运筹学06整数规划
- 格式:ppt
- 大小:557.00 KB
- 文档页数:39
运筹学整数规划运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。
整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。
整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。
整数规划问题的数学模型可以表示为:max/min c^T xs.t. Ax ≤ bx ≥ 0x ∈ Z其中,c是目标函数的系数矩阵,x是决策变量的向量,A是约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。
整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。
由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难的任务。
求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。
分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。
分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。
割平面法是一种通过添加新的约束条件来减少解空间的方法。
它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。
割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。
启发式算法是一种基于经验和启发式搜索的方法。
它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。
常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。
启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。
综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。
整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。
常用的求解方法包括分支定界法、割平面法和启发式算法等。
这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。
运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。
本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。
一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。
在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。
与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。
二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。
1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。
在整数规划中,决策变量通常表示为整数。
2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。
它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。
3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。
在整数规划中,约束条件可以是线性等式或线性不等式。
三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。
这些算法通过不断对问题进行优化,逐步逼近最优解。
1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。
它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。
2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。
它通过不断分支和剪枝来找到最优解。
3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。
它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。
四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。
以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
第六章整数规划6.1 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。
1、 max z=3x1+2x2S.T. 2x1+3x2≤122x1+x2≤9x1、x2≥0解:2、 min f=10x1+9x2S.T. 5x1+3x2≥45x1≥8x2≤10x1、x2≥06.2 求解下列整数规划问题1、 min f=4x1+3x2+2x3S.T. 2x1-5x2+3x3≤44x1+x2+3x3≥3x2+x3≥1x1、x2、x3=0或1解:最优解(0,0,1),最优值:22、 min f=2x1+5x2+3x3+4x3S.T. -4x1+x2+x3+x4≥2-2x1+4x2+2x2+4x2≥4x1+x2-x2+x2≥3x1、x2、x3、x3=0或1解:此模型没有可行解。
3、max Z=2x1+3x2+5x3+6x4S.T. 5x1+3x2+3x3+x4≤302x1+5x2-x2+3x2≤20-x1+3x2+5x2+3x2≤403x1-x2+3x2+5x2≤25x1、x2、x3、x3=正整数解:最优解(0,3,4,3),最优值:474、min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19约束条件x1 + x2+x3≤30x4+ x5+x6-10 x16≤0x7+ x8+x9-20 x17≤0x10+ x11+x12-30 x18≤0x13+ x14+x15-40 x19≤0x1 + x4+ x7+x10+ x13=30x2 + x5+ x8+x11+ x14=20x3 + x6+ x9+x12+ x15=20x i为非负数(i=1,2…..8)x i为非负整数(i=9,10…..15)x i为为0-1变量(i=16,17…..19)解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:8606.3 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:公司办公会决定选择原则如下:(1)B5、B3和B7只能选择一个。
实验六、用EXCEL 求解整数规划用单纯形法求解线性规划问题,最优解可能是整数,也可能不是整数,但在很多实际问题中,要求全部或部分变量的取值必须是整数,如所求的解是安排上班的人数,按某个方案裁剪钢材的根数,生产设备的台数等等。
对于整数解的线性规划问题,不是用四舍五入或去尾法对线性规划的非整数解加以处理都能解决的,而要用整数规划的方法加以解决,如分枝定界法和割平面算法。
这些算法比单纯形法更为复杂,因此,一般的学习者要想掌握整数规划的数学算法有一定的困难。
然而事实上,由于Excel 的[工具][规划求解]可以求解整数规划问题,所以,对于一个真正有志于运用运筹学方法解决生产经营中问题的管理者来说,算法将不是障碍因素。
一、实验目的1、 掌握如何建立整数线性规划模型,特别是0~1逻辑变量在模型中的应用。
2、 掌握用Excel 求解整数线性规划模型的方法。
3、 掌握如何借助于Excel 对整数线性规划模型进行灵敏度分析,以判断各种可能的变化对最优方案产生的影响。
4、 读懂Excel 求解整数线性规划问题输出的运算结果报告和敏感性报告。
二、 实验内容1、 整数规划问题模型该问题来自于《运筹学基础及应用》(第四版)胡运权主编P126习题4.13,题目如下: 需生产2000件某种产品,该种产品可利用A 、B 、C 、D 设备中的任意一种加工,已知每种设备的生产准备结束费用、生产该产品时的单件成本以及每种设备限定的最大加工数量(件)如表1所示,问企业应该如何安排设备生产该产品才能使得总的生产成本最少,试建立该问题的数学模型并求解。
该产品可以利用四种不同的设备加工,由于采用不同的设备加工需要支付不同的准备结束费用,而如果不采用某种设备加工,是不需要支付使用该设备的准备结束费用的,所以必须借助于逻辑变量来鉴定准备结束费用的支付。
再设,种设备加工的产品数量为利用第设;4,3,2,1=j j x j⎪⎩⎪⎨⎧=>=)种设备生产(即,若不使用第)种设备生产(即若使用第000,1j j i x j x j y 4,3,2,1=j则问题的整数规划模型为:43214321281624207008009801000min x x x x y y y y z +++++++=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≤≤≤≤=+++4,3,2,110,01600120010009002000..443322114321j y x y x y x y x y x x x x x t s j j,或2、 [工具][规划求解]命令求解下面我们用Excel 中的[工具][规划求解]对该问题进行求解。