KB
- 文档页数:11
北师大版数学七年级上册《第四章基本平面图形》说课稿一. 教材分析北师大版数学七年级上册《第四章基本平面图形》这一章节,主要介绍了多边形的概念、分类及性质。
本章内容是学生继学习三角形、四边形之后,进一步拓展对平面图形的认识。
通过本章的学习,使学生能够掌握多边形的性质,培养学生的空间想象能力、逻辑思维能力和数学表达能力的初步形成。
二. 学情分析面对七年级的学生,他们在之前的学习过程中已经掌握了三角形、四边形的基本概念和性质,具备了一定的数学基础。
但是,对于多边形的理解,还需要进一步的引导和培养。
此外,学生的空间想象能力和逻辑思维能力还有待提高,因此,在教学过程中,需要注重启发引导,激发学生的学习兴趣,培养学生的数学思维。
三. 说教学目标根据新课程标准的要求和学生的实际情况,本节课的教学目标设定如下:1.知识与技能目标:使学生掌握多边形的概念、分类及性质,能够运用所学知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、思考、表达等过程,培养学生的空间想象能力、逻辑思维能力和数学表达能力的初步形成。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队协作能力和创新精神。
四. 说教学重难点本节课的教学重点是多边形的概念、分类及性质的理解和运用。
教学难点是对于多边形性质的推理论证,以及学生空间想象能力的培养。
五. 说教学方法与手段为了实现本节课的教学目标,我将以“引导探究,合作学习”的教学方法为主,结合多媒体教学手段,引导学生观察、操作、思考、表达,激发学生的学习兴趣,培养学生的数学思维。
六. 说教学过程1.导入新课:通过回顾三角形、四边形的基本概念和性质,引出多边形的概念,激发学生的学习兴趣。
2.探究多边形的性质:引导学生通过观察、操作、思考、表达等过程,探索多边形的性质,总结出多边形的基本性质。
3.分类讨论:引导学生对多边形进行分类,了解不同类型多边形的特点,加深对多边形性质的理解。
4.应用拓展:通过一些实际问题,让学生运用所学知识解决问题,提高学生的应用能力。
第四章基本平面图形知识梳理一、知识梳理:1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段,线段有两个端点,可以度量;射线:将线段向一个方向无限延长就形成了射线,射线有一个端点,不可度量;直线:将线段向两个方向无限延长就形成了直线,直线没有端点,不可度量.2.点、直线、射线和线段的表示:一个点可以用一个大写字母表示; A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示;一条射线一般用两个大写字母表示,用端点和射线上另一点来表示(端点字母写在前面);一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示.3.点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点;②点在直线外,或者说直线不经过这个点.4、直线的性质:①经过两个点有且只有一条直线(两点确定一条直线);②过一点的直线有无数条.5、线段的性质:①两点之间的所有连线中,线段最短(两点间线段最短).②两点之间的距离:两点之间线段的长度,叫做这两点之间的距离.③线段的中点到两端点的距离相等。
(线段上点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点.6、角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
7、角的分类:平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角;周角:一条射线绕着它的端点旋转一周,终边与始边重合时,所形成的角叫做周角.8、角的表示:①用一个大写英文字表示一个独立(在一个顶点处只有一个角)的角,如∠B等;②用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等(注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧);③用数字表示单独的角,如∠1,∠2,∠3等;④用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.9、角的度量:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示, 1度记作1°;把1°的角60等分,每一份叫做1分的角,1分记作1’;把1’的角60等分,每一份叫做1秒的角,1秒记作1”.换算: 1°=60’,1’=60”直角三角板(45°,45°,90°,30°,60°,90°)可画出15°,75°,105°,120°,135°,150°,165°等,都是15的倍数。
第四章基本平面图形第一节线段、射线和直线【学习目标】1.使学生在了解直线概念的基础上,理解射线和线段的概念,并能理解它们的区别与联系.2.通过直线、射线、线段概念的教学,培养几何想象能力和观察能力,用运动的观点看待几何图形.3.培养对几何图形的兴趣,提高学习几何的积极性.【学习重难点】重点:直线、射线、线段的概念.难点:对直线的“无限延伸”性的理解.【学习方法】小组合作学习【学习过程】模块一预习反馈一、学习准备1.请同学们阅读教材,并完成随堂练习和习题2.(1)绷紧的琴弦、人行横道线都可以近似地看做。
线段有端点。
(2)将线段向一个方向无限延长就形成了。
射线有端点。
(3)将线段向两个方向无限延长就形成了。
直线端点。
3.线段4点在直线上,即直线点;点在直线外,即直线点。
5.经过一点可以画条直线;经过两点有且只有条直线,即确定一条直线。
二、教材精读6.探究:(1)经过一个已知点A画直线,可以画多少条?解:(2)经过两个已知点A、B画直线,可以画多少条?解:(3解:归纳:经过两点有且(“有”表示“存在性”,“只有”表示“唯一性”)实践练习:如图,已知点A、B、C是直线m上的三点,请回答(1)射线AB与射线AC是同一条射线吗?(2)射线BA与射线BC是同一条射线吗?(3)射线AB与射线BA是同一条射线吗?(4)图中共有几条直线?几条射线?几条线段?分析:线段有两个端点;射线有一个端点,向一方无限延伸;直线没有端点,向两方无限延伸解:三、教材拓展7.已知平面内有A,B,C,D四点,过其中的两点画一条直线,一共能画几条?分析:因题中没有说明A,B,C,D四点是否有三点或四点在同一直线上,所以应分为三种情况讨论解:实践练习:如图,图中有多少条线段?分析:在直线BE上共有3+2+1= (条),而以A点为端点的线段有条,所以图中共有条线段解:模块二合作探究8.如图,如果直线l上一次有3个点A,B,C,那么(1)在直线l上共有多少条射线?多少条线段?(2)在直线l上增加一个点,共增加了多少条射线?多少条线段?(3)若在直线l上增加到n个点,则共有多少条射线?多少条线段?(4)若在直线l上增加了n个点,则共有多少条射线?多少条线段?分析:两条射线为同一射线需要两个条件:①端点相同;②延伸方向相同。
由特殊到一般知,若直线上有n个点,则可以确定1+2+3+…+(n-1)=n(n-1)/2条线段解:(1)以A、B、C为端点的射线各有条,因而共有射线_____条,线段有_____共线段3条。
(2)增加一个点增加_____条射线,增加_____条线段。
(3)由(1)、(2)总结归纳可得:共有_____条射线,线段的总条数是_____。
(4)增加了n个点,即直线上共有(n+3)个点,则有_____条射线,_____条线段。
实践练习:如果直线上有4个点,5个点,图中分别又有多少条射线?多少条线段?解:模块三形成提升1.线段有______个端点,射线有_____个端点,直线_____端点2.在直线L上取三点A、B、C,共可得_______条射线,______条线段.3.(1)可表示为线段(或)或者线段______(2)可表示为射线(3)可表示为直线或或者直线4.图中给出的直线、射线、线段,根据各自的性质,能相交的是( )CA DB5.小明从某地乘车到成都,发现这条火车路线上共有7个站,且任意两站之间的票价都不相同,请你帮他解决下列问题。
(1)有多少种不同的票价?(2)要准备多少种不同的车票?模块四小结评价一、课本知识:1.线段有两个特征:一是直的,二是有______个端点。
射线有三个特征:一是直的,二是有______个端点,三是向______无限延伸。
直线有三个特征:一是直的,二是有______个端点,三是向______无限延伸。
2.经过两点______一条直线(有表示______,只有体现______)二、本课典型:经过任意三点中的两点画直线,由于这三个点的位置不确定,所以需要分类讨论。
第二节比较线段的长短aA BElBAA B C【学习目标】1.理解两点间距离的概念和线段中点的概念及表示方法。
2.学会线段中点的简单应用。
3.借助具体情境,了解“两点间线段最短”这一性质,并学会简单应用。
4.培养学生交流合作的意识,进一步提高观察、分析和抽象的能力。
【学习重难点】重点:线段中点的概念及表示方法。
难点:线段中点的应用 。
【学习方法】小组合作学习。
【学习过程】模块一 预习反馈 一、学习准备1、绷紧的琴弦、人行横道线都可以近似地看做 。
线段有 个端点。
2.(1) 可表示为线段 __ (或) __或者线段______3.请同学们阅读教材第2节《比较线段的长短》,并完成随堂练习和习题 二、教材精读4、线段的性质:两点之间的所有连线中,_____最短。
简单地说:两点之间,_____最短。
5、线段大小的比较方法 (1)观察法;(2)叠合法:将线段AB 和线段CD 放在同一条直线上,并使点A 、C 重合,点B 、D 在同侧,若点B 与点D 重合,则得到线段AB ,可记做 (几何语言)若点B 落在CD 内,则得到线段AB ,可记做: 若点B 落在CD 外,则得到线段AB ,可记做: (3)度量法:用 量出两条线段的长度,再进行比较。
6、线段的中点线段的中点是指在 上且把线段分成 两条线段的点。
线段的中点只有 个。
文字语言:点M 把线段AB 分成_____的两条线段AM 与BM ,点M 叫做线段AB 的中点。
用几何语言表示: ∵点M 是线段AB 的中点 )22(21BM AM AB AB BM AM ====∴或 实践练习:若点A 、B 、C 三点在同一直线上,线段AB=5cm ,BC=4cm ,则A 、C 两点之间的距离是多少? (提示:C 点的具体位置不知道,有可能在AB 之前,有可能在AB 之外) 解:归纳:两点之间的距离:两点之间______________,叫做两点之间的距离。
线段是一个几何图形,而距离是长度,为非负数。
三、教材拓展7、已知线段cm AB 20=,直线AB 上有一点C ,且cm BC 6=,D 是AC 的中点,求CD 的长? 分析:点A,B,C 在同一条直线上,点C 有两种可能:(1)点C 在线段AB 的延长线上;(2)点C 在线段AB 上解:(1)当点C 在线段AB 的延长线上时, (2)当点C 在线段AB 上时, ∵D 是AC 的中点∴=CD _____AC∵cm AB 20=,cm BC 6=, ∴AC=___a ABC AD B CM A DB ∴CD=____实践练习:如图所示:点P 是线段AB 的中点,带你C 、D 把线段AB 三等分。
已知线段CP=2cm ,求线段AB 的长 解:模块二 合作探究如图,C,D 是线段AB 上两点,已知AC:CD:DB=1:2:3,M 、N 分别为AC 、DB 的中点,且cm AB 18=,求线段MN 的长。
分析:遇到比例就设x ,根据3:2:1::=DB CD AC ,可设三条线段的长分别是x 、x 2、x 3,在根据线段的中点的概念,表示出线段MC 、CD 、DN 的长,进而计算出线段MN 的长。
实践练习:如图所示:(1)点C 是线段AB 上的一点,M 、N 分别是线段AC 、CB 的中点。
已知AC=4,CB=6,求MN 的长; (2)点C 是线段AB 上的任意一点,M 、N 分别是线段AC 、CB 的中点。
AB=10,求MN 的长; (3)点C 是线段AB 上的任意一点,M 、N 分别是线段AC 、CB 的中点。
AB=a ,求MN 的长; 解:模块三 形成提升 1、如图,直线上四点A 、B 、C 、D,看图填空:①=AC _____BC +;②-=AD CD _____;③=++BC BD AC _____ 2、在直线AB 上,有cm AB 5=,cm BC 3=,求AC 的长.⑴当C 在线段AB 上时,=AC _______.(2)当C 在线段AB 的延长线上时,=AC _______.3、如图,cm AB 20=,C 是AB 上一点,且cm AC 12=,D 是AC 的中点,E 是BC 的中点,求线段DE 的长.C模块四 小结评价 一、本课知识: 1、我们把两点之前的_____,叫做这两点之前的距离。
2、点M 把线段AB 分成相等的两条线段AM 和_____,点_____叫做线段AB的_____。
3、比较线段长度的方法有三种是_____、_____、_____。
二、本课典型:两点之前线段最短在实际生活中的应用,线段中点有关的计算。
第三节 角【学习目标】1.理解角的概念,掌握角的表示方法2.理解平角、周角的概念,掌握角的常用度量单位:度、分、秒,及他们之间的换算关系,并会进行简单的换算。
【学习重难点】重点:角的概念及表达方法; 难点:正确使用角的表示法。
【学习方法】小组合作学习 【学习过程】模块一 预习反馈 一、学习准备1、将线段向一个方向无限延长就形成了 。
射线有 端点。
2请同学们阅读教材第3节《角》,并完成随堂练习和习题 二、教材精读 3.角的概念(1)角的定义:角是由两条具有__________的射线所组成的图形。
两条射线的________是这个角的顶点。
(2)角的(动态)定义:角也可以由一条射线绕着它的________旋转而成的图形。
(3)一条射线绕着它的_________旋转,当终边和始边成一条_________时,所成的角叫做_________;终边继续旋转,当它又和始边_________时,所成的角叫做_________ 4、角的表示方法:角用符号:“___”表示,读作“角”,通常的表示方法有:(1)用三个大写字母表示,其中表示顶点的字母必须写在__________,在不引起混淆的情况下,也可以只用__________表示角。
如图4-3-1的角可以表示为______________(2__________如图4-3-2中的角分别可表示为_______、_______、_______等。
(3)用一个数字表示角方法(1∠、2∠、3∠ ,)这种方法表示角式要在靠近顶点处加上弧线,并标注________。
实践练习:试用适当的方法表示下列图中的每个角:解: (1) (2)归纳:角的表示方法有三种:(1)用三个______英文字母表示; (2)用______大写英文字母表示;(3)用______或小写______字母表示; 三、教才拓展 5.例 计算:(1) ︒65.1等于多少分?等于多少秒? (2) 0270''等于多少分?等于多少度? (3)247453343547'''+'''︒︒B B AC 图4-3-1 B CA分析:(1)根据061,061''=''=︒进行换算 (2)根据)601(1,)601(1'=''='︒进行换算 (3)角度的加减乘除混合运算,其运算顺序仍是先乘除后加减,计算的方法是度与度、分与分、秒与秒之间分别进行计算,注意运算中的进位、错位、退位规则。