大学物理(湖大版)第3章相对论答案
- 格式:doc
- 大小:312.50 KB
- 文档页数:9
第3章 能量定理和守恒定律3-5一圆锥摆的摆球在水平面上作匀速圆周运动。
已知摆球质量为m ,圆半径为R ,摆球速率为υ,当摆球在轨道上运动一周时,作用在摆球上重力冲量的大小为多少?解:如3-5题图所示,一周内作用在摆球上重力冲量的大小为 3-6用棒打击质量为0.3Kg 、速率为20m/s 的水平飞来的球,球飞到竖直上方10 m 的高度。
求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力。
解:设球的初速度为1υ,球与棒碰撞后球获得竖直向上的速度为2υ,球与棒碰撞后球上升的最大高度为h ,如3-6题图所示,因球飞到竖直上方过程中,只有重力作功,由机械能守恒定律得 由冲量的定义可得棒给予球的冲量为 其冲量大小为 球受到的平均冲力为t F I ⋅=__()N tIF 366__==3-7质量为M 的人,手里拿着一个质量为m 的球,此人用与水平线成θ角的速度0υ向前跳去。
当他达到最高点时,将物体以相对人的速度μ水平向后抛出,求由于物体的抛出,跳的距离增加了多少?(假设人可视为质点) 解:如3-7题图所示,把人与物视为一系统,当人跳跃到最高点处,在向后抛物的过程中,满足动量守恒,故有式中υ为人抛物后相对地面的水平速率,υμ-为抛出物对地面的水平速率,得人的水平速率的增量为而人从最高点到地面的运动时间为所以,人由于向后抛出物体,在水平方向上增加的跳跃后距离为 3-8 一质量为m =2kg 的物体按()m t x 2213+=的规律作直线运动,求当物体由m x 21=运动到m x 62=时,外力做的功。
解:由2213+=t x ,可得 232dx t dt υ== 当物体在m x 21=处时,可得其时间、速度分别为()2113002m s υ-=⨯=⋅ (1)当物体在m x 62=处时,可得其时间、速度分别为()2123262m s υ-=⨯=⋅ (2)则由(1)、(2)式得外力做的功 3-9求把水从面积为250m 的地下室中抽到街道上来所需作的功。
习题三第三章 相对论3-1 惯性系S ′相对惯性系S 以速度u 运动.当它们的坐标原点O 与O '重合时,t =t '=0,发出一光波,此后两惯性系的观测者观测该光波的波阵面形状如何?用直角坐标系写出各自观测的波阵面的方程.解: 由于时间和空间都是均匀的,根据光速不变原理,光讯号为球面波.波阵面方程为:2222)(ct z y x =++ 2222)(t c z y x '='+'+'题3-1图3-2 设图3-4中车厢上观测者测得前后门距离为2l .试用洛仑兹变换计算地面上的观测者测到同一光信号到达前、后门的时间差.解: 设光讯号到达前门为事件1,在车厢)(S '系时空坐标为),(),(11cll t x ='',在车站)(S 系: )1()()(21211c uc l l c u c l x cu t t +=+='+'=γγγ 光信号到达后门为事件2,则在车厢)(S '系坐标为),(),(22cll t x -='',在车站)(S 系: )1()(2222c u c l x cu t t -='+'=γγ 于是 2122clut t γ-=-或者 l x x x t t t t 2,,02121='-'='∆-=∆='∆ )2()(22l c u x c u t t γγ='∆+'∆=∆ 3-3 惯性系S ′相对另一惯性系S 沿x 轴作匀速直线运动,取两坐标原点重合时刻作为计时起点.在S 系中测得两事件的时空坐标分别为1x =6×104m,1t =2×10-4s ,以及2x =12×104m,2t =1×10-4s .已知在S ′系中测得该两事件同时发生.试问:(1)S ′系相对S 系的速度是多少? (2) S '系中测得的两事件的空间间隔是多少? 解: 设)(S '相对S 的速度为v ,(1) )(1211x c vt t -='γ )(2222x cvt t -='γ 由题意 012='-'t t 则)(12212x x c vt t -=- 故 812122105.12⨯-=-=--=cx x t t cv 1s m -⋅(2)由洛仑兹变换 )(),(222111vt x x vt x x -='-='γγ 代入数值, m 102.5412⨯='-'x x 3-4 长度0l =1 m 的米尺静止于S ′系中,与x ′轴的夹角'θ= 30°,S ′系相对S 系沿x 轴运动,在S 系中观测者测得米尺与x 轴夹角为=θ45︒. 试求:(1)S ′系和S 系的相对运动速度.(2)S 系中测得的米尺长度.解: (1)米尺相对S '静止,它在y x '',轴上的投影分别为:m 866.0cos 0='='θL L x ,m 5.0sin 0='='θL L y米尺相对S 沿x 方向运动,设速度为v ,对S 系中的观察者测得米尺在x 方向收缩,而y 方向的长度不变,即y y x x L L cv L L '=-'=,122故 221tan c vL L L L L L xy xy xy -''='==θ把ο45=θ及y x L L '',代入则得 866.05.0122=-cv故 c v 816.0=(2)在S 系中测得米尺长度为m 707.045sin =︒=y L L3-5 一门宽为a ,今有一固有长度0l (0l >a )的水平细杆,在门外贴近门的平面内沿其长度方向匀速运动.若站在门外的观察者认为此杆的两端可同时被拉进此门,则该杆相对于门的运动速率u 至少为多少?解: 门外观测者测得杆长为运动长度,20)(1cu l l -=,当a ≤1时,可认为能被拉进门,则 20)(1cu l a -≤解得杆的运动速率至少为:2)(1l a c u -=题3-6图3-6两个惯性系中的观察者O 和O '以0.6c(c 表示真空中光速)的相对速度相互接近,如果O 测得两者的初始距离是20m ,则O '测得两者经过多少时间相遇? 解: O 测得相遇时间为t ∆cv L t 6.0200==∆ O ' 测得的是固有时t '∆∴ vL tt 201βγ-=∆='∆ s 1089.88-⨯=,6.0==c vβ , 8.01=γ ,或者,O '测得长度收缩,vL t L L L L ='∆=-=-=,8.06.01102020β s 1089.81036.0208.06.08.0880-⨯=⨯⨯⨯=='c L t ∆ 3-7 观测者甲乙分别静止于两个惯性参考系S 和S '中,甲测得在同一地点发生的两事件的时间间隔为 4s ,而乙测得这两个事件的时间间隔为 5s .求: (1) S '相对于S 的运动速度.(2)乙测得这两个事件发生的地点间的距离.解: 甲测得0,s 4==x t ∆∆,乙测得s 5=t ∆,坐标差为12x x x '-'='∆′ (1)∴ t cv t x c vt t ∆-∆=∆+∆='∆22)(11)(λγ54122='∆∆=-t t cv 解出 c c t t c v 53)54(1)(122=-='∆∆-= 8108.1⨯= 1s m -⋅(2) ()0,45,=∆=∆'∆=∆-∆='∆x t t t v x x γγ ∴ m 1093453458⨯-=-=⨯⨯-=-='c c t v x ∆γ∆ 负号表示012<'-'x x . 3-8 一宇航员要到离地球为5光年的星球去旅行.如果宇航员希望把这路程缩短为3光年,则他所乘的火箭相对于地球的速度是多少?解: 2220153,1513βββ-=-=-=='则l l ∴ c c v 542591=-= 3-9 论证以下结论:在某个惯性系中有两个事件同时发生在不同地点,在有相对运动的其他惯性系中,这两个事件一定不同时.证: 设在S 系B A 、事件在b a ,处同时发生,则B A a b t t t x x x -=∆-=∆,,在S '系中测得)(2x cvt t t t A B ∆-∆='-'='∆γ 0,0≠∆=∆x t ,∴0≠'∆t 即不同时发生. 3-10 试证明:(1)如果两个事件在某惯性系中是同一地点发生的,则对一切惯性系来说这两个事件的时间间隔,只有在此惯性系中最短.(2)如果两个事件在某惯性系中是同时发生的,则对一切惯性关系来说这两个事件的空间间隔,只有在此惯性系中最短.解: (1)如果在S '系中,两事件B A 、在同一地点发生,则0='∆x ,在S 系中,t t t '∆≥'∆=∆γ,仅当0=v 时,等式成立,∴t '∆最短.(2)若在S '系中同时发生,即0='∆t ,则在S 系中,x x x '∆≥'∆=∆γ,仅当0=v 时等式成立,∴S '系中x '∆最短.3-11 根据天文观测和推算,宇宙正在膨胀,太空中的天体都远离我们而去.假定地球上观察到一颗脉冲星(发出周期无线电波的星)的脉冲周期为 0.50s ,且这颗星正沿观察方向以速度0.8c 离我们而去.问这颗星的固有周期为多少?解: 以脉冲星为S '系,0='∆x ,固有周期0τ='∆t .地球为S 系,则有运动时t t '∆=∆γ1,这里1t ∆不是地球上某点观测到的周期,而是以地球为参考系的两异地钟读数之差.还要考虑因飞行远离信号的传递时间,ct v 1∆ ∴ t c vt c t v t t ∆+'∆=∆+∆=∆γγ11′ )1(cvt +'=∆γ6.01)8.0(112=-=c c γ 则 γλτ)8.01(5.0)1(0cc cv tt +++∆='∆=s 1666.08.13.06.01)8.01(5.0==+= 3-12 6000m 的高空大气层中产生了一个π介子以速度v =0.998c 飞向地球.假定该π介子在其自身静止系中的寿命等于其平均寿命 2×10-6s .试分别从下面两个角度,即地球上的观测者和π介子静止系中观测者来判断π介子能否到达地球.解: π介子在其自身静止系中的寿命s 10260-⨯=t ∆是固有(本征)时间,对地球观测者,由于时间膨胀效应,其寿命延长了.衰变前经历的时间为s 1016.315220-⨯=-=cv t t ∆∆这段时间飞行距离为m 9470==t v d ∆ 因m 6000>d ,故该π介子能到达地球.或在π介子静止系中,π介子是静止的.地球则以速度v 接近介子,在0t ∆时间内,地球接近的距离为m 5990=='t v d ∆m 60000=d 经洛仑兹收缩后的值为:m 37912200=-='cv d dd d '>',故π介子能到达地球. 3-13 设物体相对S ′系沿x '轴正向以0.8c 运动,如果S ′系相对S 系沿x 轴正向的速度也是0.8c ,问物体相对S 系的速度是多少?解: 根据速度合成定理,c u 8.0=,c v x 8.0='∴ c c c c cc cv u u v v x xx 98.08.08.018.08.0122=⨯++='++'= 3-14 飞船A 以0.8c 的速度相对地球向正东飞行,飞船B 以0.6c 的速度相对地球向正西方向飞行.当两飞船即将相遇时A 飞船在自己的天窗处相隔2s 发射两颗信号弹.在B 飞船的观测者测得两颗信号弹相隔的时间间隔为多少?解: 取B 为S 系,地球为S '系,自西向东为x (x ')轴正向,则A 对S '系的速度c v x 8.0=',S '系对S 系的速度为c u 6.0=,则A 对S 系(B 船)的速度为c c c cv u u v v xx x 946.048.016.08.012=++='++'=发射弹是从A 的同一点发出,其时间间隔为固有时s 2='t ∆,题3-14图∴B 中测得的时间间隔为:s 17.6946.0121222=-=-'=cv t t x ∆∆3-15 (1)火箭A 和B 分别以0.8c 和0.6c 的速度相对地球向+x 和-x 方向飞行.试求由火箭B 测得A 的速度.(2)若火箭A 相对地球以0.8c 的速度向+y 方向运动,火箭B 的速度不变,求A 相对B 的速度.解: (1)如图a ,取地球为S 系,B 为S '系,则S '相对S 的速度c u 6.0=,火箭A 相对S 的速度c v x 8.0=,则A 相对S '(B )的速度为:c c c c c c v c u u v v x x x 946.0)8.0)(6.0(1)6.0(8.0122=----=--=' 或者取A 为S '系,则c u 8.0=,B 相对S 系的速度c v x 6.0-=,于是B 相对A 的速度为:c c c c cc v c u u v v x x x 946.0)6.0)(8.0(18.06.0122-=----=--=' (2)如图b ,取地球为S 系,火箭B 为S '系,S '系相对S 系沿x -方向运动,速度c u 6.0-=,A 对S 系的速度为,0=x v ,c v y 8.0=,由洛仑兹变换式A 相对B 的速度为:c c v cu u v v xx x 6.001)6.0(012=---=--=' c c v cuv cu v xyy 64.0)8.0(6.01112222=-=--=' ∴A 相对B 的速度大小为c v v v y x 88.022='+'='速度与x '轴的夹角θ'为07.1tan =''='xy v v θο8.46='θ题3-15图3-16 静止在S 系中的观测者测得一光子沿与x 轴成︒60角的方向飞行.另一观测者静止于S ′系,S ′系的x '轴与x 轴一致,并以0.6c 的速度沿x 方向运动.试问S ′系中的观测者观测到的光子运动方向如何?解: S 系中光子运动速度的分量为c c v x 500.060cos ο==c c v y 866.060sin ο==由速度变换公式,光子在S '系中的速度分量为c c c c cc v c u u v v x x x 143.05.06.016.05.0122-=⨯--=--=' c c c c c v c u v cu v x yy 990.05.06.01866.06.011122222=⨯-⨯-=--='光子运动方向与x '轴的夹角θ'满足692.0tan -=''='xy v v θθ'在第二象限为ο2.98='θ在S '系中,光子的运动速度为c v v v y x ='+'='22正是光速不变.3-17 (1)如果将电子由静止加速到速率为0.1c ,须对它作多少功?(2)如果将电子由速率为0.8c 加速到0.9c ,又须对它作多少功?解: (1)对电子作的功,等于电子动能的增量,得)111()1(222020202--=-=-==c v c m c m c m mc E E k k γ∆)11.011()103(101.922831--⨯⨯⨯=-161012.4-⨯=J=eV 1057.23⨯(2) )()(2021202212c m c m c m c m E E E k k k---=-='∆ )1111(221222202122cv cvc m c m c m ---=-=))8.0119.011(103101.92216231---⨯⨯⨯=-J 1014.514-⨯=eV 1021.35⨯=3-18 μ子静止质量是电子静止质量的 207倍,静止时的平均寿命0τ=2×10-6s ,若它在实验室参考系中的平均寿命τ= 7×10-6s ,试问其质量是电子静止质量的多少倍?解: 设μ子静止质量为0m ,相对实验室参考系的速度为c v β=,相应质量为m ,电子静止质量为e m 0,因2711,1022==--=ττββττ即由质速关系,在实验室参考系中质量为:202012071ββ-=-=e m m m故72527207120720=⨯=-=βe m m 3-19 一物体的速度使其质量增加了10%,试问此物体在运动方向上缩短了百分之几? 解: 设静止质量为0m ,运动质量为m , 由题设10.00=-m m m 201β-=m m由此二式得10.01112=--β∴ 10.1112=-β 在运动方向上的长度和静长分别为l 和0l ,则相对收缩量为:%1.9091.010.111112000==-=--=-=β∆l l l l l3-20 一电子在电场中从静止开始加速,试问它应通过多大的电势差才能使其质量增加0.4%?此时电子速度是多少?已知电子的静止质量为9.1×10-31kg . 解: 由质能关系1004.0200=∆=∆c m E m m∴ 100/)103(101.94.01004.0283120⨯⨯⨯⨯==∆-c m E J 1028.316-⨯==eV 106.11028.31916--⨯⨯= eV 100.23⨯= 所需电势差为3100.2⨯伏特 由质速公式有:004.111004.01111100002=+=∆+=∆+==-m m mm m m m β ∴ 32221095.7)004.11(1)(-⨯=-==c v β故电子速度为 -17s m 107.2⋅⨯==c v β3-21 一正负电子对撞机可以把电子加速到动能K E =2.8×109eV .这种电子速率比光速差多少? 这样的一个电子动量是多大?(与电子静止质量相应的能量为0E =0.511×106eV )解: 2022201c m cv c m E k --=所以 20202022/111cm E c m c m E c v k k +=+=- 由上式,2962622020)108.210511.0/()1051.0(1)(1⨯+⨯⨯-=+-=c E c m c m c v k8109979245.2⨯=-1s m ⋅810997924580.2⨯=-v c -1s m ⋅8109979245.28=⨯- -1s m ⋅由动量能量关系420222c m c p E +=可得cc m E E ccm c m E ccm E p k k k 20242022042022)(+=-+=-=11882138269182s m kg 1049.1103/]106.1)10511.0108.22108.2[(---⋅⋅⨯=⨯⨯⨯⨯⨯⨯⨯+⨯=3-22 氢原子的同位素氘(21H)和氚(31H)在高温条件下发生聚变反应,产生氦(42He)原子核和一个中子(10n),并释放出大量能量,其反应方程为21H + 31H →42He + 10n 已知氘核的静止质量为2.0135原子质量单位(1原子质量单位=1.600×10-27kg),氚核和氦核及中子的质量分别为3.0155,4.0015,1.00865原子质量单位.求上述聚变反应释放出来的能量. 解: 反应前总质量为0290.50155.30135.2=+amu 反应后总质量为0102.50087.10015.4=+amu 质量亏损 0188.00102.50290.5=-=∆m amukg 1012.329-⨯=由质能关系得 ()282921031012.3⨯⨯⨯==-mc E ∆∆J 1081.221-⨯=71075.1⨯=eV3-23 一静止质量为0m 的粒子,裂变成两个粒子,速度分别为0.6c 和0.8c .求裂变过程的静质量亏损和释放出的动能.解: 孤立系统在裂变过程中释放出动能,引起静能减少,相应的静止质量减少,即静质量亏损.设裂变产生两个粒子的静质量分别为10m 和20m ,其相应的速度c v 6.01=,c v 8.02= 由于孤立系统中所发生的任何过程都同时遵守动量守恒定律和能(质)量守恒定律,所以有0112222201221102211=-+-=+v cv m v c v m v m v m022220221102111m cv m cv m m m =-+-=+注意1m 和2m 必沿相反方向运动,动量守恒的矢量方程可以简化为一维标量方程,再以6.01=v c,8.02=v c 代入,将上二方程化为:20106886m m =,020106.08.0m m m =+ 上二式联立求解可得:010459.0m m =, 020257.0m m =故静质量亏损020100284.0)(m m m m m =+-=∆由静质量亏损引起静能减少,即转化为动能,故放出的动能为 202284.0c m mc E k =∆=∆3-24 有A ,B 两个静止质量都是0m 的粒子,分别以1v =v ,2v =-v 的速度相向运动,在发生完全非弹性碰撞后合并为一个粒子.求碰撞后粒子的速度和静止质量.解: 在实验室参考系中,设碰撞前两粒子的质量分别1m 和2m ,碰撞后粒子的质量为M 、速度为V ,于是,根据动量守恒和质量守恒定律可得:MV v m v m =+2211 ① M m m =+21 ②由于 0)(1)()(120202211=---+-=+cv v m cv v m v m v m代入①式得 0=V221)(120cv m m m M -+=,即为碰撞后静止质量.3-25 试估计地球、太阳的史瓦西半径.解: 史瓦西半径 22cGMr s =地球: kg 10624⨯≈M则: m 109.8)103(106107.623282411--⨯=⨯⨯⨯⨯⨯=s r 太阳: kg 10230⨯≈M则: 3283011103)103(102107.62⨯=⨯⨯⨯⨯⨯=-s r m 3-26 典型中子星的质量与太阳质量M ⊙=2×1030kg 同数量级,半径约为10km .若进一步坍缩为黑洞,其史瓦西半径为多少?一个质子那么大小的微黑洞(10-15cm),质量是什么数量?解: (1)史瓦西半径与太阳的相同,3103⨯=s rm(2) 1510-=s r cm 1710-=m由 22c GMr s =得 91128172107.6107.62)103(102⨯=⨯⨯⨯⨯==--G c r M s kg 3-27 简述广义相对论的基本原理和实验验证.解: 广义相对论的基本原理是等效原理和广义相对性原理.等效原理又分为弱等效原理和强等效原理.弱等效原理是:在局部时空中,不可能通过力学实验区分引力和惯性力,引力和惯性力等效.强等效原理是:在局部时空中,任何物理实验 都不能区分引力和惯性力,引力和惯性力等效.广义相对性原理是:所有参考系都是平权的,物理定律的表述相同. 广义相对论的实验验证有:光线的引力偏转,引力红移,水星近日点进动,雷达回波延迟等.第四章 静电场和稳恒电场习题四4-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解: 如题4-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题4-1图 题4-2图4-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题4-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题4-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 4-3 根据点电荷场强公式204rq E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q Eε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.4-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024d q πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强SqE 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为S qE 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力.4-5 一电偶极子的电矩为l q p =,场点到偶极子中心O 点的距离为r ,矢量r 与l的夹角为θ,(见题4-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题4-5所示,将p分解为与r 平行的分量θsin p 和垂直于r的分量θsin p . ∵ l r >>∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin rp E εθ=题4-5图 题4-6图4-6 长l =15.0cm 的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m -1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题4-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a xE P -=λε222)(d π4d x a xE E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)同理 2220d d π41d +=x xE Q λε 方向如题4-6图所示 由于对称性⎰=lQxE 0d ,即Q E只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Q y Q E E 1C N -⋅,方向沿y 轴正向4-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如4-7图在圆上取ϕRd dl =题4-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d RR E εϕλ=方向沿半径向外 则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分RR E x 000π2d sin π4ελϕϕελπ==⎰0d cos π400=-=⎰ϕϕελπRE y∴ RE E x 0π2ελ==,方向沿x 轴正向.4-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如4-8图示,正方形一条边上电荷4q在P 点产生物强P E d 方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P ++=ελP Ed 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE+++=⊥ελ题4-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ ∴ 2)4(π422220l r l r qrE P ++=ε 方向沿4-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题4-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xRarctan =α) 解: (1)由高斯定理0d εqS E s⎰=⋅立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εqe =Φ. (2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εq e =Φ 对于边长a 的正方形,如果它不包含q 所在的顶点,则024εqe =Φ, 如果它包含q 所在顶点则0=Φe .如题4-9(a)图所示.题4-9(3)图题4-9(a)图 题4-9(b)图 题4-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq=[221xR x +-]*关于球冠面积的计算:见题4-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r4-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅q S E s,02π4ε∑=q rE当5=r cm 时,0=∑q ,0=E8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm 时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=rr r E ερ内外 1C N -⋅ 沿半径向外. 4-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E s取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰对(1) 1R r <0,0==∑E q(2) 21R r R << λl q =∑∴ rE 0π2ελ=沿径向向外(3) 2R r >=∑q∴ 0=E题4-12图4-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题4-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ, 两面间, n E)(21210σσε-=1σ面外, n E)(21210σσε+-= 2σ面外, n E)(21210σσε+=n:垂直于两平面由1σ面指为2σ面.4-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题4-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的.解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题4-13图(a). (1) ρ+球在O 点产生电场010=E,ρ- 球在O 点产生电场'dπ4π3430320r E ερ=∴ O 点电场d33030r E ερ= ; (2) ρ+在O '产生电场'd π4d 3430301E ερπ='ρ-球在O '产生电场002='E∴ O ' 点电场 003ερ='E '题4-13图(a) 题4-13图(b)(3)设空腔任一点P 相对O '的位矢为r ',相对O 点位矢为r(如题4-13(b)图)则 03ερrE PO =,3ερr E O P '-=' , ∴ 0003'3)(3ερερερdOO r r E E E O P PO P=='-=+=' ∴腔内场强是均匀的.4-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩. 解: ∵ 电偶极子p在外场E中受力矩E p M⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅4-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r r q q r r q q r F A εε )11(21r r -61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题4-16图4-16 如题4-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功.解: 如题4-16图示0π41ε=O U 0)(=-Rq R q 0π41ε=O U )3(R q R q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-=4-17 如题4-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题4-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR0π4ελ=[)2sin(π-2sin π-]R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===AB200012ln π4π4d π4d R R x x x x U ελελελ 同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U ∴ 0032142ln π2ελελ+=++=U U U U O 4-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C) 解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e 0π2ελ== ∴ rv m r e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 4-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压. 解: 平行板电容器内部近似为均匀电场∴ 4105.1d ⨯==E U V4-20 根据场强E 与电势U 的关系U E -∇=,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题4-20图).解: (1)点电荷 rqU 0π4ε=题 4-20 图∴ 0200π4r rq r r U E ε=∂∂-= 0r 为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E2/3220π4+=∂∂-=ε(3)偶极子l q p=在l r >>处的一点电势200π4cos ])cos 21(1)cos 2(1[π4rql llr q U εθθθε=+--=∴ 30π2cos r p r U E r εθ=∂∂-= 30π4sin 1rp U r E εθθθ=∂∂-= 4-21 证明:对于两个无限大的平行平面带电导体板(题4-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题4-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题4-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσ∴ +2σ03=σ说明相向两面上电荷面密度大小相等、符号相反;(2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同.4-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题4-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题4-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题4-22图(1)∵ AB AC U U =,即 ∴ AB AB AC AC E E d d = ∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A=得 ,32S q A =σ Sq A 321=σ 而 7110232-⨯-=-=-=A C q S q σC C10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC AC AC A E U εσV 4-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势; *(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量. 解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题4-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qr r q r E U εε (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=4-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题4-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U4-24图由电势叠加原理有:=O U 03π4π4'00=+Rq R q εε得 -='q 3q 4-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力; (2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4rq F ε=(1)小球3接触小球1后,小球3和小球1均带电2q q =', 小球3再与小球2接触后,小球2与小球3均带电q q 43=''∴ 此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为32q. ∴ 小球1、2间的作用力00294π432322F r q q F ==ε *4-26 如题4-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题4-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A 解得 Sq261==σσS q d U2032-=-=εσσ Sq dU2054+=-=εσσ 所以CB 间电场 Sqd U E 00422εεσ+==)2d (212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C ≠,若C 片不带电,显然2U U C = 4-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强;(2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D Sd(1)介质内)(21R r R <<场强303π4,π4r rQ E r r Q D r εε ==内;介质外)(2R r <场强303π4,π4r r Q E r Qr D ε ==外(2)介质外)(2R r >电势rQE U 0rπ4r d ε=⋅=⎰∞外介质内)(21R r R <<电势2020π4)11(π4R QR r qr εεε+-=)11(π420R r Q r r -+=εεε(3)金属球的电势r d r d 221 ⋅+⋅=⎰⎰∞R R R E E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdrr Q εεε)11(π4210R R Q r r -+=εεε4-28 如题4-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题4-28图所示,充满电介质部分场强为2E ,真空部分场强为1E,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D得11σ=D ,22σ=D而 101E D ε=,202E D r εε=d21U E E == ∴r D D εσσ==1212 rd r d ⋅+⋅=⎰⎰∞∞rrE E U 外内题4-28图 题4-29图4-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S D S π2d )(=⋅⎰当)(21R r R <<时,Q q =∑∴ rlQD π2=(1)电场能量密度 22222π82l r Q D w εε==薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量⎰⎰===211222ln π4π4d d R R VR R l Q rl r Q W W εε (3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *4-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题4-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度. 解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41rq q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题4-30图 题4-31图4-31 如题4-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q = ∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 4-32 1C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V 的电压,是否会击穿? 解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF(2)串联后电压比231221==C C U U ,而100021=+U U ∴ 6001=U V ,4002=U V 即电容1C 电压超过耐压值会击穿,然后2C 也击穿.4-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求: (1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题4-33图所示,设联接后两电容器带电分别为1q ,2q题4-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112*********U U U C U C q qU C U C q q q q解得 (1) =1q U C C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=4-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题4-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε= 3R r >时 302π4rrQ E ε=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J。
狭义相对论一、根本要求1.理解爱因斯坦狭义相对论的两个根本假没。
2.理解洛仑兹坐标变换。
了解狭义相对论中同时性的相对性,以及长度收缩和时问膨胀的概念。
了解牛顿力学中的时空观和狭义相对论中的时空观以及二者的差异。
3.理解狭义相对论中质量和速度的关系、质量和能量的关系,并能用以分析、计算有关的简单问题。
二、内容提要1.经典力学的绝对时空观伽里略相对性原理 一切彼此相对作匀速直线运动的诸惯性系中的力学规律都是一样的。
即力学规律的数学形式都是一样的。
伽里略变换设想两个作相对匀速运动的惯性系〔参照系〕,各以直角坐标系),,,(z y x O K 和),,,(/////z y x O K 表示,两者的坐标轴分别相互平行,而且x 轴和/x 轴重合在一起。
/K 坐标系相对于K 坐标系沿x 轴方向以速度i u u=运动。
设想在/K 坐标系和K 坐标系,当原点重合时,两个坐标系内的时钟校准为零,即0/==x x 时,0/==t t 。
同一点P 在/K 坐标系和K 坐标系中的坐标),,,(////t z y x 和),,,(t z y x 有如下的关系:⎪⎪⎩⎪⎪⎨⎧==-==z z y y utx x t t //// 或 ⎪⎪⎩⎪⎪⎨⎧==+==////z z y y ut x x t t这就是伽利略坐标变换公式。
它完全表达了绝对时空观,是绝对时空观的数学表述。
经典力学的绝对时空观 经典力学的时空观认为,时间和空间是相互独立的,对时间间隔和空间间隔的测量不会因为参考系的运动而改变。
根据上述位置变换关系及速度的定义,可导出质点运动速度在二惯性系之间的变换关系u v v -=/ 〔u v v x x -=/、y y v v =/、z z v v =/〕 加速度变换关系a a =/ 〔x x a a =/、y ya a =/、z z a a =/〕 因此,在诸惯性系中,牛顿第二定律可表示为a m F =,///a m F =牛顿第二定律相对于伽里略变换是不变的。
第一章运动的描述1-1 ||与有无不同?和有无不同? 和有无不同?其不同在哪里?试举例说明.解:(1)是位移的模,是位矢的模的增量,即,;(2)是速度的模,即.只是速度在径向上的分量.∵有(式中叫做单位矢),则式中就是速度径向上的分量,∴不同如题1-1图所示.题1-1图(3)表示加速度的模,即,是加速度在切向上的分量.∵有表轨道节线方向单位矢),所以式中就是加速度的切向分量.(的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为=(),=(),在计算质点的速度和加速度时,有人先求出r=,然后根据 =,及=而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即=及=你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将误作速度与加速度的模。
在1-1题中已说明不是速度的模,而只是速度在径向上的分量,同样,也不是加速度的模,它只是加速度在径向分量中的一部分。
或者概括性地说,前一种方法只考虑了位矢在径向(即量值)方面随时间的变化率,而没有考虑位矢及速度的方向随间的变化率对速度、加速度的贡献。
1-3 一质点在平面上运动,运动方程为=3+5, =2+3-4.式中以 s计,,以m计.(1)以时间为变量,写出质点位置矢量的表示式;(2)求出=1 s 时刻和=2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算=0 s时刻到=4s时刻内的平均速度;(4)求出质点速度矢量表示式,计算=4 s 时质点的速度;(5)计算=0s 到=4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算=4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式).解:(1)(2)将,代入上式即有(3)∵∴(4)则(5)∵(6)这说明该点只有方向的加速度,且为恒量。
第三章 质点系统的运动规律思考题3-19 在地球表面附近将物体以足够速度发射出去,物体可能以稳定轨道环绕地球运行,这就是所谓的“人造地球卫星”。
试估算物体能够环绕地球所需的最小发射速度(第一宇宙速度)。
分析:将地球与物体看成一个封闭系统,系统不受外力,机械能守恒。
答:物体被抛出后以稳定的轨道环绕地球运动,那么物体所受到的重力提供物体环绕地球运动的向心力:2v mg m R =. 此时,系统的机械能为:212mgR mv +初始时刻(物体被发射时)系统的机械能为:2012mgR mv + (R 为地球半径)所以,07.9/v v m s =≈ (第一宇宙速度)3-20 无风天气放烟花时,烟花质心的运动轨道如何?若将全部烟花微粒看作一组初速度相同,抛射监不同的斜抛运动,试证明在任何时刻所有烟花微粒都分布在同一球面上。
分析:这是一个质点组的问题。
将所有的烟花颗粒看成一个质点组系统,在无风天气,这个质点组系统爆炸之后只受到重力的作用,没有其他外力作用。
本题采用质心系分析起来比较方便。
答:无风天气放烟花,说明烟花爆炸后除重力以外,不再受其它外力的作用。
那么烟花爆炸时,有一个爆炸力,使烟花产生一个向斜上方的运动速度,其后只受重力的作用,所以烟花质心的运动轨道为一抛物线,烟花质心作的是斜抛运动。
**此处应为初速率相同。
我们选取烟花爆炸点作为坐标原点,建立直角坐标系。
假设初速率为v 0,它与水平面(XOY)的夹角为α,与XOZ 平面的夹角为β。
当抛射角不同时,角度α与β不同。
在直角坐标系中的初始速度分量分别为:αβαβαsin sin cos cos cos 000000v v v v v v z y x === 各个烟花微粒在水平方向(x 和y 方向)不受力,作匀速直线运动,在竖直方向受重力,作竖直上(或下)抛运动(即匀减速直线运动)。
烟花爆炸t 时间后,位移分别为:2020000021sin 21sin cos cos cos gt t v gt t v z t v t v y t v t v x z y x -=-=====αβαβα202222)()21( x t v gt z y =+++∴轨迹方程:所以,在任何时刻,烟花微粒全部分布在一个以)21- 0, ,0(2gt 为中心,半径为t v 0的球面上。
第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。
(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C Jt JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。
3-2 质量为M ,半径为R 的均匀圆柱体放在粗糙的斜面上,斜面倾角为α ,圆柱体的外面绕有轻绳,绳子跨过一个很轻的滑轮,且圆柱体和滑轮间的绳子与斜面平行,如本题图所示,求被悬挂物体的加速度及绳中张力解:由牛顿第二定律和转动定律得ma T mg =-ααJ R Mg TR =-.sin 2由平行轴定理 223MR J =联立解得 g m M M m a 83sin 48+-=αmg mM MT 83)sin 43(++=α3-3 一平板质量M 1,受水平力F 的作用,沿水平面运动,如本题图所示,板与平面间的摩擦系数为μ,在板上放一质量为M 2的实心圆柱体,此圆柱体在板上只滚动而不滑动,求板的加速度。
解:设平板的加速度为a 。
该平板水平方向受到拉力F 、平面施加的摩擦力1f 和圆柱体施加的摩擦力2f ,根据牛顿定律有,a M f f F 121=--。
m g设圆柱体的质心加速度为C a ,则C a M f 22=遵守转动定理,ββ22221R M J R f ==又因为圆柱体无滑滚动 βR a a C += 且 g M M f )(211+=μ解以上各方程得 212131)(M M gM M F a ++-=μ3-4 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。
第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。
3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。
3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。
由于作匀速圆周运动,因此合外力不为零。
答案选C。
3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。
由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。
3章79页]3-4 质量为m 的小球与桌面相碰撞,碰撞前、后小球的速率都是v ,入射方向和出射方向与桌面法线的夹角都是α,如图3-3所示。
若小球与桌面作用的时间为δt ,求小球对桌面的平均冲力。
解 设桌面对小球的平均冲力为f ,并建立如图所示的坐标系,根据动量定理,对于小球可列出,.由第一个方程式可以求得,由第二个方程式可以求得.根据牛顿第三定律,小球对桌面的平均冲力为,负号表示小球对桌面的平均冲力沿y 轴的负方向。
.3-7 求一个半径为r 的半圆形均匀薄板的质心。
解 将坐标原点取在半圆形薄板的圆心上,并建立如图3-5所示的坐标系。
在这种情况下,质心c 必定处于y 轴上,即,.质量元是取在y 处的长条,如图所示。
长条的宽度为d y ,长度为2x 。
根据圆方程,故有.如果薄板的质量密度为σ,则有图3-3 图3-5.令, 则,对上式作变量变换,并积分,得...3-10 如图3-9所示,一个质量为1.240 kg 的木块与一个处于平衡位置的轻弹簧的一端相接触,它们静止地处于光滑的水平桌面上。
一个质量为10.0 g 的子弹沿水平方向飞行并射进木块,受到子弹撞击的木块将弹簧压缩了2.0 cm 。
如果轻弹簧的劲度系数为2000 n ⋅m -1 ,求子弹撞击木块的速率。
解 设木块的质量为m ;子弹的质量为m ,速度为v ;碰撞后的共同速度为v 。
此类问题一般分两步处理:第一步是子弹与木块作完全非弹性碰撞,第二步是子弹在木块内以共同的速度压缩弹簧。
第一步遵从动量守恒,故有. (1)第二步是动能与弹力势能之间的转换,遵从机械能守恒,于是有. (2)有式(2)解得.将v 值代入式(1),就可求得子弹撞击木块的速率,为.3-11 质量为5.0 g 的子弹以500 m ⋅s -1 的速率沿水平方向射入静止放置在水平桌面上的质量为1245 g 的木块内。
木块受冲击后沿桌面滑动了510 cm 。
求木块与桌面之间的摩擦系数。
大学物理第三章-动量守恒定律和能量守恒定律-习题及答案第三章动量守恒定律和能量守恒定律3-1 力)SI (12i F t =作用在质量kg 2=m 的物体上,使物体由原点从静止开始运动,则它在3秒末的动量应为:(A )m/s kg 54?-i (B )m/s kg 54?i(C )m/s kg 27?-i (D )m/s kg 27?i [B] 解:以该物体为研究对象,由质点动量定理=?==-=?30300354d 12d i i F p p p t t t又00=p 故()-13s m kg 54??=i p3-2 一个质点同时在几个力作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953kj i F +--=,则此力在该位移过程中所作的功为(A )67J (B )91J(C )17J (D )-67J [A] 解:()()k j i k j i r F 654953+-?+--=??=A(J) 675425-12=++=3-3 对质点组有以下几种说法:①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中:(A )只有①是正确的(B )①、③是正确的(C )①、②是正确的(D )②、③是正确的 [B] 解:由于质点组内力冲量的矢量和为零,所以质点组总动量的改变与内力无关。
由于质点组内力功的代数和不一定为零,由动能定理K E A A ?=+内外,质点组总动能的改变可能与内力相关。
,由功能原理E A A ?=+非保内外,质点系机械能的改变与保守内力无关。
3-4 质点系的内力可以改变(A )系统的总质量(B )系统的总动量(C )系统的总动能(D )系统的总角动量 [C] 解:由质点系动量定理、角动量定理和动能定理k t t t t E A A t t ?=+?=??=??内外外外2121d d LM p F可知质点系内力只能改变系统总动能而不影响其总动量和总角动量。
1-4 在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如题1-4图所示.当人以0v (m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.图1-4解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l ld d 2d d 2= 题1-4图根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v t l v d d ,d d 0-==-=船绳 即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度1-6 已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m ,v=0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d +==分离变量,得 t t v d )34(d +=积分,得 12234c t t v ++= 由题知,0=t ,00=v ,∴01=c故 2234t t v += 又因为 2234d d t t t x v +==分离变量, t t t x d )234(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c故 521232++=t t x 所以s 10=t 时m70551021102s m 190102310432101210=+⨯+⨯=⋅=⨯+⨯=-x v1-10 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成幔 60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .(提示:利用曲率半径与法向加速度之间的关系)解:设小球所作抛物线轨道如题1-10图所示.题1-10图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-13 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为何?在艇上看船的速度又为何?解:(1)大船看小艇,则有1221v v v ρϖϖ-=,依题意作速度矢量图如题1-13图(a)题1-13图由图可知 1222121h km 50-⋅=+=v v v方向北偏西 ︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v ρϖϖ-=,依题意作出速度矢量图如题1-13图(b),同上法,得5012=v 1h km -⋅2-2 一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道.解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v ϖ方向为X 轴,平行斜面与X 轴垂直方向为Y 轴.如图2-2.题2-2图X 方向: 0=x F t v x 0= ①Y 方向: y y ma mg F ==αsin ②0=t 时 0=y 0=y v2sin 21t g y α=由①、②式消去t ,得220sin 21x g v y ⋅=α 2-4 质点在流体中作直线运动,受与速度成正比的阻力kv (k 为常数)作用,t =0时质点的速度为0v ,证明(1) t 时刻的速度为v =t mk ev )(0-;(2) 由0到t 的时间内经过的距离为x =(k mv 0)[1-t m ke )(-];(3)停止运动前经过的距离为)(0kmv ;(4)证明当k m t =时速度减至0v 的e1,式中m 为质点的质量. 答: (1)∵ tvm kv a d d =-=分离变量,得mtk v v d d -=即 ⎰⎰-=vv t mt k v v00d d m kte v v -=ln ln 0∴ tm k ev v -=0(2) ⎰⎰---===tttm k m ke kmv t ev t v x 000)1(d d (3)质点停止运动时速度为零,即t →∞,故有 ⎰∞-=='00d kmv t ev x tm k(4)当t=km时,其速度为 ev e v ev v km m k 0100===-⋅- 即速度减至0v 的e1. 2-10 一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=t bt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 2-13 以铁锤将一铁钉击入木板,设木板对铁钉的阻力与铁钉进入木板内的深度成正比,在铁锤击第一次时,能将小钉击入木板内1 cm ,问击第二次时能击入多深,假定铁锤两次打击铁钉时的速度相同.解: 以木板上界面为坐标原点,向内为y 坐标正向,如题2-13图,则铁钉所受阻力为题2-13图ky f -=第一锤外力的功为1A⎰⎰⎰==-='=ssky ky y f y f A 112d d d ① 式中f '是铁锤作用于钉上的力,f 是木板作用于钉上的力,在0d →t 时,f 'f -=.设第二锤外力的功为2A ,则同理,有⎰-==21222221d y kky y ky A ② 由题意,有2)21(212kmv A A =∆== ③即222122k k ky =- 所以, 22=y于是钉子第二次能进入的深度为cm 414.01212=-=-=∆y y y2-15 一根劲度系数为1k 的轻弹簧A 的下端,挂一根劲度系数为2k 的轻弹簧B ,B 的下端 一重物C ,C 的质量为M ,如题2-15图.求这一系统静止时两弹簧的伸长量之比和弹性势能之比.解: 弹簧B A 、及重物C 受力如题2-15图所示平衡时,有题2-15图Mg F F B A ==又 11x k F A ∆=22x k F B ∆=所以静止时两弹簧伸长量之比为1221k k x x =∆∆ 弹性势能之比为12222211121212k kx k x k E E p p =∆∆= 2-17 由水平桌面、光滑铅直杆、不可伸长的轻绳、轻弹簧、理想滑轮以及质量为1m 和2m 的滑块组成如题2-17图所示装置,弹簧的劲度系数为k ,自然长度等于水平距离BC ,2m 与桌面间的摩擦系数为μ,最初1m 静止于A 点,AB =BC =h ,绳已拉直,现令滑块落下1m ,求它下落到B 处时的速率.解: 取B 点为重力势能零点,弹簧原长为弹性势能零点,则由功能原理,有])(21[)(21212212l k gh m v m m gh m ∆+-+=-μ 式中l ∆为弹簧在A 点时比原长的伸长量,则h BC AC l )12(-=-=∆联立上述两式,得()()212221122m m khgh m m v +-+-=μ题2-17图2-19 质量为M 的大木块具有半径为R 的四分之一弧形槽,如题2-19图所示.质量为m 的小立方体从曲面的顶端滑下,大木块放在光滑水平面上,二者都作无摩擦的运动,而且都从静止开始,求小木块脱离大木块时的速度.解: m 从M 上下滑的过程中,机械能守恒,以m ,M ,地球为系统,以最低点为重力势能零点,则有222121MV mv mgR +=又下滑过程,动量守恒,以m ,M 为系统则在m 脱离M 瞬间,水平方向有0=-MV mv联立,以上两式,得()M m MgR v +=2习题八8-1 电量都是q 的三个点电荷,分别放在正三角形的三个顶点.试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系?解: 如题8-1图示(1) 以A 处点电荷为研究对象,由力平衡知:q '为负电荷2220)33(π4130cos π412a q q a q '=︒εε解得 q q 33-=' (2)与三角形边长无关.题8-1图 题8-2图8-2 两小球的质量都是m ,都用长为l 的细绳挂在同一点,它们带有相同电量,静止时两线夹角为2θ ,如题8-2图所示.设小球的半径和线的质量都可以忽略不计,求每个小球所带的电量.解: 如题8-2图示⎪⎩⎪⎨⎧===220)sin 2(π41sin cos θεθθl q F T mg T e解得 θπεθtan 4sin 20mg l q = 8-3 根据点电荷场强公式204r q E πε=,当被考察的场点距源点电荷很近(r →0)时,则场强→∞,这是没有物理意义的,对此应如何理解?解: 020π4r r q E ϖϖε=仅对点电荷成立,当0→r 时,带电体不能再视为点电荷,再用上式求场强是错误的,实际带电体有一定形状大小,考虑电荷在带电体上的分布求出的场强不会是无限大.8-4 在真空中有A ,B 两平行板,相对距离为d ,板面积为S ,其带电量分别为+q 和-q .则这两板之间有相互作用力f ,有人说f =2024dq πε,又有人说,因为f =qE ,SqE 0ε=,所以f =Sq 02ε.试问这两种说法对吗?为什么? f 到底应等于多少?解: 题中的两种说法均不对.第一种说法中把两带电板视为点电荷是不对的,第二种说法把合场强Sq E 0ε=看成是一个带电板在另一带电板处的场强也是不对的.正确解答应为一个板的电场为Sq E 02ε=,另一板受它的作用力Sq S qq f 02022εε==,这是两板间相互作用的电场力. 8-5一电偶极子的电矩为l q p ϖϖ=,场点到偶极子中心O 点的距离为r ,矢量r ϖ与l ϖ的夹角为θ,(见题8-5图),且l r >>.试证P 点的场强E 在r 方向上的分量r E 和垂直于r 的分量θE 分别为r E =302cos r p πεθ, θE =304sin r p πεθ证: 如题8-5所示,将p ϖ分解为与r ϖ平行的分量θsin p 和垂直于r ϖ的分量θsin p .∵ l r >> ∴ 场点P 在r 方向场强分量30π2cos r p E r εθ=垂直于r 方向,即θ方向场强分量300π4sin r p E εθ=题8-5图 题8-6图8-6 长l =15.0cm的直导线AB 上均匀地分布着线密度λ=5.0x10-9C ·m-1的正电荷.试求:(1)在导线的延长线上与导线B 端相距1a =5.0cm 处P 点的场强;(2)在导线的垂直平分线上与导线中点相距2d =5.0cm 处Q 点的场强. 解: 如题8-6图所示(1)在带电直线上取线元x d ,其上电量q d 在P 点产生场强为20)(d π41d x a x E P -=λε222)(d π4d x a x E E l l P P -==⎰⎰-ελ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅方向水平向右(2)同理2220d d π41d +=x xE Qλε 方向如题8-6图所示由于对称性⎰=l QxE 0d ,即Q E ϖ只有y 分量,∵ 22222220dd d d π41d ++=x x x E Qyλε 22π4d d ελ⎰==l QyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得21096.14⨯==Qy Q E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强.解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为 20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x==ϕϕελϕπd cos π4)cos(d d 0RE E y-=-= 积分RR E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπRE y ∴ RE E x0π2ελ==,方向沿x 轴正向. 8-8 均匀带电的细线弯成正方形,边长为l ,总电量为q .(1)求这正方形轴线上离中心为r 处的场强E ;(2)证明:在l r >>处,它相当于点电荷q 产生的场强E .解: 如8-8图示,正方形一条边上电荷4q 在P 点产生物强PE ϖd方向如图,大小为()4π4cos cos d 22021l r E P +-=εθθλ∵ 22cos 221l r l +=θ12cos cos θθ-=∴ 24π4d 22220l r l l r E P++=ελP E ϖd 在垂直于平面上的分量βcos d d P E E =⊥∴ 424π4d 2222220l r rl r l r lE +++=⊥ελ题8-8图由于对称性,P 点场强沿OP 方向,大小为2)4(π44d 422220l r l r lrE E P ++=⨯=⊥ελ∵ lq 4=λ∴ 2)4(π422220l r l r qrE P++=ε 方向沿8-9 (1)点电荷q 位于一边长为a 的立方体中心,试求在该点电荷电场中穿过立方体的一个面的电通量;(2)如果该场源点电荷移动到该立方体的一个顶点上,这时穿过立方体各面的电通量是多少?*(3)如题8-9(3)图所示,在点电荷q 的电场中取半径为R 的圆平面.q 在该平面轴线上的A 点处,求:通过圆平面的电通量.(xR arctan =α)解: (1)由高斯定理0d εqS E s⎰=⋅ϖϖ立方体六个面,当q 在立方体中心时,每个面上电通量相等 ∴ 各面电通量06εq e=Φ.(2)电荷在顶点时,将立方体延伸为边长a 2的立方体,使q 处于边长a 2的立方体中心,则边长a 2的正方形上电通量06εqe=Φ对于边长a 的正方形,如果它不包含q 所在的顶点,则24εq e =Φ,如果它包含q 所在顶点则0=Φe.如题8-9(a)图所示.题8-9(3)图题8-9(a)图 题8-9(b)图 题8-9(c)图(3)∵通过半径为R 的圆平面的电通量等于通过半径为22x R +的球冠面的电通量,球冠面积*]1)[(π22222xR x x R S +-+=∴ )(π42200x R Sq +=Φε02εq =[221xR x +-]*关于球冠面积的计算:见题8-9(c)图ααα⎰⋅=0d sin π2r r Sααα⎰⋅=02d sin π2r)cos 1(π22α-=r8-10 均匀带电球壳内半径6cm ,外半径10cm ,电荷体密度为2×510-C ·m -3求距球心5cm ,8cm ,12cm 各点的场强. 解: 高斯定理0d ε∑⎰=⋅qS E s ϖϖ,02π4ε∑=qr E当5=r cm 时,0=∑q ,0=E ϖ8=r cm 时,∑q 3π4p=3(r )3内r - ∴ ()2023π43π4rr r E ερ内-=41048.3⨯≈1C N -⋅, 方向沿半径向外. 12=r cm时,3π4∑=ρq -3(外r )内3r ∴ ()420331010.4π43π4⨯≈-=r r r E ερ内外 1C N -⋅ 沿半径向外.8-11 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和-λ,试求:(1)r <1R ;(2) 1R <r <2R ;(3) r >2R 处各点的场强.解: 高斯定理0d ε∑⎰=⋅qS E sϖϖ取同轴圆柱形高斯面,侧面积rl S π2=则 rl E S E Sπ2d =⋅⎰ϖϖ对(1) 1R r < 0,0==∑E q (2) 21R r R << λl q =∑ ∴ rE 0π2ελ=沿径向向外(3) 2R r > 0=∑q ∴ 0=E题8-12图8-12 两个无限大的平行平面都均匀带电,电荷的面密度分别为1σ和2σ,试求空间各处场强.解: 如题8-12图示,两带电平面均匀带电,电荷面密度分别为1σ与2σ,两面间, n E ϖϖ)(21210σσε-= 1σ面外, n E ϖϖ)(21210σσε+-= 2σ面外, n E ϖϖ)(21210σσε+= n ϖ:垂直于两平面由1σ面指为2σ面.8-13 半径为R 的均匀带电球体内的电荷体密度为ρ,若在球内挖去一块半径为r <R 的小球体,如题8-13图所示.试求:两球心O 与O '点的场强,并证明小球空腔内的电场是均匀的. 解: 将此带电体看作带正电ρ的均匀球与带电ρ-的均匀小球的组合,见题8-13图(a). (1) ρ+球在O 点产生电场010=E ϖ,ρ-球在O 点产生电场'dπ4π3430320OO r E ερ=ϖ∴ O 点电场'd 33030OO r E ερ=ϖ;(2) ρ+在O '产生电场'dπ4d 3430301OO E ερπ='ϖρ-球在O '产生电场002='E ϖ∴ O ' 点电场 003ερ='E ϖ'OO题8-13图(a) 题8-13图(b)(3)设空腔任一点P 相对O '的位矢为r ϖ',相对O 点位矢为r ϖ (如题8-13(b)图)则 03ερrE PO ϖϖ=,3ερr E O P '-='ϖϖ,∴ 0003'3)(3ερερερdOO r r E E E O P PO P ϖϖϖϖϖϖ=='-=+='∴腔内场强是均匀的.8-14 一电偶极子由q =1.0×10-6C 的两个异号点电荷组成,两电荷距离d=0.2cm ,把这电偶极子放在1.0×105N ·C -1的外电场中,求外电场作用于电偶极子上的最大力矩.解: ∵ 电偶极子p ϖ在外场E ϖ中受力矩E p M ϖϖϖ⨯=∴ qlE pE M ==max 代入数字4536max 100.2100.1102100.1---⨯=⨯⨯⨯⨯⨯=M m N ⋅8-15 两点电荷1q =1.5×10-8C ,2q =3.0×10-8C ,相距1r =42cm ,要把它们之间的距离变为2r =25cm ,需作多少功?解: ⎰⎰==⋅=22210212021π4π4d d r r r rq q r r q q r F A εεϖϖ)11(21r r - 61055.6-⨯-=J外力需作的功 61055.6-⨯-=-='A A J题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的功. 解: 如题8-16图示0π41ε=O U 0)(=-RqR q 0π41ε=O U )3(R qR q -Rq 0π6ε-= ∴ Rqq U U q A o C O 00π6)(ε=-= 8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O 点处的场强和电势.解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点E ϖd 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-] R0π2ελ-=(2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O8-18 一电子绕一带均匀电荷的长直导线以2×104m ·s -1的匀速率作圆周运动.求带电直线上的线电荷密度.(电子质量0m =9.1×10-31kg ,电子电量e =1.60×10-19C)解: 设均匀带电直线电荷密度为λ,在电子轨道处场强rE 0π2ελ=电子受力大小 re eE F e0π2ελ== ∴ rv mr e 20π2=ελ得 1320105.12π2-⨯==emv ελ1m C -⋅ 8-19 空气可以承受的场强的最大值为E =30kV ·cm -1,超过这个数值时空气要发生火花放电.今有一高压平行板电容器,极板间距离为d =0.5cm ,求此电容器可承受的最高电压.解: 平行板电容器内部近似为均匀电场 ∴ 4105.1d ⨯==E U V8-20 根据场强E ϖ与电势U 的关系U E -∇=ϖ,求下列电场的场强:(1)点电荷q 的电场;(2)总电量为q ,半径为R 的均匀带电圆环轴上一点;*(3)偶极子ql p =的l r >>处(见题8-20图).解: (1)点电荷 rqU 0π4ε=题 8-20 图∴ 0200π4r r q r r U E ϖϖϖε=∂∂-= 0r ϖ为r 方向单位矢量. (2)总电量q ,半径为R 的均匀带电圆环轴上一点电势220π4xR q U +=ε∴ ()i x R qxi x U E ϖϖϖ2/3220π4+=∂∂-=ε(3)偶极子l q pϖϖ=在l r >>处的一点电势 200π4cos ])cos 21(1)cos 2(1[π4r ql llr qU εθθθε=+--=∴ 30π2cos r p r U E rεθ=∂∂-= 30π4sin 1r p U r E εθθθ=∂∂-=8-21 证明:对于两个无限大的平行平面带电导体板(题8-21图)来说,(1)相向的两面上,电荷的面密度总是大小相等而符号相反;(2)相背的两面上,电荷的面密度总是大小相等而符号相同.证: 如题8-21图所示,设两导体A 、B 的四个平面均匀带电的电荷面密度依次为1σ,2σ,3σ,4σ题8-21图(1)则取与平面垂直且底面分别在A 、B 内部的闭合柱面为高斯面时,有0)(d 32=∆+=⋅⎰S S E sσσϖϖ∴ +2σ03=σ 说明相向两面上电荷面密度大小相等、符号相反; (2)在A 内部任取一点P ,则其场强为零,并且它是由四个均匀带电平面产生的场强叠加而成的,即0222204030201=---εσεσεσεσ 又∵ +2σ03=σ ∴ 1σ4σ=说明相背两面上电荷面密度总是大小相等,符号相同. 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0 mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少?解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图(1)∵ AB ACU U =,即 ∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSq A =得 ,32Sq A =σ Sq A 321=σ而 7110232-⨯-=-=-=A Cq S q σCC10172-⨯-=-=S q B σ(2) 301103.2d d ⨯===AC ACAC A E U εσV 8-23 两个半径分别为1R 和2R (1R <2R )的同心薄金属球壳,现给内球壳带电+q ,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电q +;球壳内表面带电则为q -,外表面带电为q +,且均匀分布,其电势题8-23图⎰⎰∞∞==⋅=22020π4π4d d R R R qrr q r E U εεϖϖ (2)外壳接地时,外表面电荷q +入地,外表面不带电,内表面电荷仍为q -.所以球壳电势由内球q +与内表面q -产生:0π4π42020=-=R q R q U εε(3)设此时内球壳带电量为q ';则外壳内表面带电量为q '-,外壳外表面带电量为+-q q ' (电荷守恒),此时内球壳电势为零,且0π4'π4'π4'202010=+-+-=R q q R q R q U A εεε 得 q R R q 21=' 外球壳上电势()22021202020π4π4'π4'π4'R qR R R q q R q R q U B εεεε-=+-+-=8-24 半径为R 的金属球离地面很远,并用导线与地相联,在与球心相距为R d 3=处有一点电荷+q ,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q ',则球接地时电势0=O U8-24图由电势叠加原理有:=O U 03π4π4'00=+RqR q εε 得 -='q 3q8-25 有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为0F .试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.解: 由题意知 2020π4r q F ε=(1)小球3接触小球1后,小球3和小球1均带电 2q q =',小球3再与小球2接触后,小球2与小球3均带电 q q 43=''∴此时小球1与小球2间相互作用力00220183π483π4"'2F rqr q q F =-=εε (2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为 32q .∴ 小球1、2间的作用力 00294π432322F r q q F ==ε *8-26 如题8-26图所示,一平行板电容器两极板面积都是S ,相距为d ,分别维持电势A U =U ,B U =0不变.现把一块带有电量q 的导体薄片平行地放在两极板正中间,片的面积也是S ,片的厚度略去不计.求导体薄片的电势.解: 依次设A ,C ,B 从上到下的6个表面的面电荷密度分别为1σ,2σ,3σ,4σ,5σ,6σ如图所示.由静电平衡条件,电荷守恒定律及维持U U AB =可得以下6个方程题8-26图⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧++++==+=+-==+=+===+6543215432065430021001σσσσσσσσσσεσσσσεσσd US q S qdU U C S S q B A解得 Sq 261==σσSq d U2032-=-=εσσ Sq dU2054+=-=εσσ所以CB 间电场 S qd U E 00422εεσ+==)2d(212d 02Sq U E U U CB C ε+=== 注意:因为C 片带电,所以2U U C≠,若C 片不带电,显然2U U C =8-27 在半径为1R 的金属球之外包有一层外半径为2R 的均匀电介质球壳,介质相对介电常数为r ε,金属球带电Q .试求: (1)电介质内、外的场强; (2)电介质层内、外的电势; (3)金属球的电势.解: 利用有介质时的高斯定理∑⎰=⋅q S D S ϖϖd(1)介质内)(21R r R <<场强 303π4,π4r rQ E r r Q D r εεϖϖϖϖ==内;介质外)(2R r <场强 303π4,π4r rQ E r Qr D εϖϖϖ==外(2)介质外)(2R r >电势 rQE U 0r π4r d ε=⋅=⎰∞ϖϖ外 介质内)(21R r R <<电势2020π4)11(π4R Q R r qr εεε+-=)11(π420R r Qr r -+=εεε (3)金属球的电势 r d r d 221ϖϖϖϖ⋅+⋅=⎰⎰∞R R RE E U 外内⎰⎰∞+=22220π44πdr R R Rr r Qdr r Q εεε)11(π4210R R Qr r-+=εεε 8-28 如题8-28图所示,在平行板电容器的一半容积内充入相对介电常数为r ε的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题8-28图所示,充满电介质部分场强为2E ϖ,真空部分场强为1E ϖ,自由电荷面密度分别为2σ与1σ由∑⎰=⋅0d q S D ϖϖ得 11σ=D ,22σ=D 而 101E D ε=,202E D r εε=d21U E E ==∴r D D εσσ==1212 r d r d ϖϖϖϖ⋅+⋅=⎰⎰∞∞rrE E U 外内题8-28图 题8-29图8-29 两个同轴的圆柱面,长度均为l ,半径分别为1R 和2R (2R >1R ),且l >>2R -1R ,两柱面之间充有介电常数ε的均匀电介质.当两圆柱面分别带等量异号电荷Q 和-Q 时,求: (1)在半径r 处(1R <r <2R =,厚度为dr ,长为l 的圆柱薄壳中任一点的电场能量密度和整个薄壳中的电场能量; (2)电介质中的总电场能量; (3)圆柱形电容器的电容. 解: 取半径为r 的同轴圆柱面)(S则 rlD S DS π2d )(=⋅⎰ϖϖ当)(21R r R <<时,Q q =∑ ∴ rlQ D π2=(1)电场能量密度 22222π82l r Q D w εε== 薄壳中 rlrQ rl r l r Q w W εευπ4d d π2π8d d 22222===(2)电介质中总电场能量 ⎰⎰===211222ln π4π4d d R RV R R l Q rl r Q W W εε(3)电容:∵ CQ W 22=∴ )/ln(π22122R R lW Q C ε== *8-30 金属球壳A 和B 的中心相距为r ,A 和B 原来都不带电.现在A 的中心放一点电荷1q ,在B 的中心放一点电荷2q ,如题8-30图所示.试求:(1) 1q 对2q 作用的库仑力,2q 有无加速度;(2)去掉金属壳B ,求1q 作用在2q 上的库仑力,此时2q 有无加速度.解: (1)1q 作用在2q 的库仑力仍满足库仑定律,即2210π41r q q F ε=但2q 处于金属球壳中心,它受合力..为零,没有加速度. (2)去掉金属壳B ,1q 作用在2q 上的库仑力仍是2210π41r q q F ε=,但此时2q 受合力不为零,有加速度.题8-30图 题8-31图8-31 如题8-31图所示,1C =0.25μF ,2C =0.15μF ,3C =0.20μF .1C 上电压为50V .求:AB U .解: 电容1C 上电量111U C Q =电容2C 与3C 并联3223C C C += 其上电荷123Q Q =∴ 355025231123232⨯===C U C C Q U 86)35251(5021=+=+=U U U AB V 8-321C 和2C 两电容器分别标明“200 pF 、500 V ”和“300 pF 、900 V ”,把它们串联起来后等值电容是多少?如果两端加上1000 V的电压,是否会击穿?解: (1) 1C 与2C 串联后电容1203002003002002121=+⨯=+='C C C C C pF (2)串联后电压比231221==C C U U ,而100021=+U U∴ 6001=U V ,4002=U V即电容1C 电压超过耐压值会击穿,然后2C 也击穿. 8-33 将两个电容器1C 和2C 充电到相等的电压U 以后切断电源,再将每一电容器的正极板与另一电容器的负极板相联.试求:(1)每个电容器的最终电荷; (2)电场能量的损失.解: 如题8-33图所示,设联接后两电容器带电分别为1q ,2q题8-33图则⎪⎪⎩⎪⎪⎨⎧==-=-=+2122112121201021U U U C U C q q U C U C q q q q解得 (1) =1q UC C C C C q U C C C C C 21212221211)(,)(+-=+-(2)电场能量损失W W W -=∆0)22()2121(2221212221C q C q U C U C +-+= 221212U C C C C +=8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C 时,求:(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E ϖ在21R r R <<时 301π4r r Q E εϖϖ=3R r >时 302π4r r Q E εϖϖ=∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r rQ W εε ⎰-==21)11(π8π8d 2102202R R R R Q r r Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4r r Q E εϖϖ=,02=W∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=F习题九9-1 在同一磁感应线上,各点B ϖ的数值是否都相等?为何不把作用于运动电荷的磁力方向定义为磁感应强度B ϖ的方向? 解: 在同一磁感应线上,各点B ϖ的数值一般不相等.因为磁场作用于运动电荷的磁力方向不仅与磁感应强度B ϖ的方向有关,而且与电荷速度方向有关,即磁力方向并不是唯一由磁场决定的,所以不把磁力方向定义为B ϖ的方向.9-2 (1)在没有电流的空间区域里,如果磁感应线是平行直线,磁感应强度B ϖ的大小在沿磁感应线和垂直它的方向上是否可能变化(即磁场是否一定是均匀的)?(2)若存在电流,上述结论是否还对?解: (1)不可能变化,即磁场一定是均匀的.如图作闭合回路abcd 可证明21B B ρϖ=∑⎰==-=⋅0d 021I bc B da B l B abcdμϖϖ∴ 21B B ρϖ=(2)若存在电流,上述结论不对.如无限大均匀带电平面两侧之磁力线是平行直线,但B ϖ方向相反,即21B B ρϖ≠.9-3 用安培环路定理能否求有限长一段载流直导线周围的磁场?答: 不能,因为有限长载流直导线周围磁场虽然有轴对称性,但不是稳恒电流,安培环路定理并不适用.9-4 在载流长螺线管的情况下,我们导出其内部nI B 0μ=,外面B =0,所以在载流螺线管外面环绕一周(见题9-4图)的环路积分⎰外B L ϖ·d l ϖ=0但从安培环路定理来看,环路L 中有电流I 穿过,环路积分应为⎰外B L ϖ·d l ϖ=I 0μ这是为什么?解: 我们导出nl B 0μ=内,0=外B 有一个假设的前提,即每匝电流均垂直于螺线管轴线.这时图中环路L 上就一定没有电流通过,即也是⎰∑==⋅LI l B 0d 0μϖϖ外,与⎰⎰=⋅=⋅Ll l B 0d 0d ϖϖϖ外是不矛盾的.但这是导线横截面积为零,螺距为零的理想模型.实际上以上假设并不真实存在,所以使得穿过L 的电流为I ,因此实际螺线管若是无限长时,只是外B ϖ的轴向分量为零,而垂直于轴的圆周方向分量rIB πμ20=⊥,r 为管外一点到螺线管轴的距离.题 9 - 4 图9-5 如果一个电子在通过空间某一区域时不偏转,能否肯定这个区域中没有磁场?如果它发生偏转能否肯定那个区域中存在着磁场?解:如果一个电子在通过空间某一区域时不偏转,不能肯定这个区域中没有磁场,也可能存在互相垂直的电场和磁场,电子受的电场力与磁场力抵消所致.如果它发生偏转也不能肯定那个区域存在着磁场,因为仅有电场也可以使电子偏转.9-6 已知磁感应强度0.2=B Wb ·m-2的均匀磁场,方向沿x轴正方向,如题9-6图所示.试求:(1)通过图中abcd 面的磁通量;(2)通过图中befc 面的磁通量;(3)通过图中aefd 面的磁通量.解: 如题9-6图所示题9-6图(1)通过abcd 面积1S 的磁通是24.04.03.00.211=⨯⨯=⋅=S B ϖϖΦWb(2)通过befc 面积2S 的磁通量022=⋅=S B ϖϖΦ(3)通过aefd 面积3S 的磁通量24.0545.03.02cos 5.03.0233=⨯⨯⨯=θ⨯⨯⨯=⋅=S B ϖϖΦWb(或曰24.0-Wb )题9-7图9-7 如题9-7图所示,AB 、CD 为长直导线,C B )为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流I ,求O 点的磁感应强度.解:如题9-7图所示,O 点磁场由AB 、C B )、CD 三部分电流产生.其中AB产生 01=B ϖ CD产生RIB 1202μ=,方向垂直向里CD段产生 )231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B ,方向⊥向里 ∴)6231(203210ππμ+-=++=R I B B B B ,方向⊥向里. 9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B 两点处的磁感应强度,以及磁感应强度为零的点的位置.题9-8图解:如题9-8图所示,A B ϖ方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B ϖ在2L 外侧距离2L 为r 处 则02)1.0(220=-+rI r Iπμπμ 解得 1.0=r m题9-9图9-9 如题9-9图所示,两根导线沿半径方向引向铁环上的A ,B 两点,并在很远处与电源相连.已知圆环的粗细均匀,求环中心O 的磁感应强度.解: 如题9-9图所示,圆心O 点磁场由直电流∞A 和∞B 及两段圆弧上电流1I 与2I 所产生,但∞A 和∞B 在O 点产生的磁场为零。
大学物理上册第3章习题解答第3章角动量定理和刚体的转动一、内容提要1、质点的角动量定理⑴质点对于某一定点的角动量和角动量定理:角动量L r mv =? 角动量定理 dL M dt=⑵质点对于z 轴的角动量和角动量定理:角动量z L r mv τ⊥=? 角动量定理 zz dL M dt=2、质点系的角动量定理刚体的转动惯量和定轴转动定理⑴质点系的角动量定理 i i iidM L dt =∑∑ ⑵刚体的转动惯量 2z iiiI r m =∑ 或2zI r dm =?⑶刚体的定轴转动定理 z z zd M I I dtωβ== 3、刚体的定轴转动动能定理⑴力矩的功z A M d θ=?⑵刚体的转动动能 212k z E I ω=⑶刚体的定轴转动动能定理 22211122z z z A M d I I θωω==-?4、角动量守恒定律⑴质点的角动量守恒定律:若0M =,则21L L = ⑵刚体的对轴角动量守恒定律:刚体对轴的角动量也可写为2z izizL r m I ωω=?=∑,若0iziM =∑,则0z z I I ωω=,即有0ωω=二、习题解答3.1 一发动机的转轴在7s 内由200/min r 匀速增加到3000/min r . 求:(1)这段时间内的初末角速度和角加速度. (2)这段时间内转过的角度和圈数. (3)轴上有一半径为2.0=r m 的飞轮, 求它边缘上一点在7s 末的切向加速度、法向加速度和总加速度.解:(1)初的角速度1200220.9/60rad s πω?=≈ 末的角速度230002314/60rad s πω?=≈角加速度231420.941.9/7rad s t ωβ?-==≈?(2)转过的角度为2211120.9741.97117622t t rad θωβ=+=?+??=117618622 3.14n r θπ===? (3)切向加速度241.90.28.38/a r m s τβ==?=法向加速度为:22423140.2 1.9710/n a r m s ω==?=?总的加速度为:421.9710/a m s ===?3.3 地球在1987年完成365次自转比1900年长14.1s. 求在1900年到1987年间, 地球自转的平均角加速度.解:平均角加速度为0003652365287T t T a t T ππωω??--+?==212373036523652 1.140.9610/8787(3.1510)t rad s T ππ-≈=-=-3.4一人手握哑铃站在转盘上, 两臂伸开时整个系统的转动惯量为22kgm . 推动后, 系统以15/min r 的转速转动. 当人的手臂收回时, 系统的转动惯量为20.8kgm . 求此时的转速.解:由刚体定轴转动的角动量守恒定律,1122I I ωω=121221537.5/min 0.8I r I ωω==?=3.5 质量为60kg , 半径为0.25m 的匀质圆盘, 绕其中心轴以900/min r 的转速转动. 现用一个闸杆和一个外力F 对盘进行制动(如图所示), 设闸与盘之间的摩擦系数为4.0. 求:(1)当100F N =, 圆盘可在多长时间内停止, 此时已经转了多少转?(2)如果在2s 内盘转速减少一半, F 需多大?图3-5 习题1.4图解:(1)设杆与轮间的正压力为N ,10.5l m =,20.75l m =,由杠杆平衡原理得121()F l l Nl +=121()F l l N l +=闸瓦与杆间的摩擦力为: 121()F l l f N l μμ+== 匀质圆盘对转轴的转动惯量为212I mR =,由定轴转动定律,M I β=,有 ()122112F l l R mR l μβ+-= 21212()40/3F l l rad s mRl μβ+=-=-停止转动所需的时间: 0900200607.06403t s πωβ--===- 转过的角度201532332.762t t rad rad θωβπ?=+=?≈532n θπ==圈(2)030ωπ=,在2s 内角速度减小一半,知0227.5/23.55/rad s rad s tωωβπ-=-=-=-()1222112F l l R mR l μβ+-= 112600.250.5(23.55)1772()20.4 1.25mRl F N l l βμ-=-=-≈+??3.6 发动机带动一个转动惯量为250kgm 的系统做定轴转动. 在0.5s 内由静止开始匀速增加到120/min r 的转速. 求发动机对系统施加的力矩.解:由题意,250I kgm =,00ω=,120/min 4/r rad s ωπ==系统角加速度为:20825.12/rad s t tωωωβπ-?====?? 由刚体定轴转动的转动定理,可知M I β=5025.121256M Nm =?=3.7一轻绳绕于半径为R 的圆盘边缘, 在绳端施以mg F =的拉力, 圆盘可绕水平固定光滑轴在竖直平面内转动. 圆盘质量为M , 并从静止开始转动. 求:(1)圆盘的角加速度及转动的角度和时间的关系. (2)如以质量为m 的物体挂在绳端, 圆盘的角加速度及转动的角度和时间的关系又如何?解:(1)由刚体转动定理可知:M I β= 上题可知: M FR mgR ==212I MR =代入上式得2mgMRβ=, 2212mg t t MRθβ==(2)对物体受力分析'mg F ma -= 'F R I β= a R β=,212I MR =由上式解得22mgMR mR β=+22122mg t t MR mRθβ==+3.8某冲床飞轮的转动惯量为32410kgm ?. 当转速为30/min r 时, 它的转动动能是多少?每冲一次, 其转速下降10/min r . 求每冲一次对外所做的功.解:由题意,转速为:()030/min /r rad s ωπ== 飞轮的转动动能为:232411410 1.9721022E I J ωπ===? 第一次对外做功为:22011122A I I ωω=- 1220/min 3r πω==()2422222301011111515410 3.14 1.0910*******A I I I I J ωωωωπ=-=-=?==?3.9半径为R , 质量为M 的水平圆盘可以绕中心轴无摩擦地转动. 在圆盘上有一人沿着与圆盘同心, 半径为R r <的圆周匀速行走, 行走速度相对于圆盘为v . 设起始时, 圆盘静止不动, 求圆盘的转动角速度.解:设圆盘的转动角速度为2ω,则人的角速度为12vrωω=-,圆盘的转动惯量为212MR ,人的转动惯量为2mr ,由角动量守恒定律, 222212v mr MR r ωω??-=即22222mrvmr MRω=+3.10 两滑冰运动员, 质量分别为60kg 和70kg , 他们的速率分别为7/m s 和6/m s , 在相距1.5m 的两平行线上相向滑行. 当两者最接近时, 互相拉手并开始绕质心做圆周运动. 运动中, 两者间距离保持m 5.1不变. 求该瞬时:(1)系统的总角动量. (2)系统的角速度.(3)两人拉手前后的总动能.解:⑴ 设1m 在原心,质心为c r70 1.50.87060c r m ?=≈+120.8, 1.50.810.7c r r m r m ===-=21112226070.870607630./J m v r m v r kg m s =+=??+??=⑵ 系统的转动惯量为: 222221122600.8700.772.7I m r m r kgm =+=?+?=6308.66/72.7J rad s I ω==≈ 222201122111160770627302222E m v m v J =+=??+??=221172.78.66272622E I J ω==??≈3.11半径为R 的光滑半球形碗, 固定在水平面上. 一均质棒斜靠在碗缘, 一端在碗内, 一端在碗外. 在碗内的长度为c , 求棒的全长.解:棒的受力如图所示本题属于刚体平衡问题,由于碗为光滑半球形,A 端的支持力沿半径方向,而碗缘B 点处的支持力方向不能确定,两个支持力和重力三者在竖直平面内。
第三章狭义相对论3.1地球虽有自转,但仍可看成一较好的惯性参考系,设在地球赤道和地球某一极(例如南极)上分别放置两个性质完全相同的钟,且这两只钟从地球诞生的那一天便存在.如果地球从形成到现在是50亿年,请问那两只钟指示的时间差是多少?[解答]地球的半径约为R = 6400千米 = 6.4×106(m), 自转一圈的时间是T = 24×60×60(s) = 8.64×104(s), 赤道上钟的线速度为v = 2πR/T = 4.652×102(m·s -1).将地球看成一个良好的参考系,在南极上看赤道上的钟做匀速直线运动,在赤道上看南极的钟做反向的匀速直线运动.南极和赤道上的钟分别用A 和B 表示,南极参考系取为S ,赤道参考系取为S`.A 钟指示S 系中的本征时,同时指示了B 钟的运动时间,因此又指示S`系的运动时.同理,B 钟指示S`系中的本征时,同时指示了A 钟的反向运动时间,因此又指示S 系的运动时.方法一:以S 系为准.在S 系中,A 钟指示B 钟的运动时间,即运动时 Δt =50×108×365×24×60×60=1.5768×1016(s).B 钟在S`中的位置不变的,指示着本征时Δt`.A 钟的运动时Δt 和B 钟的本征时Δt`之间的关系为,可求得B 钟的本征时为,因此时间差为=1.898×105(s). 在南极上看,赤道上的钟变慢了.方法二:以S`系为准.在S`系中,B 钟指示A 钟的反向运动时间,即运动时 Δt`=50×108×365×24×60×60=1.5768×1016(s).A 钟在S 中的位置不变的,指示着本征时Δt .B 钟的运动时Δt `和A 钟的本征时Δt 之间的关系为,可求得A 钟的本征时为,因此时间差为=1.898×105(s). 在赤道上看,南极上的钟变慢了.[注意]解此题时,先要确定参考系,还要确定运动时和本征时,才能正确引用公式. 有人直接应用公式计算时间差,由于地球速度远小于光速,所以计算结果差不多,但是关系没有搞清.从公式可知:此人以S 系为准来对比两钟的时间,Δt `是B 钟的本征时,Δt 是A钟的运动时,而题中的本征时是t ∆=21`[1()]2vt t c∆=∆≈-∆21`()2v t t t c∆-∆≈∆`t ∆=21[1()]`2vt t t c∆=∆-∆21`()`2v t t t c∆-∆≈∆``t t t ∆-∆=∆2211[1()]``()`22v vt t t c c≈+∆-∆=∆未知的.也有人用下面公式计算时间差,也是同样的问题.3.2一个“光钟”由两个相距为L 0的平面镜A 和B 构成,对于这个光钟为静止的参考系来说,一个“滴答”的时间是光从镜面A 到镜面B 再回到原处的时间,其值为.若将这个光钟横放在一个以速度行驶的火车上,使两镜面都与垂直,两镜面中心的连线与平行,在铁轨参考系中观察,火车上钟的一个“滴答”τ与τ0的关系怎样?[解答]不论两个“光钟”放在什么地方,τ0都是在相对静止的参考系中所计的时间,称为本征时.在铁轨参考系中观察,火车上钟的一个“滴答”的时间τ是运动时,所以它们的关系为3.3在惯性系S 中同一地点发生的两事件A 和B ,B 晚于A 4s ;在另一惯性系S`中观察,B 晚于A 5s 发生,求S`系中A 和B 两事件的空间距离?[解答]在S系中的两事件A 和B 在同一地点发生,时间差Δt = 4s 是本征时,而S`系中观察A 和B 两事件肯定不在同一地点,Δt ` = 5s 是运动时,根据时间膨胀公式,即,可以求两系统的相对速度为v = 3c /5.在S`系中A 和B 两事件的空间距离为 Δl = v Δt ` = 3c = 9×108(m).3.4一根直杆在S 系中观察,其静止长度为l ,与x 轴的夹角为θ,S`系沿S 系的x 轴正向以速度v 运动,问S`系中观察到杆子与x `轴的夹角若何?[解答]直杆在S 系中的长度是本征长度,两个方向上的长度分别为l x = l cos θ和l y = l sin θ. 在S`系中观察直杆在y 方向上的长度不变,即l`y = l y ;在x 方向上的长度是运动长度,根据尺缩效应得因此,可得夹角为.3.5S 系中观察到两事件同时发生在x 轴上,其间距为1m ,S`系中观察到这两个事件间距离是2m ,求在S`系中这两个事件的时间间隔.[解答]根据洛仑兹变换,得两个事件的空间和时间间隔公式`t t t ∆-∆=-∆2211[1()]()22v vt t t c c≈+∆-∆=∆002L cτ=v vvτ=`t ∆=5=`x l l =``tan `y xl l θ==21/2`arctan{[1(/)]tan }v c θθ-=-.(1)由题意得:Δt = 0,Δx = 1m ,Δx` = 2m .因此.(2)由(2)之上式得它们的相对速度为(3)将(2)之下式除以(2)之上式得, 所以10-8(s). [注意]在S `系中观察到两事件不是同时发生的,所以间隔Δx` = 2m 可以大于间隔Δx =1m .如果在S `系中观察到两事件也是同时发生的,那么Δx`就表示运动长度,就不可能大于本征长度Δx ,这时可以用长度收缩公式3.6 一短跑运动员,在地球上以10s 的时间跑完了100m 的距离,在对地飞行速度为0.8c 的飞船上观察,结果如何?[解答]以地球为S 系,则Δt = 10s ,Δx =100m .根据洛仑兹坐标和时间变换公式,飞船上观察运动员的运动距离为≈-4×109(m).运动员运动的时间为≈16.67(s).在飞船上看,地球以0.8c 的速度后退,后退时间约为16.67s ;运动员的速度远小于地球后退的速度,所以运动员跑步的距离约为地球后退的距离,即4×109m .3.7已知S`系以0.8c 的速度沿S 系x 轴正向运动,在S 系中测得两事件的时空坐标为x 1 = 20m ,x 2 = 40m ,t 1 = 4s ,t2 = 8s .求S`系中测得的这两件事的时间和空间间隔.[解答]根据洛仑兹变换可得S`系的时间间隔为≈6.67(s).空间间隔为`x∆=2`t ∆=`x ∆=2`t ∆=v =2``t v x c∆=-∆`t ∆==`x ∆=∆`x =2`t =`x ∆==2`t ∆=100.8100/0.6c-⨯=2``21t t -=840.8(4020)/0.6c---=≈-1.6×109(m).3.8 S 系中有一直杆沿x 轴方向装置且以0.98c 的速度沿x 轴正方向运动,S 系中的观察者测得杆长10m ,另有一观察以0.8c 的速度沿S 系x 轴负向运动,问该观察者测得的杆长若何?[解答]在S 系中的观测的杆长Δl = 10m 是运动长度,相对杆静止的参考系为S `,其长度是本征长度,根据尺缩效应= 50.25(m).另一参考系设为S ``系,相对S 系的速度为v 20 = -0.8c .在S ``系观察S`系的速度为= 0.99796c . 在S ``系观察S`系中的杆的长度是另一运动长度= 3.363(m).[注意]在涉及多个参考系和多个速度的时候,用双下标能够比较容易地区别不同的速度,例如用v10表示S `相对S 系的速度,用v 12表示S `系相对S``系的速度,因此,尺缩的公式也要做相应的改变,计算就不会混淆.3.9 一飞船和慧星相对于地面分别以0.6c 和0.8c 速度相向运动,在地面上观察,5s 后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?[解答]两者相撞的时间间隔Δt = 5s 是运动着的对象—飞船和慧星—发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰撞时间间隔Δt`是以速度v = 0.6c 运动的系统的本征时,根据时间膨胀公式,可得时间间隔为.3.10在太阳参考系中观察,一束星光垂直射向地面,速率为c ,而地球以速率u 垂直于光线运动.求在地面上测量,这束星光的大小与方向如何.[解答]方法一:用速度变换.取太阳系为S 系,地球为S`系.在S 系中看地球以v = u 运动,看星光的速度为 u x = 0,u y = c .星光在S`系中的速度分量为星光在S`系中的速度为,即光速是不变的.星光在S`系中与y `轴的夹角,即垂直地面的夹角为.方法二:用基本原理.根据光速不变原理,在地球的S`系中,光速也为c,当地球以速度v = u 沿x 轴运动时,根据速度变换公式可得星光的速度沿x`轴的分量为u y ` = -u ,所以星光速度沿y`轴的分量为``21x x -=40200.8(84)0.6c --⨯-=l l ∆=∆`l∆==102012210201/v v v v v c-=-0.98(0.8)10.98(0.8)c c --=--``l l ∆=∆t ∆=`t ∆=∆`21/x x x u vu u u v c -==--`21/yx u u u v c =-=`u c ==``arctanarctan y u u θ==`y u ==从而可求出星光速度垂直地面的夹角为. [注意]解题时,要确定不同的参考系,通常将已知两个物体速度的系统作为S 系,另外一个相对静止的系统作为S`系,而所讨论的对象在不同的参考系中的速度是不同的.3.11一粒子动能等于其非相对论动能二倍时,其速度为多少?其动量是按非相对论算得的二倍时,其速度是多少?[解答](1)粒子的非相对论动能为E k = m 0v 2/2,相对论动能为E`k = mc 2 – m 0c 2, 其中m 为运动质量.根据题意得,设x = (v/c )2,或平方得1 = (1 – x 2)(1 - x ),化简得x (x – x -1) = 0.由于x 不等于0,所以:x 2 –x -1 = 0. 解得取正根得速率为= 0.786c .(2)粒子的非相对论动量为:p = m 0v ,相对论动量为:,.很容易解得速率为:= 0.866c .3.12.某快速运动的粒子,其动能为4.8×10-16J ,该粒子静止时的总能量为1.6×10-17J ,若该粒子的固有寿命为2.6×10-6s ,求其能通过的距离.[解答]在相对论能量关系E = E0+ E k 中,静止能量E 0已知,且E 0= m 0c 2,总能量为,, 由此得粒子的运动时为.,解得速率为```arctan x y u u θ==m =22200m c m v =1x =+1(1x =+x =v =`p mv ==02m v =2v =22E mc ===00kE E E +=0`kE E t t E +∆==∆00kE E E =+粒子能够通过的距离为= 24167.4(m).3.13 试证相对论能量和速度满足如此关系式:[证明]根据上题的过程已得E = E 0+ E k 代入公式立可得证.3.14静止质子和中子的质量分别为m p = 1.67285×10-27kg ,m n = 1.67495×10-27kg ,质子和中子结合变成氘核,其静止质量为m 0 = 3.34365×10-27kg ,求结合过程中所释放出的能量.[解答]在结合过程中,质量亏损为 Δm = m p + m n - m 0 = 3.94988×10-30(kg), 取c = 3×108(m·s -1),可得释放出的能量为ΔE = Δmc 2 =3.554893×10-13(J). 如果取c = 2.997925×108(m·s -1),可得释放出的能量为 ΔE = 3.549977×10-13(J).v =l v t c t ∆=∆=∆8310 2.610-=⨯⨯⨯vc =v =。
第3章 狭义相对论 一、选择题1(C),2(B),3(D),4(D),5(D) 二、填空题(1). 4.33×10-8s ; (2). 0.99c ; (3).c 321; (4). 5.8×10-13, 8.04×10-2 ; (5). lS m , lSm 925 三、计算题1.在K 惯性系中,相距∆x = 5×106 m 的两个地方发生两事件,时间间隔∆t = 10-2 s ;而在相对于K 系沿正x 方向匀速运动的K '系中观测到这两事件却是同时发生的.试计算在K '系中发生这两事件的地点间的距离∆x '是多少?解:设两系的相对速度为v .根据洛仑兹变换, 对于两事件,有2)/(1c t x x v v -'+'=∆∆∆22)/(1(c x )/ct t v v -'+'=∆∆∆由题意: 0='∆t可得 x c t ∆∆=)/(2v及 2)/(1c x x v -='∆∆由上两式可得 x '∆2/1222])/()[(c t c x ∆∆-=2/1222][t c x ∆∆-== 4×106 m2. 一隧道长为L ,宽为d ,高为h ,拱顶为半圆,如图.设想一列车以极高的速度v 沿隧道长度方向通过隧道,若从列车上观测,(1) 隧道的尺寸如何?(2) 设列车的长度为l 0,它全部通过隧道的时间是多少?解:(1) 从列车上观察,隧道的长度缩短,其它尺寸均不变。
隧道长度为 221cL L v -='(2) 从列车上观察,隧道以速度v 经过列车,它经过列车全长所需时间为v v 0l L t +'=' v02)/(1l c v L +-= 这也即列车全部通过隧道的时间.3. 在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有 2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 )那么,在S '系中测得两事件之间距离为:2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m4. 一飞船和慧星相对于地面分别以0.6c 和0.8c 速度相向运动,在地面上观察,5s 后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?解:两者相撞的时间间隔Δt = 5s 是运动着的对象—飞船和慧星—发生碰撞的时间间隔,因此是运动时.在飞船上观察的碰撞时间间隔Δt`是以速度v = 0.6c 运动的系统的本征时,根据时间膨胀公式t ∆=,可得时间间隔为`t ∆=∆.5.设有一个静止质量为m 0的质点,以接近光速的速率v 与一质量为M 0的静止质点发生碰撞结合成一个复合质点.求复合质点的速率v f .解:设结合后复合质点的质量为M ′,根据动量守恒和能量守恒定律可得f M c m v v v '=-220/1/ 2220202/1c c m c M c M v /-+='由上面二个方程解得 )/1/(22000c M m m f v v v -+=四 研讨题1. 相对论的时间和空间概念与牛顿力学的有何不同?有何联系?参考解答:牛顿力学时空观的基本观点是,长度和时间的测量与运动(或说与参考系)无关;而相对论时空观的基本观点是,长度和时间的测量不仅与运动有关,还与物质分布有关。
一、选择题1.4351:宇宙飞船相对于地面以速度v 作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光讯号,经过∆t (飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为 (c 表示真空中光速)(A) c ·∆t (B) v ·∆t (C) 2)/(1c tc v -⋅∆ (D) 2)/(1c t c v -⋅⋅∆ [ A ]2.4352一火箭的固有长度为L ,相对于地面作匀速直线运动的速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹。
在火箭上测得子弹从射出到击中靶的时间间隔是:(c 表示真空中光速) (A) 21v v +L (B) 2v L (C) 12v v -L (D) 211)/(1c Lv v - [ B ]3.8015:有下列几种说法:(1) 所有惯性系对物理基本规律都是等价的;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
若问其中哪些说法是正确的,答案是(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的 [ D ]4.4164:在狭义相对论中,下列说法中哪些是正确的?(1) 一切运动物体相对于观察者的速度都不能大于真空中的光速(2) 质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的(3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些(A) (1),(3),(4) (B) (1),(2),(4) (C) (1),(2),(3) (D) (2),(3),(4) [ ]5.4169在某地发生两件事,静止位于该地的甲测得时间间隔为4 s ,若相对于甲作匀速直线运动的乙测得时间间隔为5 s ,则乙相对于甲的运动速度是(c 表示真空中光速)(A) (4/5) c (B) (3/5) c (C) (2/5) c (D) (1/5) c [ B ]6.4356:一宇航员要到离地球为5光年的星球去旅行。
第三章 狭义相对论P143.3.1 地球虽有自转,但仍可看成一较好的惯性参考系,设在地球赤道和地球某一极(例如南极)上分别放置两个性质完全相同的钟,且这两只钟从地球诞生的那一天便存在.如果地球从形成到现在是50亿年,请问那两只钟指示的时间差是多少?[解答]地球的半径约为R = 6400千米 = 6.4×106(m),自转一圈的时间是T = 24×60×60(s) = 8.64×104(s),赤道上钟的线速度为v = 2πR/T = 4.652×102(m·s -1).将地球看成一个良好的参考系,在南极上看赤道上的钟做匀速直线运动,在赤道上看南极的钟做反向的匀速直线运动.南极和赤道上的钟分别用A 和B 表示,南极参考系取为S ,赤道参考系取为S'.A 钟指示S 系中的本征时,同时指示了B 钟的运动时间,因此又指示S'系的运动时.同理,B 钟指示S'系中的本征时,同时指示了A 钟的反向运动时间,因此又指示S 系的运动时.方法一:以S 系为准.在S 系中,A 钟指示B 钟的运动时间,即运动时Δt = 50×108×365×24×60×60 = 1.5768×1016(s).B 钟在S'中的位置不变的,指示着自己的本征时Δt'.A 钟的运动时Δt 和B 钟的本征时Δt'之间的关系为t '∆=,可求得B 钟的本征时为21[1()]2v t t c'∆=∆≈-∆, 因此时间差为21()2v t t t c'∆-∆≈∆= 1.898×105(s). 在南极上看,赤道上的钟变慢了.方法二:以S'系为准.在S'系中,B 钟指示A 钟的反向运动时间,即运动时Δt' = 50×108×365×24×60×60 = 1.5768×1016(s).A 钟在S 中的位置不变的,指示着自己的本征时Δt .B 钟的运动时Δt'和A 钟的本征时Δt 之间的关系为t '∆=,可求得A 钟的本征时为21[1()]2v t t t c'∆=∆≈-∆, 因此时间差为21()2v t t t c''∆-∆≈∆= 1.898×105(s). 在赤道上看,南极上的钟变慢了.[注意]解此题时,先要确定参考系,还要确定运动时和本征时,才能正确引用公式. 有人直接应用公式计算时间差t t t '''∆-∆=-∆2211[1()]()22v v t t t c c'''≈+∆-∆=∆, 由于地球速度远小于光速,所以计算结果差不多,但是关系没有搞清.从公式可知:此人以S 系为准来对比两钟的时间,Δt'是B 钟的本征时,Δt 是A 钟的运动时,而题中的本征时是未知的.也有人用下面公式计算时间差,也是同样的问题.t t t '∆-∆=-∆2211[1()]()22v v t t t c c≈+∆-∆=∆3.2 一根直杆在S 系中观察,其静止长度为l ,与x 轴的夹角为θ,S'系沿S 系的x 轴正向以速度v 运动,问S'系中观察到杆子与x'轴的夹角若何?[解答]直杆在S 系中的长度是本征长度,两个方向上的长度分别为 l x = l cos θ和 l y = l sin θ.在S'系中观察直杆在y 方向上的长度不变,即l'y = l y ;在x 方向上的长度是运动长度,根据尺缩效应得xx l l '= 因此tan y xl l θ''==',可得夹角为21/2arctan{[1(/)]tan }v c θθ-'=-.3.3 在惯性系S 中同一地点发生的两事件A 和B ,B 晚于A 4s ;在另一惯性系S'中观察,B 晚于A 5s 发生,求S'系中A 和B 两事件的空间距离?[解答]在S 系中的两事件A 和B 在同一地点发生,时间差Δt = 4s 是本征时,而S'系中观察A 和B 两事件肯定不在同一地点,Δt' = 5s 是运动时,根据时间膨胀公式t '∆=,即45=,可以求两系统的相对速度为v = 3c /5.在S'系中A 和B 两事件的空间距离为Δl' = v Δt' = 3c = 9×108(m).3.4 一个“光钟”由两个相距为L 0的平面镜A 和B 构成,对于这个光钟为静止的参考系来说,一个“滴答”的时间是光从镜面A 到镜面B 再回到原处的时间,其值为002L cτ=.若将这个光钟横放在一个以速度v行驶的火车上,使两镜面都与v垂直,两镜面中心的连线与v平行,在铁轨参考系中观察,火车上钟的一个“滴答”τ与τ0的关系怎样?[解答]不论两个“光钟”放在什么地方,τ0都是在相对静止的参考系中所计的时间,称为本征时.在铁轨参考系中观察,火车上钟的一个“滴答”的时间τ是运动时,所以它们的关系为τ=3.5 S 系中观察到两事件同时发生在x 轴上,其间距为1m ,S'系中观察到这两个事件间距离是2m ,求在S'系中这两个事件的时间间隔.[解答]根据洛仑兹变换公式x vt x -'=和2t '=,得两个事件的空间和时间间隔公式x '∆=, (1a )2t '∆=(1b )由题意得:Δt = 0,Δx = 1m ,Δx' = 2m .因此x '∆=, (2a )2/xv ct -∆'∆=. (2b )由(2a )式得它们的相对速度为v = (3)将(2b )式除以(2a )式得2t v x c'∆=-'∆,所以t '∆=-=-10-8(s).[注意]在S'系中观察到两事件不是同时发生的,所以间隔Δx' = 2m 可以大于间隔Δx =1m .如果在S'系中观察到两事件也是同时发生的,那么Δx'就表示运动长度,就不可能大于本征长度Δx ,这时可以用长度收缩公式x '∆=∆3.6 一短跑运动员,在地球上以10s 的时间跑完了100m 的距离,在对地飞行速度为0.8c 的飞船上观察,结果如何?[解答]以地球为S 系,则Δt = 10s ,Δx = 100m .根据洛仑兹空间时间变换公式x '=和2t '=,飞船上观察运动员的运动距离为x '∆==-4×109(m).运动员运动的时间为2t '∆=100.8100/0.6c-⨯=≈16.67(s).在飞船上看,地球以0.8c 的速度后退,后退时间约为16.67s ;运动员的速度远小于地球后退的速度,所以运动员跑步的距离约为地球后退的距离,即4×109m .在飞船上看,地球后退的距离为22earth x v t ''∆=-∆=-22(1/)v t x x v c ∆-∆+∆-=-∆-∆=-∆在飞船上看,运动员在地球上运动的距离为earth x x ''∆-∆=∆60(m )==,这是地球上的100m(固有长度)在飞船上看到的运动长度。
3.7(与书中题不同) S 系中有一直杆沿x 轴方向装置且以0.98c 的速度沿x 轴正方向运动,S 系中的观察者测得杆长10m ,另有一观察者以0.8c 的速度沿S 系x 轴负向运动,问该观察者测得的杆长若何?[解答]在S 系中的观测的杆长Δl = 10m 是运动长度,相对杆静止的参考系为S',其长度是本征长度,设S'系相对S 系的速度为v 10,根据尺缩效应l l ∆=∆,可得杆的本征长度为l '∆=== 50.25(m).另一参考系设为S''系,相对S 系的速度为v 20 = -0.8c .在S''系观察S'系的速度为102012210201/v v v v v c-=-0.98(0.8)10.98(0.8)c c --=--= 0.99796c .在S''系观察S'系中的杆的长度是另一运动长度l l ''∆=∆.[注意]在涉及多个参考系和多个速度的时候,用双下标能够比较容易地区别不同的速度,例如用v 10表示S'相对S 系的速度,用v 12表示S'系相对S''系的速度,因此,尺缩的公式也要做相应的改变,计算就不会混淆.3.8 已知S'系以0.8c 的速度沿S 系x 轴正向运动,在S 系中测得两事件的时空坐标为x 1 = 20m ,x 2 = 40m ,t 1 = 4s ,t 2 = 8s .求S'系中测得的这两件事的时间和空间间隔.[解答]根据洛仑兹变换可得S'系的时间间隔为221t t ''-=840.8(4020)/0.6c---=≈6.67(s).空间间隔为21x x ''-=40200.8(84)0.6c --⨯-=≈-1.6×109(m).3.9 一飞船和慧星相对于地面分别以0.6c 和0.8c 速度相向运动,在地面上观察,5s 后两者将相撞,问在飞船上观察,二者将经历多长时间间隔后相撞?[解答]方法一:用时间膨胀公式.以地面为S 系,以飞船为S'系,S 和S'系对应的方向平行,飞船的方向与S 系中x 轴的方向相同v = 0.6c . 设S'系中飞船与慧星碰撞的时间间隔为Δt',由于碰撞发生在S'系中飞船处,因此飞船静止的时间Δt'是本征时.在S 系中的时间间隔为Δt = 5s ,是飞船运动的时间,因此是运动时.根据时间膨胀公式t '∆=,可得飞船上观察到的时间间隔为t '∆=∆== 4(s).方法二:用洛仑兹正变换.飞船与慧星在S 系中的时空坐标分别为(x 1,t 1)和(x 2,t 2),在S'系中的时空坐标分别为(x'1,t'1)和(x'2,t'2),根据洛仑兹坐标变换公式可得21x x ''-=,(1)221t t ''-=. (2)其中t 2 – t 1 = 5s .在S'系中飞船和彗星碰撞发生在同一点,即x'2 = x'1,由(1)式得x 2 – x 1 = v (t 2 – t 1),代入(2)式得2221t t ''-=21(t t =-.方法三:用洛仑兹逆变换.根据洛仑兹时间逆变换公式可得221t t ''''-=,由于x'2 – x'1 = 0,所以21t t ''-=可得2121(t t t t ''-=-. [注意]此题用时间膨胀的公式最简单,如果两事件发生在不同地点和不同时间,就一定要用洛仑兹变换.此题结果与慧星的速度无关,如果要计算慧星与飞船的相对速度,就需要利用慧星的速度值.3.10 在太阳参考系中观察,一束星光垂直射向地面,速率为c ,而地球以速率u 垂直于光线运动.求在地面上测量,这束星光的大小与方向如何. [解答]方法一:用速度变换.取太阳系为S 系,地球为S'系.在S 系中看地球以v = u 运动,看星光的速度为u x = 0,u y = c .星光在S'系中的速度分量为21/x xx u v u u u v c-'==--,21/y yx u u u v c'=-==星光在S'系中的速度为u c '==, 即光速是不变的.星光在S'系中与y'轴的夹角,即垂直地面的夹角为||arctanarctanx yu u u θ''=='.方法二:用基本原理.根据光速不变原理,在地球的S'系中,光速也为c .当地球以速度v = u 沿x 轴运动时,根据速度变换公式可得星光的速度沿x'轴的分量为u x ' = -u ,所以星光速度沿y'轴的分量为yu '==从而可求出星光速度垂直地面的夹角为||arctanarctanx yu u θ''=='.[注意]解题时,要确定不同的参考系,通常将已知两个物体速度的系统作为S 系,另外一个相对静止的系统作为S'系,而所讨论的对象在不同的参考系中的速度是不同的.此题与书中的例题3.4类似,这里的太阳相当于3.4题中的地球,这里的地球相当于乙飞船,星星相当于甲飞船.3.11 一粒子动能等于其非相对论动能二倍时,其速度为多少?其动量是按非相对论算得的二倍时,其速度是多少?[解答](1)粒子的非相对论动能为E k = m 0u 2/2, 相对论动能为E'k = mc 2 – m 0c 2,其中m 为运动质量m =.根据题意得22200m c m u -=,设x = (u/c )2,方程可简化为1x =+,或1(1x =+ 平方得1 = (1 – x 2)(1 - x ),化简得x (x 2– x -1) = 0.由于x 不等于0,所以x 2 - x -1 = 0.解得2x =,取正根得速率为u =c .(2)粒子的非相对论动量为p = m 0u ,相对论动量为p m u '==,根据题意得方程02m u m u =.很容易解得速率为2u c == 0.866c .3.12 某快速运动的粒子,其动能为4.8×10-16J ,该粒子静止时的总能量为1.6×10-17J ,若该粒子的固有寿命为2.6×10-6s ,求其能通过的距离. [解答]在相对论能量关系中E = E 0 + E k , 静止能量E 0已知,且E 0 = m 0c 2,总能量为22E m c ===化得000kE E EE E ==+,解得速率为u =粒子的运动时为0kE E t t t E '+∆'∆==∆.粒子能够通过的距离为l u t c t ∆=∆=∆8310 2.610-=⨯⨯⨯.3.13 试证相对论能量和速度满足如此关系式:u c =.[证明]根据上题的过程已得u =将E = E 0 + E k 代入公式立可得证.3.14 静止质子和中子的质量分别为m p = 1.67285×10-27kg ,m n = 1.67495×10-27kg ,质子和中子结合变成氘核,其静止质量为m 0 = 3.34365×10-27kg ,求结合过程中所释放出的能量. [解答]在结合过程中,质量亏损为 Δm = m p + m n - m 0 = 3.94988×10-30(kg),取c = 3×108(m·s -1),可得释放出的能量为ΔE = Δmc 2 = 3.554893×10-13(J).如果取c = 2.997925×108(m·s -1),可得释放出的能量为ΔE = 3.549977×10-13(J).。