立体的投影习题集
- 格式:ppt
- 大小:1.40 MB
- 文档页数:14
人教版九年级下册数学第29章投影与视图同步练习题29.1 投影1.小明拿一个等边三角形木框在太阳下玩耍,发现等边三角形木框在地面上的投影不可能是()2.小飞晚上到广场去玩,他发现有两人的影子一个向东,一个向西,于是他肯定地说,广场上的大灯泡一定位于两人.3.一根笔直的小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是() A.AB=CD B.AB≤CDC.AB>CD D.AB≥CD4.如图,如果在阳光下你的身影的方向是北偏东60°方向,那么太阳相对于你的方向是()A.南偏西60°B.南偏西30°C.北偏东60° D.北偏东30°5.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()6.如图,小华、小军、小丽同时站在路灯下,其中小军和小丽的影子分别是AB,CD. (1)请你在图中画出路灯灯泡所在的位置(用点P表示);(2)画出小华此时在路灯下的影子(用线段EF表示).7.如图,已知线段AB=2 cm,投影面为P,太阳光线与地面垂直.(1)当AB垂直于投影面P时(如图1),请画出线段AB的投影;(2)当AB平行于投影面P时(如图2),请画出它的投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°,请在图3中画出线段AB的正投影,并求出其正投影长.29.2 三视图第1课时几何体的三视图1.下列立体图形中,主视图是圆的是()2.如图是由四个小正方体叠成的一个几何体,它的左视图是()3.如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()4.如图所示几何体的左视图是()5.将如图所示的两个平面图形绕轴旋转一周,对其所得的立体图形,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同6.图中物体的一个视图(a)的名称为.7.画出如图所示圆柱的三视图.8.画出如图所示几何体三视图.9.下列四个几何体中,主视图与左视图相同的几何体有()A.1个 B.2个C.3个D.4个10.如图是一个空心圆柱体,其左视图正确的是()11.形状相同、大小相等的两个小木块放置于桌面,其俯视图如图,则其主视图是()12.如图,一个正方体切去一个三棱锥后所得几何体的俯视图是()13.一位美术老师在课堂上进行立体模型素描教学时,把由圆锥与圆柱组成的几何体(如图所示,圆锥在圆柱上底面正中间放置)摆在讲桌上,请你在指定的方框内分别画出这个几何体的三视图(从正面、左面、上面看得到的视图).14.一种机器上有一个进行转动的零件叫燕尾槽(如图),为了准确做出这个零件,请画出它的三视图.15.中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为下列几何体中的哪一个?选择并说明理由.第2课时由三视图确定几何体1.如图是某几何体的三视图,则这个几何体是()A.棱柱 B.圆柱C.棱锥 D.圆锥2.一个几何体的三视图如图所示,这个几何体是()A.圆柱 B.棱柱C.圆锥 D.球3.如图所示,所给的三视图表示的几何体是()A.圆锥 B.正三棱锥C.正四棱锥 D.正三棱柱4.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()5.图中的三视图所对应的几何体是()6.已知一个正棱柱的俯视图和左视图如图,则其主视图为()7.某几何体的三视图如图所示,则组成该几何体共用了小方块()A.12块B.9块C.7块D.6块8.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体不可能是()A.6个B.7个 C.8个 D.9个第3课时由三视图确定几何体的表面积或体积1.如图是一个几何体的三视图,根据图中提供的数据(单位: cm)可求得这个几何体的体积为()A.2 cm3B.3 cm3C.6 cm3D.8 cm32.如图是一几何体的三视图,由图中数据计算此几何体的侧面积为.(结果保留π)3.如图是某工件的三视图,求此工件的全面积.4.如图是一个上下底密封纸盒的三视图,请你根据图中数据,计算这个密封纸盒的表面积,结果为 cm2.(结果可保留根号)5.一个几何体的三视图如图所示,它的俯视图为菱形.请写出该几何体的形状,并根据图中所给的数据求出它的侧面积.6.如图是一个几何体的三视图(单位:cm).(1)写出这个几何体的名称;(2)根据所示数据计算这个几何体的表面积;(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个路线的最短长度.参考答案:第二十九章投影与视图29.1 投影1.B2.中间的上方.3.D4.A5.D6.解:如图所示.7.解:(1)点C为所求的投影.(2)线段CD为所求的投影,CD=2 cm.(3)线段CD为所求的投影,CD=2cos30°= 3 cm.29.2 三视图第1课时几何体的三视图1.D2.A3.D4.A5.D6.主视图.7.解:如图所示.8.解:如图所示.9. D10.B11.D12.D13.解:如图.14.解:如图.15.解:比较各几何体的三视图,考虑是否有长方形,圆及三角形即可.对于A,三视图分别为长方形、三角形、圆(含直径),符合题意;对于B,三视图分别为三角形、三角形、圆(含圆心),不符合题意;对于C,三视图分别为正方形、正方形、正方形,不符合题意;对于D,三视图分别为三角形、三角形、矩形(含对角线),不符合题意;故选A.第2课时由三视图确定几何体1.D2.A3.D4.B5.B6.D7.D8.D 提示:如图,根据左视图可以推测d=e=1,a,b,c中至少有一个为2. 当a,b,c中一个为2时,小立方体的个数为:1+1+2+1+1=6;当a,b,c中两个为2时,小立方体的个数为:1+1+2+2+1=7;当a,b,c三个都为2时,小立方体的个数为:1+1+2+2+2=8.所以小立方体的个数可能为6个、7个或8个.故选D.第3课时由三视图确定几何体的表面积或体积1.B2.10π.3.解:由三视图可知,该工件为底面半径为10 cm、高为30 cm的圆锥体.圆锥的母线长为302+102=1010(cm),圆锥的侧面积为12×20π×1010= 10010π(cm 2),圆锥的底面积为102π=100π(cm 2),圆锥的全面积为100π+10010π=100(1+10)π(cm 2).45.解:该几何体的形状是直四棱柱,由三视图知,棱柱底面菱形的对角线长分别为 4 cm ,3 cm.∴菱形的边长为(32)2+22=52(cm ),棱柱的侧面积为52×8×4=80(cm 2). 6.解:(1)圆锥.(2)表面积S =S 扇形+S 圆=πrl +πr 2=12π+4π=16π(cm 2).(3)如图将圆锥侧面展开,线段BD 为所求的最短长度.由条件,得∠BAB ′=120°,C 为弧BB ′的中点,∴BD =33(cm ).。
[作图题][难度1]1、求作属于圆柱表面的点A、B、C、D 的另外两面投影。
[参考答案][作图题][难度2]2、补全正五棱柱的水平投影,并画出属于棱柱表面的点A、B及线段CD的其他两面投影。
[参考答案][作图题][难度3]3、补画出正六棱台的侧面投影,并补全属于棱台表面的线段AB、BC、CD的其他两面投影。
[参考答案][作图题][难度3]4、画出半圆柱的水平投影。
并求作属于圆柱表面的曲线AB的另外两面投影[参考答案][作图题][难度2]5、求作属于圆锥表面的点A、B、C、D的另外两面投影。
[参考答案][作图题][难度3]6、画出圆锥的侧面投影。
并求作线段SB、BC的另外两面投影。
[参考答案][作图题][难度2]7、画出圆球的水平投影和侧面投影,并求作属于圆球表面的点A、B、C、D的另外两面投影。
[参考答案][作图题][难度3]8、求作属于圆球表面的曲线段的另外两面投影。
[参考答案][作图题][难度2]9、已知属于回转体表面的点A、B的一个投影,求作另外两面投影。
[参考答案][作图题][难度3]10、画全同轴回转体的正面投影和侧面投影,并补画其水平投影。
[参考答案][作图题][难度3]11、画出侧面投影图。
[参考答案][作图题][难度4]12、补全正五棱柱的水平投影和侧面投影。
[参考答案][作图题][难度4]13、补画带切口的正三棱锥的水平投影和侧面投影。
[参考答案][作图题][难度3]14、画出圆柱体被截切后的侧面投影。
[参考答案][作图题][难度3]15、画出圆锥体被截切后的侧面投影。
[参考答案][作图题][难度3]16、画出圆球体被截切后的水平投影和侧面投影。
[参考答案][作图题][难度4]17、画出侧面投影。
[参考答案][作图题][难度3]18、求作侧面投影。
[参考答案][作图题][难度2]19、画全长方体与圆柱相交的正面投影图和水平投影图。
[参考答案][作图题][难度3]20、补全正面投影。
投影与视图技巧及练习题附答案解析一、选择题41)下列几何体是由个正方体搭成的,其中主视图和俯视图相同的是(.DABC ....B【答案】【解析】【分析】分别画出从几何体的上面和正面看所得到的视图,再比较即可.【详解】A,故此选项错误;、主视图,俯视图为B,故此选项正确;,俯视图为、主视图为C,故此选项错误;、主视图为,俯视图为D,故此选项错误;、主视图为,俯视图为 B.故选:【点睛】此题主要考查了简单几何体的三视图,关键是掌握所看的位置.( )2从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是.DC A B.球.棱锥.圆锥.圆柱A【答案】【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.A.故选【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.( )3下面四个几何体中,俯视图是圆的几何体共有.4D3 B1 2 CA个个个...个.B【答案】【解析】B.2,,故选个共题目中的四个几何体,俯视图是圆的几何体为圆柱和球4)下面是一个几何体的俯视图,那么这个几何体是(.D C B A....B【答案】【解析】【分析】.根据各个选项中的几何体的俯视图即可解答【详解】解:由图可知,B中的图形是和题目中的俯视图看到的一样,选项B.故选:【点睛】.本题考查由三视图判断几何体,俯视图是从上向下看得到的图纸,熟练掌握是解题的关键55个相同的小正方体组成的,下列有关三视图面积的说法中正确如图所示的几何体是由.)的是(A.左视图面积最大B.俯视图面积最小C.左视图与主视图面积相等D.俯视图与主视图面积相等D【答案】【解析】【分析】利用视图的定义分别得出三视图进而求出其面积即可.【详解】解:如图所示:则俯视图与主视图面积相等.D.故选:【点睛】此题主要考查了简单组合体的三视图,正确把握三视图的定义是解题关键.6)如图所示,该几何体的主视图是(.ABCD....D【答案】【解析】【分析】从前往后看到一个矩形,后面的轮廓线用虚线表示.【详解】1个矩形,中间的轮廓线用虚线表示.该几何体为三棱柱,它的主视图是由D.故选【点睛】本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.掌握常见的几何体的三视图的画法.( )n7n的值是盒粉笔,整齐地摆在讲桌上,其三视图如图,则.小亮领来109 DBA7 8 C....A【答案】【解析】【分析】【详解】421盒,解:由俯视图可得最底层有盒,第三层有盒,由正视图和左视图可得第二层有7n7.盒,则共有的值是A.故选【点睛】本题考查由三视图判断几何体.851的小正方体搭成,下列关于这个几何体的个大小相同、棱长为.如图,一个几何体由( )说法正确的是35 AB.从左面看到的形状图的面积为.从前面看到的形状图的面积为4D3 C.三种视图的面积都是.从上面看到的形状图的面积为B【答案】【解析】.A. 4A,故从正面看第一层是三个小正方形,第二层中间一个小正方形,主视图的面积是错误;B. 3B,故从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积是正确;C. 4C错从上边看第一层有一个小正方形,第二层有三个小正方形,俯视图的面积是,故误;D3D.错误;,故左视图的面积是 B.故选点睛:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.9).如图所示,该几何体的左视图是(BA ..DC ..B【答案】【解析】【分析】.根据几何体的三视图求解即可【详解】解:从左边看是一个矩形,中间有两条水平的虚线,.故选:B【点睛】.本题考查的是几何体的三视图,熟练掌握几何体的三视图是解题的关键101?Piet Hein)发明的索玛立方块,它由四个及四个以内大小.图是数学家皮亚特海恩(2不可能是下面哪个组件的视图相同的立方体以面相连接构成的不规则形状组件组成.图)(.D CA B....C【答案】【解析】【分析】依次分析所给几何体从正面看及从左面看得到的图形是否与所给图形一致即可.【详解】12A2,符合所给图形;列正方形的个数均依次为、主视图和左视图从左往右,12B2,符合所给图形;列正方形的个数均依次为、主视图和左视图从左往右,11C2,不符合所给图形;、主视图左往右,列正方形的个数均依次为12D2,符合所给图形.、主视图和左视图从左往右,列正方形的个数均依次为C.故选【点睛】考查由视图判断几何体;用到的知识点为:主视图,左视图分别是从正面看及从左面看得到的图形.( )116个相同的立方体搭成的几何体如图所示,则它的从正面看到的图形是.由D C AB....C【答案】【解析】【分析】.观察立体图形的各个面,与选项中的图形相比较即可得到答案【详解】观察立体图形的各个面,与选项中的图形相比较即可得到答案,.C 选项为正确答案,故的图形是能够看到由图像【点睛】此题考查了从不同方向观察物体和几何体,有良好的空间想象力和抽象思维能力是解决本.题的关键12).从不同方向观察如图所示的几何体,不可能看到的是(DB CA ....B【答案】【解析】【分析】找到不属于从正面,左面,上面看得到的视图即可.【详解】1213,,解:从正面看从左往右,列正方形的个数依次为D是该物体的主视图;∴122,列正方形的个数依次为从左面看从左往右,A是该物体的左视图;∴2131,列正方形的个数依次为从上面看从左往右,,C是该物体的俯视图;∴B.没有出现的是选项B.故选13.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最)多使用小正方体的个数为(11D 10 A8 9BC个..个个.个.C【答案】【解析】【分析】.由主视图和左视图可还原该几何体每层的小正方体个数【详解】932个正方体,第二层解:由主视图可得该几何体有列正方体,高有层,最底层最多有10.1个正方体,则最多使用小正方形的个数为最多有C故选【点睛】.本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多.的正方体个数614)如图的几何体由个相同的小正方体搭成,它的主视图是(.DB C A....A【答案】【解析】【分析】根据从正面看得到的视图是主视图,可得答案.【详解】从正面看有三列,从左起第一列有两个正方形,第二列有两个正方形,第三列有一个正方A 符合题意,形,故A.故选【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.15).如图是某个几何体的三视图,该几何体是(D B A C.圆锥.三棱柱.圆柱.六棱柱C【答案】【解析】【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【详解】解:由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱,C.故选【点睛】本题考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.416)个相同的小正方体搭成的,其中左视图与俯视图相同的是(.下列几何体是由D BC A....C【答案】【解析】——能反映物体的前试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的上面形状;从物面形状;从物体的上面向下面投射所得的视图称俯视图——C左视图与俯能反映物体的左面形状.选项体的左面向右面投射所得的视图称左视图C.,故选视图都是()17.如图,这是一个机械模具,则它的主视图是BA..DC ..C【答案】【解析】【分析】.根据主视图的画法解答即可【详解】 A.不是三视图,故本选项错误;B.是左视图,故本选项错误;C.是主视图,故本选项正确;.D.是俯视图,故本选项错误C.故答案选【点睛】.本题考查了由三视图判断几何体,解题的关键是根据主视图的画法判断18“”“”是由两个找到了球体体积的计算方法.我国古代数学家刘徽用.牟合方盖牟合方盖圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几”“)牟合方盖何体是可以形成的一种模型,它的俯视图是(DB C A ....A【答案】【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】.该几何体的俯视图是:A.故选【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.419)个大小相同的立方块搭成的几何体,这个几何体的主视图是(.如图是由D ACB ....A【答案】【解析】【分析】.主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,.21个小正方体左边第一列有个小正方体,第二列有 A.故答案为:【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.20)如图所示,该几何体的俯视图是(.BA ..D C..C【答案】【解析】【分析】.根据三视图的画法即可得到答案【详解】C,解:从上面看是三个矩形,符合题意的是C.故选:【点睛】.此题考查简单几何体的三视图,明确三视图的画法是解题的关键。