大学物理习题册答案(湖南大学版)光的干涉
- 格式:doc
- 大小:257.50 KB
- 文档页数:6
图中数字为各处的折射率图16-23一、选择题【C 】1.(基础训练2)如图16-15所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且 n 1 < n 2 > n 3,则两束反射光在相遇点的相位差为(A ) 2πn 2e /(n 1λ1) (B )[4πn 1e / ( n 2λ1)] + π(C ) [4πn 2e / ( n 1λ1)] + π (D )4πn 2e /( n 1λ1) 解答:[C]根据折射率的大小关系n 1 < n 2 > n 3,判断,存在半波损失,因此光程 差2/2λδ+=e n 2,相位差πλπδλπϕ∆+==en 422。
其中λ为光在真空中的波长,换算成介质1n 中的波长即为11λλn =,所以答案选【C 】。
【B 】2.(基础训练6)一束波长为 λ 的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜的最小厚度为(A ) λ/4 (B ) λ/(4n) (C ) λ/2 (D ) λ/(2n) 解答:[B]干涉加强对应于明纹,又因存在半波损失,所以光程差()()()2/221/4()/4nd k d k n Min d n λλλλ∆=+=⇒=-⇒=【B 】3.(基础训练8)用单色光垂直照射在观察牛顿环的装置上。
当平凸透镜垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹(A ) 向右平移 (B ) 向中心收缩(C ) 向外扩张 (D ) 静止不动 (E ) 向左平移 解答:[B]中央条纹级次最低,随着平凸镜缓慢上移,中央条纹的级次增大即条纹向中心收缩。
【A 】4.(基础训练9)两块平玻璃构成空气劈形膜,左边为棱边,用单色平行光垂直入射。
若上面的平玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的()。
(A )间隔变小,并向棱边方向平移; (B )间隔变大,并向远离棱边方向平移; (C )间隔不变,向棱边方向平移; (D )间隔变小,并向远离棱边方向平移。
光的干涉参考解答一 选择题1.如图示,折射率为n 2厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束之间的光程差是 (A )2n 2e (B )2n 2e -2λ (C )2n 2e -λ (D )2n 2e -22n λ[A ][参考解]:两束光都是在从光疏介质到光密介质的分界面上反射,都有半波损失存在,其光程差应为δ=(2n 2e +2λ)-2λ= 2n 2e 。
2.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过一块厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径光的光程差等于 (A )(r 2+ n 2t 2)-(r 1+ n 1t 1)(B )[r 2+ (n 2-1)t 2] -[r 1+ (n 1-1)t 1] (C )(r 2-n 2t 2)-(r 1-n 1t 1) (D )n 2t 2-n 1t 1[ B ]3.如图,用单色光垂直照射在观察牛顿环的装置上,当平凸透镜垂直向上缓缓平移而离开平面玻璃板时,可以观察到环状干涉条纹 (A )向右移动 (B )向中心收缩 (C )向外扩张 (D )静止不动[ B ][参考解]:由牛顿环的干涉条件(k 级明纹)λλk ne k =+22 ⇒ nk e k 2)21(λ-= 可知。
4.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传到B ,若A 、B 两点的相位差是3π,则此路径AB 的光程差是 (A )1.5λ (B )1.5n λ (C )3λ (D )1.5λ/n[ A ][参考解]:由相位差和光程差的关系λδπϕ2=∆可得。
3S 1PS 空气二 填空题1.如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ,在图中的屏中央O 处(S 1O=S 2O ),两束相干光的相位差为λθπsin 2d 。
第12章习题精选试题中相关常数:1gm = 10-6m , 1nm =10-9m ,可见光范围(400nm~760nm)1、在真空中波长为人的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3n ,则此路径AB 的光程为:(A )1.5九.(B ) 1.5九/n . (C ) 1.5n 九.(D ) 3 .[] 2、在相同的时间内,一束波长为九的单色光在空气中与在玻璃中:(A )传播路程相等,走过光程相等.(B )传播路程相等,走过光程不相等. (C )传播路程不相等,走过光程相等.(D )传播路程不相等,走过光程不相等. 3、如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方 的透明介质的折射率分别为n 1和n 3,已知n 1 < n 2 < n /若用波长为人的单 色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②(B ) 2ne +九/2. (D ) 2n e 一九 /(2n ). 22[]4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是:(A )使屏靠近双缝. (B )使两缝的间距变小. (C )把两个缝的宽度稍微调窄. (D )改用波长较小的单色光源. 5、在双缝干涉实验中,入射光的波长为九,用玻璃纸遮住双缝中的一个缝,若玻璃纸中 光程比相同厚度的空气的光程大2.5九,则屏上原来的明纹处:(A )仍为明条纹. (B )变为暗条纹.(C )既非明纹也非暗纹.(D )无法确定是明纹,还是暗纹.[]6、如图,用单色光垂直照射在观察牛顿环的装置上.当平凸透镜 । [单色光 …垂直向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹:J,空气(A )向右平移. (B )向中心收缩. j 一(C )向外扩张.(D )向左平移.[]7、在牛顿环实验装置中,曲率半径为R 的平凸透镜与平玻璃板在中心恰好接触,它们之 间充满折射率为n 的透明介质,垂直入射到牛顿环装置上的平行单色光在真空中的波长为人,则反射光形成的干涉条纹中暗环半径q 的表达式为:的光程差是:(A ) 2ne .(C ) 2n 2e 十 九.(A) r = k k 九R . k ____________(C ) r =、k )R .k(B) r =、;'k 九R /n . k _ (D ) r k = kk 1 /(nR ). n 38、用波长为人的单色光垂直照射置于空气中的厚度为e折射率为1.5的透明薄膜,两束反射光的光程差3=.9、单色平行光垂直入射到双缝上.观察屏上P点到两缝的距离分别为〃和厂.设双缝和屏之间充满折射率为n的介质,则P点处光线的光程差为10、用一定波长的单色光进行双缝干涉实验时,欲使屏上的干涉条纹间距变大,可采用的方法是:(1).(2).11、在双缝干涉实验中,若使两缝之间的距离增大,则屏幕上干涉条纹间距 ______ 若使单色光波长减小,则干涉条纹间距.12、在双缝干涉实验中,若两缝的间距为所用光波波长的N倍,观察屏到双缝的距离为D,则屏上相邻明纹的间距为.九13、用波长为人的单色光垂直照射如图所示的牛顿环装置,观察从空气膜上下表面反射的光形成的牛顿环.若使平凸透镜慢慢地垂直向上移动,从透镜顶点与平面玻璃接触至移动到两者距离为d的过程中,移过视场中某固定观察点的条纹数目等于 ____________ .14、图。
第十七章 光的干涉一. 选择题1.在真空中波长为?的单色光,在折射率为n 的均匀透明介质中从A 沿某一路径传播到B ,若A ,B 两点的相位差为3?,则路径AB 的长度为:( D )A. 1.5?B. 1.5n ?C. 3?D. 1.5?/n解: πλπϕ32==∆nd 所以 n d /5.1λ=本题答案为D 。
2.在杨氏双缝实验中,若两缝之间的距离稍为加大,其他条件不变,则干涉条纹将 ( A )A. 变密B. 变稀C. 不变D. 消失解:条纹间距d D x /λ=∆,所以d 增大,x ∆变小。
干涉条纹将变密。
本题答案为A 。
3.在空气中做双缝干涉实验,屏幕E 上的P 处是明条纹。
若将缝S 2盖住,并在S 1、S 2连线的垂直平分面上放一平面反射镜M ,其它条件不变(如图),则此时 ( B )A. P 处仍为明条纹B. P 处为暗条纹C. P 处位于明、暗条纹之间D. 屏幕E 上无干涉条纹解 对于屏幕E 上方的P 点,从S 1直接入射到屏幕E 上和从出发S 1经平面反射镜M 反射后再入射到屏幕上的光相位差在均比原来增?,因此原来是明条纹的将变为暗条纹,而原来的暗条纹将变为明条纹。
故本题答案为B 。
4.在薄膜干涉实验中,观察到反射光的等倾干涉条纹的中心是亮斑,则此时透射光的等倾干涉条纹中心是( B )A. 亮斑B. 暗斑C. 可能是亮斑,也可能是暗斑D. 无法确定 解:反射光和透射光的等倾干涉条纹互补。
本题答案为B 。
5.一束波长为??的单色光由空气垂直入射到折射率为n 的透明薄膜上,透明薄膜放在空气中,要使反射光得到干涉加强,则薄膜最小的厚度为 ( B )A. ?/4B. ?/ (4n )C. ?/2D. ?/ (2n )6.在折射率为n ?=1.60的玻璃表面上涂以折射率n =1.38的MgF 2透明薄膜,可以减少光的反射。
当波长为500.0nm 的单色光垂直入射时,为了实现最小反射,此透明薄膜的最小厚度为( C )A. 5.0nmB. 30.0nmC. 90.6nmD. 250.0nm 解:增透膜 6.904/min ==n e λnm 选择题3图本题答案为C 。
本习题版权归物理与科学技术学院物理系所有,不得用于商业目的《大学物理》作业 No.4 光的干涉一、选择题:1. 如图,1S 、2S 是两个相干光源,它们到P 点的距离分别为 1r 和2r 。
路径1S P 垂直穿过一块厚度为1t 、折射率为1n 的介质板,路径P S 2垂直穿过厚度为2t 、折射率为2n 的另一块介质板,其余部分可看作真空,这两条路径的光程差应是 [ ] (A) )()(111222t n r t n r +-+ (B) ])1([])1([111222t n r t n r -+--+(C) )()(111222t n r t n r ---(D) 1122t n t n -解: 由光程差公式12⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=∆∑∑j j j i i i t n t n 可得两条光线的光程差为:][][11112222t t n r t t n r -+--+=∆])1([])1([111222t n r t n r -+--+= 故选B2. 如图所示,折射率为2n 、厚度为e 的透明介质薄膜的上方和下方的透明介质折射率分别为1n 和3n ,已知321n n n ><。
若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束①与②的光程差是 [ ](A) 22n e(B) 2e n 2λ-21(C) 22n e λ- (D) 2222n e n λ- 解: 上表面反射因21n n <,此处反射光有半波损失,下表面反射因32n n >,此处反射光无半波损失,故两光路有奇数个半波损失,所以垂直入射时光线①和②的光程差应为e n 22=∆λ-21故选B3. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且321n n n ><, 1λ 为入射光在折射率为n 1的媒质中的波长,则两束反射光在相遇点的相位差为 [ ](A) 1122λπn en (B) πλπ+1212n en (C) πλπ+1124n en(D) 1124λπn en解:因21n n <,则光在薄膜上表面反射时有半波损失,32n n >,下表面反射时无半波损失,所以两束反射光在相遇点的光程差为3S 1S 2322112λn e n +=∆ (注意:真空中光程)由此有两光路相位差为λλπλπϕ2222112n e n +=∆=∆,而11n λλ=所以πλπϕ+=∆1124n en故选C4. 在双缝干涉实验中,屏幕E 上的P 点处是明条纹。
习题18-1.杨氏双缝的间距为mm 2.0,距离屏幕为m 1,求:(1)若第一到第四明纹距离为mm 5.7,求入射光波长。
(2)若入射光的波长为 A 6000,求相邻两明纹的间距。
解:(1)根据条纹间距的公式:m d D kx 0075.0102134=⨯⨯⨯=∆=∆-λλ 所以波长为: A 5000=λ(2)若入射光的波长为 A 6000,相邻两明纹的间距:mm d D x 31021060001410=⨯⨯⨯==∆--λ 18-2.图示为用双缝干涉来测定空气折射率n 的装置。
实验前,在长度为l 的两个相同密封玻璃管内都充以一大气压的空气。
现将上管中的空气逐渐抽去,(1)则光屏上的干涉条纹将向什么方向移动;(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。
计算空气的折射率.解:(1)当上面的空气被抽去,它的光程减小,所以它将通过增加路程来弥补,所以条纹向下移动。
(2)当上管中空气完全抽到真空,发现屏上波长为λ的干涉条纹移过N 条。
可列出:λN n l =-)(1解得: 1+=lN n λ 18-3.在图示的光路中,S 为光源,透镜1L 、2L 的焦距都为f , 求(1)图中光线SaF 与光线SOF 的光程差为多少?。
(2)若光线SbF 路径中有长为l , 折射率为n 的玻璃, 那么该光线与SOF 的光程差为多少?。
解:(1)图中光线SaF 与光线SOF 的几何路程相同,介质相同,所以SaF 与光线SoF光程差为0。
(2)若光线SbF 路径中有长为l , 折射率为n 的玻璃, 那么光程差为几何路程差与介质折射率差的乘积,即 )(1-n l 18-4.在玻璃板(折射率为50.1)上有一层油膜(折射率为30.1)。
已知对于波长为nm 500和nm 700的垂直入射光都发生反射相消,而这两波长之间没有别的波长光反射相消,求此油膜的厚度。
解:油膜上、下两表面反射光的光程差为2 ne2ne=(2k+1)λ/2=(k+1/2)λ (k=0,1,2,…) ①当λ1=5000A时,有 2ne=(k 1+1/2)λ1=k 1λ1+2500 ② 当λ2=7000A时,有 2ne=(k 2+1/2)λ2=k 2λ2+3500 ③ 因λ2>λ1,所以k 2<k 1;又因为λ1与λ2之间不存在λ3满足 2ne=(k 3+1/2)λ3式即不存在 k 2<k 3<k 1的情形,所以k 2、k 1应为连续整数,即 k 2=k 1-1 ④ 由②、③、④式可得:k 1=(k 2λ2+1000)/λ1=(7k 2+1)/5=[7(k 1-1)+1]/5得 k 1=3 k 2=k 1-1=2可由②式求得油膜的厚度为 e=(k 1λ1+2500)/(2n)=6731 A18-5.一块厚μm 2.1的折射率为50.1的透明膜片。
第7章 光的衍射7.1平行单色光垂直入射在缝宽为15.0=a mm 的单缝上。
缝后有焦距为=f 400mm 的凸透镜,在其焦平面上放置观察屏幕。
现测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8mm ,则入射光的波长为=λ? 解:单缝衍射的暗条纹分布规律是`f y k aλ=±,(k` = 1,2,3,…), 测得屏幕上中央明条纹两侧的两个第三级暗纹之间的距离为8mm ,y 3 – y -3` = 6fλ/a =8mmnm mm f a 500105400615.0868.04=⨯=⨯⨯==-λ 7.2一单色平行光束垂直照射在宽度为1.0mm 的单缝上,在缝后放一焦距为2.0 m 的会聚透镜。
已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 m ,则入射光波长约为多少? 解:单缝衍射的暗条纹分布规律是`f y k aλ=±,(k` = 1,2,3,…), 中央明纹的宽度为Δy = y 1 – y -1` = 2fλ/a =2.0mmnm mm mm f a 50020000.1===λ7.3 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,并垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第三级衍射极小相重合,试问:(1)这两种波长之间有什么关系;(2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合?[解答](1)单缝衍射的暗条纹形成条件是δ = a sin θ = ±k`λ,(k` = 1,2,3,…),k 1` = 1和k 2` = 3的条纹重合时,它们对应同一衍射角,由于因此λ1 = 3λ2.(2)当其他极小重合时,必有k 1`λ1 = k 2`λ2,所以 k 2` = 3k 1`,当k 1` = 2时k 2` = 6,可见:还有其他极小重合.7.4 单缝的宽度a = 0.40mm ,以波长λ = 589nm 的单色光垂直照射,设透镜的焦距f = 1.0m .求:(1)第一暗纹距中心的距离;(2)第二明纹的宽度;(3)如单色光以入射角i = 30º斜射到单缝上,则上述结果有何变动?解:(1)单缝衍射的暗条纹分布规律是`f y k aλ=±,(k` = 1,2,3,…), 当k` = 1时,y 1 = f λ/a = 1.4725(mm).(2)除中央明纹外,第二级明纹和其他明纹的宽度为Δy = y k`+1 - y k` = fλ/a = 1.4725(mm).(3)当入射光斜射时,光程差为δ = a sin θ – a sin φ = ±k`λ,(k` = 1,2,3,…).当k` = 1时,可得sin θ1 = sin φ ± λ/a = 0.5015和0.4985,cos θ1 = (1 – sin 2θ1)1/2 = 0.8652和0.8669.两条一级暗纹到中心的距离分别为y 1 = f tan θ1 = 579.6(mm)和575.1(mm).当k` = 2时,可得sin θ2 =a sin φ ± 2λ/a = 0.5029和0.4971,cos θ2 = (1 – sin 2θ2)1/2 = 0.8642和0.8677.两条二级暗纹距中心的距离分别为 y 2 = f tan θ2 = 581.9(mm)和572.8(mm). 第二明纹的宽度都为 Δy = y 2 – y 1 = 2.3(mm),比原来的条纹加宽了.7.5 一单色平行光垂直入射于一单缝,若其第三级衍射明纹位置正好和波长为600 nm 的单色光垂直入射该缝时的第二级衍射明纹位置一样,求该单色光的波长.解:除了中央明纹之外,单缝衍射的条纹形成的条件是sin (21)2a k λδθ==±+,(k = 1,2,3,…). 当条纹重合时,它们对应同一衍射角,因此(2k 1 + 1)λ1 = (2k 2 + 1)λ2, 解得此单色光的波长为12122121k k λλ+=+= 428.6(nm).7.6 一双缝,缝距4.0=d mm ,两缝宽度都是080.0=a mm ,用波长为 A 4800=λ的平行光垂直照射双缝,在双缝后放一焦距0.2=f m 的透镜。
第6章 光的干涉一、选择题1(C),2(A),3(A),4(B),5(A),6(B),7(B),8(C),9(D),10(D)二、填空题(1). 使两缝间距变小;使屏与双缝之间的距离变大. (2). N D(3). 0.75(4). λ3,33.1(5). )2(L λ(6). 113(7). 1.2(k=0,中央是暗斑,k=1后是环;本题取k=4)(8). 2d / λ(9). 2(n – 1)h(10). )(212N N L +λ三、计算题1.一双缝,缝距4.0=d mm ,两缝宽度都是080.0=a mm ,用波长为A 4800=λ的平行光垂直照射双缝,在双缝后放一焦距0.2=f m 的透镜。
求:(1)在透镜焦平面处的屏上,双缝干涉条纹的间距x ∆;(2)在单缝衍射中央亮纹范围内的双缝干涉亮纹数目N 。
解:双缝干涉条纹:(1) 第k 级亮纹条件: d sin θ =k λ第k 级亮条纹位置:x k = f tg θ ≈f sin θ ≈kf λ / d相邻两亮纹的间距:∆x = x k +1-x k =(k +1)f λ / d -kf λ / d =f λ / d=2.4×10-3 m=2.4 mm(2) 单缝衍射第一暗纹: a sin θ1 = λ单缝衍射中央亮纹半宽度:∆x 0 = f tg θ1≈f sin θ1≈f λ / a =12 mm∆x 0 / ∆x =5∴ 双缝干涉第±5极主级大缺级.∴ 在单缝衍射中央亮纹范围内,双缝干涉亮纹数目N = 9分别为 k = 0,±1,±2,±3,±4级亮纹或根据d / a = 5指出双缝干涉缺第±5级主大,同样得该结论.2. 在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600 nm 的光波干涉相消,对λ2=700 nm 的光波干涉相长.且在600 nm 到700 nm 之间没有别的波长是最大限度相消或相长的情形.求所镀介质膜的厚度.(1 nm = 10-9 m)解:设介质薄膜的厚度为e ,上、下表面反射均为由光疏介质到光密介质,故不计附加程差。
当光垂直入射i = 0时,依公式有:对λ1: ()112212λ+='k e n ① 按题意还应有: 对λ2: 22λk e n =' ② 由① ②解得: ()32121=-=λλλk 将k 、λ2、n '代入②式得n k e '=22λ=7.78×10-4 mm3. 在Si 的平表面上氧化了一层厚度均匀的SiO 2薄膜.为了测量薄膜厚度,将它的一部分磨成劈形(示意图中的AB 段).现用波长为600 nm 的平行光垂直照射,观察反射光形成的等厚干涉条纹.在图中AB 段共有8条暗纹,且B处恰好是一条暗纹,求薄膜的厚度.(Si 折射率为3.42,SiO 2折射率为1.50)解:上下表面反射都有相位突变π,计算光程差时不必考虑附加的半波长. 设膜厚为e , B 处为暗纹,2ne =21( 2k +1 )λ, (k =0,1,2,…) A 处为明纹,B 处第8个暗纹对应上式k =7 ()nk e 412λ+==1.5×10-3 mm4.用波长为λ=600 nm (1 nm =10-9 m)的光垂直照射由两块平玻璃板构成的空气劈形膜,劈尖角θ=2×10-4 rad .改变劈尖角,相邻两明条纹间距缩小了∆l =1.0 mm ,求劈尖角的改变量∆θ.解:原间距 l 1=λ / 2θ=1.5 mm改变后, l 2=l 1-∆l =0.5 mmθ 改变后, θ2=λ / 2l 2=6×10-4 rad改变量 ∆θ=θ2-θ=4.0×10-4 rad5.用波长500=λnm(m 10nm 1-9=)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈尖上。
劈尖角4102-⨯=θrad ,如果劈尖内充满折射率为40.1=n 的液体。
求从劈棱数起第五个明条纹在充入液体前后移动的距离。
解:设第五个明纹处膜厚为e ,则有2ne +λ / 2=5 λ设该处至劈棱的距离为l ,则有近似关系e =l θ,由上两式得 2nl θ=9 λ / 2,l =9λ / 4n θ充入液体前第五个明纹位置 l 1=9 λ / 4θ充入液体后第五个明纹位置 l 2=9 λ / 4n θ 充入液体前后第五个明纹移动的距离∆l =l 1 – l 2=9 λ ( 1 - 1 / n ) / 4θ=1.61 mme n 0 =1.00n =1.35n =1.50Si A B SiO ,膜6.如图所示,牛顿环装置的平凸透镜与平板玻璃有一小缝隙0e ,现用波长为λ的单色光垂直照射,已知平凸透镜的曲率半径为R ,求反射光形成的牛顿环的各暗环半径。
解:设某暗环半径为r ,由图可知,根据几何关系,近似有()R r e 2/2= ①再根据干涉减弱条件有 ()λλ122121220+=++k e e ② 式中k为大于零的整数.把式①代入式②可得()02e k R r -=λ (k 为整数,且k >2e 0 / λ)7. 在牛顿环装置的平凸透镜和平玻璃板之间充满折射率n =1.33的透明液体(设平凸透镜和平玻璃板的折射率都大于1.33).凸透镜的曲率半径为 300 cm ,波长λ=650 nm(1nm =109m)的平行单色光垂直照射到牛顿环装置上,凸透镜顶部刚好与平玻璃板接触.求:(1) 从中心向外数第十个明环所在处的液体厚度e 10.(2) 第十个明环的半径r 10.解:(1) 设第十个明环处液体厚度为e 10,则2n e 10+λ / 2=10 λe 10=(10λ-λ / 2) / 2n =19 λ / 4n=2.32×10-4 cm(2) R 2=()22k k e R r -+ =222 2k k k e e R R r +-+∵e k <<R ,略去2k e , 得 k k e R r 2=1010 2e R r ==0.373 cm8. 如图所示,用波长为λ= 632.8 nm (1 nm = 10-9 m)的单色点光源S 照射厚度为e = 1.00×10-5 m 、折射率为n 2 = 1.50、半径为R = 10.0 cm 的圆形薄膜F ,点光源S 与薄膜F 的垂直距离为d = 10.0 cm ,薄膜放在空气(折射率n 1 = 1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).解:对于透射光等倾条纹的第k 级明纹有:λk r e n =cos 22中心亮斑的干涉级最高,为k max ,其r = 0,有:=⨯⨯⨯⨯==--752max 10328.61000.150.122λen k 47.4 应取较小的整数,k max = 47(能看到的最高干涉级为第47级亮斑).最外面的亮纹干涉级最低,为k min ,相应的入射角为 i m = 45︒(因R =d ),相应的折射 角为r m ,据折射定律有 m m r n i n sin sin 21=r R e e 0 S F d ef L C R n 1 n 2 n 1∴ 50.145sin 00.1sin )sin (sin 1211︒==--m m i n n r = 28.13° 由 λmin 2cos 2k r e n m = 得:752min 10328.613.28cos 1000.150.12cos 2--⨯︒⨯⨯⨯==λmr e n k = 41.8 应取较大的整数,k min = 42(能看到的最低干涉级为第42级亮斑).∴ 最多能看到6个亮斑(第42,43,44,45,46,47级亮斑).四 研讨题 1. 如果1S 和2S 为两个普通的独立的单色线光源,用照相机能否拍出干涉条纹照片?如果曝光时间比10-8s 短得多,是否有可能拍得干涉条纹照片?参考解答:如果1S 和2S 为两个普通的独立的单色线光源,用照相机不能拍得干涉条纹照片;如果曝光时间比10-8s 短得多,有可能拍得干涉条纹照片。
所谓干涉就是在观察的时间内,叠加区有一稳定的强度分布。
一般的实验中观察时间都远比原子发光的时间10-8s 长得多,所以要维持各点强度稳定,就得要求叠加区内各点每时刻相遇的两条光线除了频率相同、振动方向相同之外,还必须相位差恒定。
由发光的特点可知,在我们观察的时间内,两个独立光源不可能保证两条光线在确定的点有恒定的相位差。
但每时刻,两独立光源发出的两条光线在各点都有一定的相差,即有一确定的谐振叠加结果,只不过在观察的时间内,各种合成结果都会出现,从而得到的观察结果是非相干的。
用普通相机只能拍得平均结果,所以无法拍得两个独立的光源的“干涉条纹”照片。
如果曝光时间比10-8s 短得多,即短到一个原子一次发光的时间,那么就把两个原子发光的某一次的叠加结果记录下来,当然就有一个确定的强度分布。
因此可以说,这样的相机有可能拍得干涉条纹。
2. 用白色线光源做双缝干涉实验时,若在缝1S 后面放一红色滤光片,2S 后面放一绿色滤光片,问能否观察到干涉条纹?为什么?参考解答:不能观察到干涉条纹。
判断是否能看到干涉条纹应从两个方面考虑。
首先是产生相干叠加的条件,即相干光必须频率相同,在叠加区必须有振动方向相同的分量及有恒定的相位差。
其次还要从技术上考虑,如对两光强之比(及两光束光强之比222121//A A I I R ==)、光源的非单色性及光源的线度等都有一定的要求,以保证获得清晰的干涉条纹。
若在两个缝上分别放置红色和绿色滤波片,不满足频率相同的相干条件,所以不可能看到干涉条纹。
3. 在煤矿的井下生产中,即时准确地监测井下气体的甲烷浓度变化,对确保安全生产极其重要.请利用所学的知识设计一检测仪监测矿井甲烷浓度.参考解答:介绍瑞利干涉仪监测矿井甲烷浓度。
在煤矿的井下生产中,即时准确地监测井下气体的甲烷浓度变化,对确保安全生产极其重要. 根据甲烷和纯净空气的折射率不同,运用双光束干涉,通过观察干涉条纹的变化,可以实现对井下空气中甲烷浓度的监测.瑞利干涉仪的结构如图所示,S 为狭缝光源,经透镜L 1后成为平行光,再由双缝S 1、S 2 分离出两束相干光,分别让它们通过长度相等的两个气室T 1、T 2后,由透镜L 2 会聚到其焦平面上形成干涉条纹. 若两气室T 1、T 2内气体相同,则两束光在0点处干涉相长,形成零级明条纹. 若将气室T 1内充入纯净空气,其折射率用n 0表示;将气室T 2内充入井下气体,其折射率用n′ 表示,则两束光到达0点的光程差为:)1()(00----=-'=-'=λδk L n n L n L n式中,L 为气室的长度;λ为光的波长;k 为0点处干涉明条纹的级次. 假设井下气体中甲烷浓度为x %,则其折射率n′与纯净空气的折射率n 0以及纯甲烷气体的折射率n 有如下关系: 1001001000x n x nn -+=' 将其整理为 )2(100)(00-----=-'xn n n n 由式(1)和式(2)可得:Ln n k x )(1000-=λ 即为0点处干涉明条纹的级次k 与气室中井下气体的甲烷浓度x %之间的关系式. 实际应用中,需要使两气室内的气体具有相同的压强和温度,利用读数显微镜可较方便地确定0处干涉明条纹的级次k ,在已知波长λ和纯净空气折射率n 0以及纯甲烷气体的折射率n 的情况下,即可计算出井下气体的甲烷浓度.4. 薄膜尤其是光学薄膜厚度测控技术不断完善,就其测量原理而言,主要有光电极值法、干涉法、石英晶体振荡法椭偏仪法,请查阅相关文献说明薄膜厚度测控技术中的干涉法的物理原理。