新人教版七年级数学上册专题训练:角的计算
- 格式:doc
- 大小:223.86 KB
- 文档页数:6
人教版七年级上册数学期末复习:角的计算综合练习题汇编1.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)当∠BOC=140°时,求∠AOM的度数;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=x度时,则∠MON=度.(请直接写出答案)2.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线,∠EOC=65°,∠DOC=25°,求∠AOB的度数.3.如图,已知射线OC在∠AOB内,OM和ON分别平分∠AOC和∠BOC.(1)若∠AOC=50°,∠BOC=30°,求∠MON的度数.(2)探究∠MON与∠AOB的数量关系.4.如图,已知A、O、B三点在一条直线上,OC平分∠AOD,∠AOC+∠EOB=90°.(1)求∠COE的度数;(2)判断∠DOE和∠EOB之间有怎样的关系,并说明理由.5.填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC因为OE是∠BOC的平分线,所以∠COE=所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+ =°6.如图,O为直线AB上一点,∠BOE=80°,直线CD经过点O.。
新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。
1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。
解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。
又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。
2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。
1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。
2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。
解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。
所以 $\angle DAC=4\times18°=72°$。
因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。
2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。
专题6 角一、单选题1.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练习)如图所示,从点O出发的5条射线,可以组成的角的个数是().A. 4B. 6C. 8D. 10【答案】D2.北京时间上午8:30时,时钟上时针和分针之间的夹角(小于平角)是()A. 85°B. 75°C. 70°D. 60°【答案】B【解析】在钟面上,被12小时划分为12大格,每1大格对应的度数是30度,上午8:30的时候,时针指向8时和9时的中间位置,分针指向6时,两针之间刚好间隔2.5格,∴8:30时,时针和分针之间的夹角为:30° 2.5=75°.3.如图,下列说法错误的是()A. OA的方向是北偏东40°B. OB的方向是北偏西75°C. OC的方向是西南方向D. OD的方向是南偏东40°【答案】A【解析】A选项中,由图可知“OA的方向是北偏东50°”,所以本选项说法错误;B选项中,由图可知:“OB的方向是北偏西75°”是正确的;C选项中,由图可知;“OC的方向是西南方向”是正确的;D选项中,由图可知:“OD的方向是南偏东40°”是正确的;故选A.4.下列说法正确的是()A. A在B的南偏东30°的方向上,则B也在A的南偏东30°的方向上;B. A在B的南偏东30°的方向上,则B在A的南偏东60°的方向上;C. A在B的南偏东30°的方向上,则B在A的北偏西30°的方向上;D. A在B的南偏东30°的方向上,则B在A的北偏西60°的方向上【答案】C5.(北师大版数学七年级上册第四章基本平面图形4.3角同步测试题)一个角是70°18′,则这个角等于()A. 70.18° B. 70.3° C. 70.018° D. 70.03°【答案】B【解析】70°18′=70°+18′ 60=70°+0.3°=70.3°.故选B.6.如图,射线OC,OD分别在∠AOB的内部、外部,下列结论错误的是()A. ∠AOB<∠AODB. ∠BOC<∠AOBC. ∠COD>∠AODD. ∠AOB>∠AOC【答案】C【解析】观察图形可知:A.∠AOB<∠AOD正确;B.∠BOC<∠AOB正确;C.∠COD>∠AOD错误;D.∠AOB>∠AOC正确.故选C.7.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练)下列语句中,正确的是().A. 比直角大的角钝角; B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角【答案】C8.(新人教版数学七年级上册第四章几何图形初步4.3.1《角》课时练习)已知α 、β都是钝角,甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,则得到正确结果的同学是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,那么这四个同学计算α+β的结果依次为168°、288°、360°、528°,又因为两个钝角的和应大于180°且小于360°,所以只有乙同学的计算正确,故选B.9.(山东省东昌府区梁水镇中心中学2016-2017学年七年级下学期期中考试数学试题)如图,如果∠AOC=∠BOD,则∠AOB与∠DOC的大小关系是()A. ∠AOB>∠DOCB. ∠AOB<∠DOCC. ∠AOB=∠DOCD. 无法比较【答案】C【解析】∵∠AOC=∠BOD,∴∠AOC-∠BOC=∠BOD-∠BOC,∴∠AOB=∠DOC.故选C.10.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为( )。
小专题(十三)角的计算类型1 角平分线的有关计算(整体思想)【例】(教材P140习题T9变式)如图,已知AOB ∠内部有三条射线OE OC OF OE ,,,平分∠BOC ,OF 平分AOC ∠.(1)若3060AOC BOC ︒︒∠=∠=,,则EOF ∠=__________;(2)若=AOC BOC αβ∠=∠,,则EOF ∠=__________;(3)若AOB θ∠=,你能猜想出EOF ∠与θ的关系吗?请说明理由.【变式1】若EOF γ∠=,求AOB ∠的度数.【变式2】若射线OC 在AOB ∠的外部如图所示位置,且=AOB θ∠,OE 平分BOC ∠,OF 平分∠AOC ,则上述(3)中的结论还成立吗?请说明理由.方法指导如图,当射线OC 在AOB ∠的内部或外部,OE 平分BOC ∠,OF 平分AOC ∠时,总有1=2EOF AOB ∠∠.【拓展变式】若射线OC 在AOB ∠的外部如图所示位置,OE 平分BOC ∠,OF 平分AOC ∠,则EOF AOB ∠∠与的数量关系是__________.变式训练1.如图,已知AOB ∠内部有顺次的四条射线: OE OC OD OF OE ,,,平分AOC ∠,OF 平分BOD ∠.(1)若16040AOB COD ︒︒∠=∠=,,则EOF ∠的度数为______;(2)若AOB COD αβ∠=∠=,,求EOF ∠的度数;(3)从(1)、(2)的结果,你能看出什么规律吗?类型2 直接计算2.如图,点A O E ,,在同一直线上,40AOB ︒∠=,2846BOD ︒'∠=,OD 平分COE ∠,求∠COB 的度数.3.已知40AOB ︒∠=,OD 是BOC ∠的平分线.(1)如图1,当AOB BOC ∠∠与互补时,求COD ∠的度数;(2)如图2,当AOB BOC ∠∠与互余时,求COD ∠的度数.类型3 方程思想4.一个角的补角加上10︒后等于这个角的余角的3倍,求这个角.5.如图,AOB COB COD ∠∠∠,,的度数之比是2:1:3,且140AOC DOB ︒∠+∠=,求AOD ∠的度数.6.如图,已知12AOB BOC ∠=∠,3COD AOD AOB ∠=∠=∠,求AOB COD ∠∠和的度数.类型4 分类讨论思想7.已知:如图,OC 是AOB ∠的平分线.(1)当60AOB ︒∠=时,求AOC ∠的度数;(2)在(1)的条件下,90EOC ︒∠=,请在图中补全图形,并求AOE ∠的度数;(3)当AOB α∠=时,90EOC ︒∠=,直接写出AOE ∠的度数.(用含α的式子表示)类型5 角的运动问题8.已知,点O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图1.①若60AOC ︒∠=,则DOE ∠的度数为__________;②若AOC α∠=,则DOE ∠的度数为_____________(用含α的式子表示);(2)将图1中的DOC ∠绕点O 顺时针旋转至图2的位置,试探究DOE ∠和AOC ∠的度数之间的关系,写出你的结论,并说明理由.参考答案【例】解:(1)45︒(2)2αβ+(3)12EOF θ∠=,理由;因为OE 平分BOC ∠,OF 平分AOC ∠,所以11,22EOC BOC COF AOC ∠=∠∠=∠.所以11111()22222EOF EOC COF BOC AOC BOC AOC AOB θ∠=∠+∠=∠+∠=∠+∠=∠=.【变式1】解:因为OE 平分BOC ∠,OF 平分AOC ∠,所以12EOC BOC ∠=∠,12COF AOC ∠=∠.所以1122EOF EOC COF BOC AOC ∠=∠+∠=∠+∠11()22BOC AOC AOB =∠+∠=∠.因为EOF γ∠=,所以2AOB γ∠=. 【变式2】解:12EOF θ∠=成立.理由:因为OE 平分BOC ∠,OF 平分∠AOC ,所以1122EOC BOC COF AOC ∠=∠∠=∠,.所以EOF COF EOC ∠=∠-∠1122AOC BOC =∠-∠1()2AOC BOC =∠-∠11.22AOB θ=∠= 【拓展变式】11802EOF AOB ︒∠=-∠ 变式训练1.解:(1)100︒(2)因为OE 平分AOC ∠,OF 平分BOD ∠,所以12COE AOC ∠=∠,12DOF BOD ∠=∠.所以12EOF COE COD DOF AOC COD ∠=∠+∠+∠=∠+∠1111111()2222222BOD AOC COD BOD COD AOB COD αβ+∠=∠+∠+∠+∠=∠+∠=+1()2αβ=+.(3)若AOB ∠内部有顺次的四条射线:,,,,OE OC OD OF OE 平分AOC ∠,OF 平分BOD ∠,则1()2EOF AOB COD ∠=∠+∠.2.解:因为2846EOD ︒'∠=,OD 平分COE ∠,所以2=228465732COE EOD ︒'︒'∠=∠⨯=.又因为40AOB ︒∠=,所以1801804057328228COB AOB COE ︒︒︒︒'︒'∠=∠-∠=-=--.3.解:(1)因为AOB BOC ∠∠与互补,所以180AOB BOC ︒∠+∠=.因为40AOB ︒∠=,所以18040140BOC ︒︒︒∠=-=.因为OD 是BOC ∠的平分线,所以1702COD BOC ︒∠=∠=.(2)因为AOB BOC ∠∠与互余,所以90AOB BOC ︒∠+∠=.因为=40AOB ︒∠,所以=904050BOC ︒︒︒∠-=.因为OD 是BOC ∠的平分线,所以1252COD BOC ︒∠=∠=. 4.解:这个角为40︒.5.解:设COB x ︒∠=,则2,3AOB x COD x ︒︒∠=∠=.根据题意,得23140x x x x +++=.解得20x =.所以236620120AOD x x x x ︒︒︒︒︒︒∠=++==⨯=.6.解:设AOB x ︒∠=,则33COD AOD AOB x ︒∠=∠=∠=.因为12AOB BOC =∠,所以2BOC x ︒∠=.因为360BOC COD AOD AOB ︒∠+∠+∠+∠=,所以233360x x x x +++=.解得40x =.所以40120AOB COD ︒︒∠=∠=,.7.解:(1)因为OC 是AOB ∠的平分线,所以12AOC AOB ∠=∠.因为60AOB ︒∠=,所以30AOC ︒∠=,(2)如图1,9030120AOE EOC AOC ︒︒︒∠=∠+∠=+=;如图2,903060.AOE EOC AOC ︒︒︒∠=∠-∠=-=(3)902α︒+或902α︒-.8.解:(1)①30︒②12α(2)12DOE AOC ∠=∠,理由如下:因为180BOC AOC ︒∠=-∠.OE 平分BOC ∠,所以1118022COE BOC AOC ︒∠=∠=-∠()1902AOC ︒=-∠.所以1190909022DOE COE AOC AOC ︒︒︒∠==--∠=∠∠-().。
2022-2023学年人教版七年级数学上册《4.3.2角的比较与运算》题型分类练习题(附答案)一.角平分线的定义1.如图,两个直角∠AOB,∠COD有相同的顶点O,下列结论:①∠AOC=∠BOD;②∠AOC+∠BOD=90°;③若OC平分∠AOB,则OB平分∠COD;④∠AOD的平分线与∠COB的平分线是同一条射线.其中正确的个数有()A.1个B.2个C.3个D.4个2.如图,OE为∠AOD的平分线,∠COD=∠EOC,∠COD=15°,求:①∠EOC的大小;②∠AOD的大小.3.如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.4.如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)若∠AOB=50°,∠DOE=30°,那么∠BOD是多少度?(2)若∠AOE=160°,∠AOB=50°,那么∠COD是多少度?5.已知:如图,OC是∠AOB的角平分线,∠AOD=2∠BOD,∠COD=18°.请你求出∠BOD的度数.6.如图,O为直线AB上一点,∠AOC=58°,OD平分∠AOC,∠DOE=90°.(1)求出∠BOD的度数;(2)请通过计算说明:OE是否平分∠BOC.二.角的计算7.把两块三角板按如图所示那样拼在一起,则∠ABC等于()A.70°B.90°C.105°D.120°8.如图,已知∠AOB:∠BOC=2:3,∠AOC=75°,那么∠AOB=()A.20°B.30°C.35°D.45°9.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.10.如图,射线OB和OD分别为∠AOC和∠COE的角平分线,∠AOB=45°,∠DOE=20°,则∠AOE=()A.110°B.120°C.130°D.140°11.如图所示,OB,OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式是()A.2α﹣βB.α﹣βC.α+βD.以上都不正确12.如图所示,将一张长方形纸片斜折过去,使顶点A落在A′处,BC为折痕,然后再把BE折过去,使之与BA′重合,折痕为BD,若∠ABC=58°,则求∠E′BD的度数()A.29°B.32°C.58°D.64°13.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A.36°B.45°C.60°D.72°14.如图,将三个同样的正方形的一个顶点重合放置,那么∠1的度数为.15.如图,将一张纸折叠,若∠1=65°,则∠2的度数为.16.如图,OB、OC是∠AOD内部的两条射线,OM平分∠AOB,ON平分∠COD,∠MON =80°.(1)若∠BOC=40°,求∠AOD的度数;(2)若∠AOD=x°,求∠BOC的度数(用含x的代数式表示).17.已知:如图,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC 的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?18.如图,点O是直线AB上一点,OD平分∠BOC,∠COE=90°.(1)若∠AOC=48°,求∠DOE的度数.(2)若∠AOC=α,则∠DOE=(用含α的代数式表示).19.如图,将两块直角三角尺的直角顶点C叠放在一起,(1)若∠DCE=35°,求∠ACB的度数;(2)若∠ACB=140°,求∠DCE的度数;(3)猜想∠ACB与∠DCE的大小关系,并说明理由.20.如图,已知同一平面内∠AOB=90°,∠AOC=60°,(1)填空∠BOC=;(2)如OD平分∠BOC,OE平分∠AOC,直接写出∠DOE的度数为°;(3)试问在(2)的条件下,如果将题目中∠AOC=60°改成∠AOC=2α(α<45°),其他条件不变,你能求出∠DOE的度数吗?若能,请你写出求解过程;若不能,请说明理由.三.角的大小比较21.比较:28°15′28.15°(填“>”、“<”或“=”).22.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个参考答案一.角平分线的定义1.解:①∵∠AOB=∠COD=90°,∴∠AOC=90°﹣∠BOC,∠BOD=90°﹣∠BOC,∴∠AOC=∠BOD,∴①正确;②∵只有当OC,OB分别为∠AOB和∠COD的平分线时,∠AOC+∠BOD=90°,∴②错误;③∵∠AOB=∠COD=90°,OC平分∠AOB,∴∠AOC=∠COB=45°,则∠BOD=90°﹣45°=45°∴OB平分∠COD,∴③正确;④∵∠AOB=∠COD=90°,∠AOC=∠BOD(已证);∴∠AOD的平分线与∠COB的平分线是同一条射线,∴④正确;故选:C.2.解:①由∠COD=∠EOC,得∠EOC=4∠COD=4×15°=60°;②由角的和差,得∠EOD=∠EOC﹣∠COD=60°﹣15°=45°.由角平分线的性质,得∠AOD=2∠EOD=2×45°=90°.3.解:设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70﹣x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70﹣x)+(70﹣x)=180°(4分)解得:x=20(5分)∴∠2=3x=60°(6分)答:∠2的度数为60°.(7分)4.解:(1)OB是∠AOC的平分线,∴∠BOC=∠AOB=50°;∵OD是∠COE的平分线,∴∠COD=∠DOE=30°,∴∠BOD=∠BOC+∠COD=50°+30°=80°;(2)OB是∠AOC的平分线,∴∠AOC=2∠AOB=100°,∴∠COE=∠AOE﹣∠AOC=160°﹣100°=60°,∵OD是∠COE的平分线,∴∠COD=∠COE=30°.5.解:∵OC是∠AOB的角平分线∴∠BOC=∠AOB,∵∠AOD=2∠BOD,∴∠AOB=3∠BOD,即∠BOD=∠AOB;∴∠COD=∠AOB﹣∠AOB=∠AOB,∴∠BOD=2∠COD,∵∠COD=18°,∴∠BOD=36°.6.解:(1)∵∠AOC=58°,OD平分∠AOC,∴∠AOD=29°,∴∠BOD=180°﹣29°=151°;(2)OE是∠BOC的平分线.理由如下:∵∠AOC=58°,∴∠BOC=122°.∵OD平分∠AOC,∴∠DOC=×58°=29°.∵∠DOE=90°,∴∠COE=90°﹣29°=61°,∴∠COE=∠BOC,即OE是∠BOC的平分线.二.角的计算7.解:∠ABC=30°+90°=120°.故选:D.8.解:∵∠AOB:∠BOC=2:3,∠AOC=75°,∴∠AOB=∠AOC=×75°=30°,故选:B.9.解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.10.解:∵OB是∠AOC的角平分线,∠AOB=45°,∴∠COB=∠AOB=45°∵OD是∠COE的角平分线,∠DOE=20°,∴∠DOC=∠DOE=20°,∴∠AOE=∠AOB+∠COB+∠DOC+∠DOE=45°×2+20°×2=130°.故选:C.11.解:∵∠MON=α,∠BOC=β∴∠MON﹣∠BOC=∠CON+∠BOM=α﹣β又∵OM平分∠AOB,ON平分∠COD∴∠CON=∠DON,∠AOM=∠BOM由题意得∠AOD=∠MON+∠DON+∠AOM=∠MON+∠CON+∠BOM=α+(α﹣β)=2α﹣β.故选:A.12.解:∵根据折叠得出∠ABC=∠A′BC,∠EBD=∠E′BD,又∵∠ABC+∠A′BC+∠EBD+∠E′BD=180°,∴∠ABC+∠E′BD=90°,∵∠ABC=58°,∴∠E′BD=32°.故选:B.13.解:∵∠AOB=90°,∠COD=90°,∴∠AOB+∠COD=180°,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180°,∴∠AOD+∠BOC=180°,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180°,∴∠BOC=36°,∵OE为∠BOC的平分线,∴∠COE=∠BOC=18°,∴∠DOE=∠COD﹣∠COE=90°﹣18°=72°,故选:D.14.解:∵∠BOD=90°﹣∠AOB=90°﹣30°=60°∠EOC=90°﹣∠EOF=90°﹣40°=50°又∵∠1=∠BOD+∠EOC﹣∠BOE∴∠1=60°+50°﹣90°=20°故答案是:20°.15.解:∵将一张纸条折叠,∠1=65°,∴∠1+∠2=180°﹣∠1即65°+∠2=180°﹣65°,得∠2=50°.故答案为:50°.16.解:(1)∵∠MON﹣∠BOC=∠BOM+∠CON,∠BOC=40°,∠MON=80°,∴∠BOM+∠CON=80°﹣40°=40°,∵OM平分∠AOB,ON平分∠COD,∴∠AOM=∠BOM,∠DON=∠CON,∴∠AOM+∠DON=40°,∴∠AOD=∠MON+∠AOM+∠DON=80°+40°=120°;(2)∵∠AOD=x°,∠MON=80°,∴∠AOM+∠DON=∠AOD﹣∠MON=(x﹣80)°,∵∠BOM+∠CON=∠AOM+∠DON=(x﹣80)°,∴∠BOC=∠MON﹣(∠BOM+∠CON)=80°﹣(x﹣80)°=(160﹣x)°.17.解:(1)∵∠AOB是直角,∠AOC=40°,∴∠AOB+∠AOC=90°+40°=130°,∵OM是∠BOC的平分线,ON是∠AOC的平分线,∴,.∴∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,不改变,∴.18.解:(1)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=48°,∴∠BOC=132°,∵OD平分∠BOC,∴∠COD=∠BOC=66°,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣66°=24°;(2)∵O是直线AB上一点,∴∠AOC+∠BOC=180°,∵∠AOC=α,∴∠BOC=180°﹣α,∵OD平分∠BOC,∴∠COD=∠BOC=(180°﹣α)=90°﹣α,∵∠DOE=∠COE﹣∠COD,∠COE=90°,∴∠DOE=90°﹣(90°﹣α)=α.故答案为:α.19.解:(1)∵∠ECB=90°,∠DCE=35°∴∠DCB=90°﹣35°=55°∵∠ACD=90°∴∠ACB=∠ACD+∠DCB=145°.(2)∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.(3)猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.20.解:(1)∵∠AOB=90°,∠AOC=60°,∴∠BOC=∠AOB+∠AOC=90°+60°=150°,故答案为:150°;(2)∵OD平分∠BOC,OE平分∠AOC,∴∠COD=∠BOC=75°,∠COE=∠AOC=30°,∴∠DOE的度数为:∠COD﹣∠COE=45°;故答案为:45;(3)∵∠AOB=90°,∠AOC=2α,∴∠BOC=90°+2α,∵OD、OE平分∠BOC,∠AOC,∴∠DOC=∠BOC=45°+α,∠COE=∠AOC=α,∴∠DOE=∠DOC﹣∠COE=45°.三.角的大小比较21.解:∵28°15′=28°+(15÷60)°=28.25°,∴28°15′>28.15°.故答案为:>.22.解:(1)连接两点之间的线段的长度叫两点间的距离,错误;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点确定一条直线,错误;(3)当C在线段AB上,且AB=2CB时,点C是AB的中点,当C不在线段AB上时,则不是中点,故命题错误;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B,正确;故选:A.。
人教版七年级数学上册《6.3.2角的比较与运算》同步测试题带答案一、单选题1.把2.36︒用度、分、秒表示,正确的是( )A .221'36"︒B .218'36''︒C .230'60"︒D .23'6"︒2.若383A '∠=︒,38.3B ∠=︒则( )A .AB ∠<∠ B .A B ∠>∠C .A B ∠=∠D .无法确定3.用一副三角尺的两个角不能拼成( )度的角.A .15B .105C .110D .1204.若1290∠+∠=︒,15825'∠=︒那么∠2的度数是( )A .3175'︒B . 3135'︒C .4175'︒D .4125︒'5.如图,已知:2:3AOB BOC ∠∠=,30AOB ∠=︒那么AOC ∠=( )A .45︒B .50︒C .60︒D .75︒6.如下图2BOC AOB ∠=∠,OP 平分AOB ∠,已知12AOP ∠=︒,则POC ∠=( )A .60︒B .72︒C .78︒D .84︒7.入射光线和平面镜的夹角为40°,转动平面镜,使入射角减小20°,反射光线与入射光线的夹角和原来相比较将( )A .减小40°B .增大40°C .减小20°D .不变8.如图,设锐角AOB ∠的度数为α,若一条射线平分AOB ∠,则图中所有锐角的和为2α.若四条射线五等分AOB ∠,则图中所有锐角的和为( )A .7αB .6αC .5αD .4a二、填空题9.若130.45︒∠=,23028︒'∠=则1∠ 2∠(用“>”“=”“<”填空).10.将一副直角三角尺如图放置,若22AOD ∠=︒,则BOC ∠的大小为 .11.如图,已知()585AOB BOC x ∠=︒∠=+︒,, ()27AOC x ∠=-︒那么AOC ∠= 度.12.小明从O 点出发向北偏西40︒走了500米到达A 点,小丽从O 点出发向南偏东40︒走了300米到达B 点,这时A 、B 两点之间的距离是 米.13.如图,已知点O 是直线AB 上一点,OC OD OM ON 、、、为从点O 引出的四条射线,若30BOD ∠=︒87COD AOC ∠=∠ 90MON ∠=︒ 则AON ∠与COM ∠之间的数量关系是 ;三、解答题14.计算:(1)89352020''︒+︒(结果用度、分、秒表示).(2)123246036''︒-︒(结果用度表示).15.如图,直线CD ,EF 交于点O ,OA ,OB 分别平分COE ∠和DOE ∠,且3OGB ∠=∠.(1)求证:1290∠+∠=︒;(2)若332∠=∠,求1∠的度数.16.已知直线AB 与CD 相交于点O ,且OM 平分AOC ∠.(1)如图1,若ON 平分BOC ∠,求MON ∠的大小;(2)如图2,若MON α∠=,13CON BON ∠=∠求BON ∠的大小.(用含α的式子表示) 参考答案 题号1 2 3 4 5 6 7 8 答案 A A C B DA A A1.【答案】A【分析】根据大单位化小单位除以进率,可得答案.【详解】解:2.36°=2°+0.36×60′=2°21′+0.6×60″=2°21′36″故选:A .【点睛】此题主要考查度、分、秒的转化运算,进行度、分、秒的转化运算,注意以60为进制. 2.【答案】A【分析】将∠A 或∠B 的大小统一成用度或用度分秒表示的形式,即可得出结论.【详解】解:∠∠A =38°3′,∠B =38.3°=38°18′故选:A .【点睛】本题主要考查了角的大小比较,统一角的大小单位是解决问题的关键.3.【答案】C【分析】本题考查了角的计算.用三角板拼特殊角其实质是角的和差运算,理解题意是关键.用三角板画出角,无非是用角度加减法.根据选项一一分析,排除错误答案.【详解】解:A .15︒的角453015︒-︒=︒;故本选项不符合题意;B .105︒的角4560105︒+︒=︒;故本选项不符合题意;C .110︒的角,无法用三角板中角的度数拼出;故本选项符合题意;D .120︒的角9030120︒+︒=︒;故本选项不符合题意.故选C .4.【答案】B【分析】本题考查角度的加减计算.根据角度的加减法计算即可,注意进率为60.【详解】解:根据题意2901896058253135'''∠=︒-∠=︒-︒=︒.故选:B .5.【答案】D【分析】本题考查角的有关计算,按比例分配求出45BOC ∠=︒是解答的关键.根据:2:3AOB BOC ∠∠=求出45BOC ∠=︒,然后利用AOC AOB BOC ∠=∠+∠求解即可.【详解】解:∠:2:3AOB BOC ∠∠= 30AOB ∠=︒∠45BOC ∠=︒∠75AOCAOB BOC .故选:D .6.【答案】A【分析】本题主要考查了几何图形中角度的计算,角平分线的定义,先由角平分线的定义得到12224BOP AOP AOB AOP =∠=︒==︒∠,∠∠,再由已知条件得到248BOC AOB ∠=∠=︒,则60POC BOC BOP =+=︒∠∠∠. 【详解】解:∠OP 平分AOB ∠ 12AOP ∠=︒∠12224BOP AOP AOB AOP =∠=︒==︒∠,∠∠∠248BOC AOB ∠=∠=︒∠60POC BOC BOP =+=︒∠∠∠7.【答案】A【分析】分别求出平面镜转动前后反射光线与入射光线的夹角,再对两者进行比较即可得到解答.【详解】解:入射光线与平面镜的夹角是40°,所以入射角为90°−40°=50°.根据光的反射定律,反射角等于入射角,反射角也为50°所以入射光线与反射光线的夹角是100° .入射角减小20°,变为50°−20°=30°,所以反射角也变为30°此时入射光线与反射光线的夹角为60°.则反射光线与入射光线间的夹角和原来比较将减小40°.故选:A .【点睛】本题考查角度与光反射的综合应用,熟练掌握光的反射规律及角度的计算方法是解题关键. 8.【答案】A 【分析】本题考查了角度的计算,角的数量问题,根据题意可得每一个小角的度数为15α,进而将所有角的度数相加即可求解.【详解】∠四条射线五等分AOB ∠∠每个小角的度数为15α.如图图中所有锐角的和为()()AOC COD DOE EOF BOF AOD COE DOF BOE ∠+∠+∠+∠+∠+∠+∠+∠+∠+()()AOE COF BOD AOF BOC AOB ∠+∠+∠+∠+∠+∠=123454325555ααααα⨯+⨯+⨯+⨯+ 7α=故选:A .9.【答案】<【分析】将∠1进行换算,再和∠2比较即可判断大小.【详解】解:∠0.45°=27′∠∠1=30.45°=30°+0.45°=30°27′∠∠2=30°28′∠∠1<∠2.故答案为:<.【点睛】本题主要考查度分秒的换算,换成形式一样的即可比较大小.10.【答案】158︒【分析】根据角的和差关系求解即可;【详解】由题意得:90COD ∠=︒ 90AOB ∠=︒∠22AOD ∠=︒∠902268AOC COD AOD ∠=∠-∠=︒-︒=︒∠6890158BOC AOC AOB ∠=∠+∠=︒+︒=︒故答案为:158︒【点睛】本题主要考查角的和差关系,熟练掌握角的和差关系是解此类题的关键.11.【答案】133【分析】本题考查了几何图形中角度计算问题,结合图形得出AOC AOB BOC ∠=∠+∠,代数进行计算,得出x 的值,然后把x 的值代入()27AOC x ∠=-︒进行计算,即可作答.【详解】解:∠()585AOB BOC x ∠=︒∠=+︒, ()27AOC x ∠=-︒ 且AOC AOB BOC ∠=∠+∠∠()()27585x x -︒=︒++︒∠70x =则把70x =代入()27AOC x ∠=-︒∠133AOC ︒∠=故答案为:133.12.【答案】800【分析】本题考查了方位角,线段的和差,角的和差,由方位角的定义得40AOD BOC ∠=∠=︒,由角的和差得 180AOD DOE BOE ∠+∠+∠=︒,可得A 、O 、B 三点在同一条直线上,由线段的和差即可求解;理解方位角,会判断三点共线时是解题的关键.【详解】解:如图由题意得:40AOD BOC ∠=∠=︒90DOE ∠=︒500OA =300OB =9040BOE ∴∠=︒-︒50=︒AOD DOE BOE ∴∠+∠+∠409050=︒+︒+︒180=︒∴A 、O 、B 三点在同一条直线上AB OA OB ∴=+500300=+800=(米)故答案:800.13.【答案】20AON COM ∠+︒=∠ 【分析】本意考查了角的计算,根据87COD AOC ∠=∠,设78AOC x COD x ∠=∠=,,由180AOC COD BOD ∠︒+∠+∠=可求出x 的值,再由AON MON AOC COM ∠+∠=∠+∠即可得出答案.【详解】解:设78AOC x COD x ∠=∠=,由180AOC COD BOD ∠︒+∠+∠=7830180x x ∴++︒=︒10x ∴=︒即7080AOC COD ∠=︒∠=︒,AON MON AOC COM ∠+∠=∠+∠9070AON COM ∴∠+︒=︒+∠即20AON COM ∠+︒=∠故答案为:20AON COM ∠+︒=∠.14.【答案】(1)10955'︒(2)62.8︒【分析】本题考查了度分秒的换算,熟练掌握度分秒的进制是解题的关键.(1)根据度分秒的进制进行计算,即可解答;(2)根据度分秒的进制进行计算,即可解答.【详解】(1)89352020''︒+︒10955'=︒;(2)123246036''︒-︒123.460.6=︒-︒62.8=︒.15.【答案】(1)1290∠+∠=︒(2)54︒【分析】本题主要考查了角平分线的有关计算,平行线的判定以及性质,平角的定义,掌握这些定义以及性质是解题的关键.(1)由角平分线的定义得出11,22AOC COE BOD DOE ∠=∠∠=∠,由平角的定义得出180COE DOE ∠+∠=°,进而得出90AOC BOD ∠+∠=︒,再证明AB CD ∥,由平行线的性质可得出12AOC BOD ∠=∠∠=∠,,等量代换可得出1290∠+∠=︒.(2)由角平分线的定义和平行线的性质得出122BOD BOG DOG ∠=∠=∠=∠,设2x ∠=,则3323x ∠=∠=.根据平角的定义得出3180DOG ∠+∠=︒,代入计算得出2∠的度数,再根据(1)可求出1∠的度数.【详解】(1)证明OA ,OB 分别平分COE ∠和DOE ∠11,22AOC COE BOD DOE ∴∠=∠∠=∠. 180COE DOE ∠+∠=︒.()1111180902222AOC BOD COE DOE COE DOE ∴∠+∠=∠+∠=∠+∠=⨯︒=︒. 3OGB ∠=∠AB CD ∴∥.12AOC BOD ∴∠=∠∠=∠,.2190∴∠+∠=︒(2)OB 平分DOE ∠ AB CD ∥122BOD BOG DOG ∴∠=∠=∠=∠. 设2x ∠=,则3323x ∠=∠=.3180DOG ∠+∠=︒即32180x x +=︒解得36x =︒236∴∠=︒.1903654∴∠=︒-︒=︒16.【答案】(1)90︒ (2)2703BON α∠=-【分析】本题主要考查了角平分线的相关计算和角的和差倍分、解一元一次方程; (1)根据平角的定义,角的平分线的意义计算即可;(2)设设BON x ∠=︒,则13COM x α∠=-︒,由OM 平分AOC ∠得到1223AOC MOC x α⎛⎫∠=∠=-︒ ⎪⎝⎭,根据180AOC BON CON ∠+∠+∠=︒列方程解方程即可得到答案.【详解】(1)解:∠OM 平分AOC ∠,ON 平分BOC ∠ ∠12MOC AOC ∠=∠ 12CON BOC ∠=∠ ∠1()2MOC CON AOC BOC ∠+∠=∠+∠ ∠111809022MON AOB ∠=∠=⨯︒=︒. (2)设BON x ∠=︒ ∠1133CON BON x ∠=∠=︒ MON α∠= ∠13COM x α∠=-︒ ∠OM 平分AOC ∠ ∠1223AOC MOC x α⎛⎫∠=∠=-︒ ⎪⎝⎭ ∠180AOC BON CON ∠+∠+∠=︒ ∠11218033x x x α⎛⎫-++= ⎪⎝⎭ ∠2703x α=-∠2703BON α∠=-.。
专题训练(九) 角的计算
类型1利用角度的和、差关系
找出待求的角与已知角的和、差关系,根据角度和、差来计算.
1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.
解:因为∠AOC=75°,∠BOC=30°,
所以∠AO B=∠AOC-∠BOC=75°-30°=45°.
又因为∠BOD=75°,
所以∠AOD=∠AOB+∠BOD=45°+75°=120°.
2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)
(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;
(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.
解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,
所以5∠BAD=90°,即∠BAD=18°.
所以∠DAC=4×18°=72°.
因为∠DAE=90°,
所以∠CAE=∠DAE-∠DAC=18°.
(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,
所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.
解得∠BCD=15°.
所以∠ACD=∠ACB+∠BC D=90°+15°=105°.
类型2利用角平分线的性质
角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.
3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.
解:因为∠EOD=28°46′,OD平分∠COE,
所以∠COE=2∠EOD=2×28°46′=57°32′.
又因为∠AOB=40°,
所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.
4.已知∠AOB=40°,OD是∠BOC的平分线.
(1)如图1,当∠AOB与∠BOC互补时,求∠COD的度数;
(2)如图2,当∠AOB与∠BOC互余时,求∠COD的度数.
解:(1)因为∠AOB与∠BOC互补,
所以∠AOB+∠BOC=180°.
所以∠BOC=180°-40°=140°.
因为OD 是∠BOC 的平分线,
所以∠COD=12
∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,
所以∠AOB+∠BOC=90°.
又因为∠AOB=40°,
所以∠BOC=90°-40°=50°.
因为OD 是∠BOC 的平分线,
所以∠COD=12
∠BOC=25°.
类型3 利用方程思想求解
在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.
5.一个角的余角比它的补角的23
还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得
90-x =23
(180-x)-40. 解得x =30.
所以这个角的度数是30°.
6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AO C ,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.
解:设∠COD=2x °,则∠BOC=3x °.
所以∠AOB=3x °.
所以2x +3x +3x +20=180.
解得x =20.
所以∠BOC=3×20°=60°.
7.如图,已知∠AOB=12
∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.
解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.
因为∠AOB=12
∠BOC, 所以∠BOC=2x °.
所以3x +3x +2x +x =360.
解得x =40.
所以∠AOB=40°,∠COD =120°.
类型4 利用分类讨论思想求解
在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.
8.已知∠AOB=75°,∠AOC =23
∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23
∠AOB,
所以∠AOC=23
×75°=50°. 因为O D 平分∠AOC,
所以∠AOD=∠COD=25°.
如图1,∠BOD =75°+25°=100°;
如图2,∠BOD =75°-25°=50°.
9.已知:如图,OC 是∠AOB 的平分线.
(1)当∠AOB=60°时,求∠AOC 的度数; (2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数; (3)当∠AOB=α时,∠EOC =90°,直接写出∠AOE 的度数.(用含α的代数式表示)
解:(1)因为OC 是∠AOB 的平分线,
所以∠AOC=12
∠AOB. 因为∠AOB=60°,
所以∠AOC=30°.
(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;
如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.
α2或90°-
α
2
.
(3)90°+。