定量资料的统计描述
- 格式:ppt
- 大小:2.38 MB
- 文档页数:47
•定量资料的统计分析定量资料的统计描述主要内容•频数分布表•集中趋势指标•离散趋势指标•频数/频率分布表(frequency distribution table•频数:将定量资料的变量值进行分组,则某组段所包含的变量值的个数称为频数,以f表示。
频率是频数在总例数中所占的百分比。
•频数表(频率表):表示各组段及它们对应的频数(频率)的表格称为频数表或频数分布表。
频数分布表格•编制频数表的步骤1.求全距(R)。
R=最大值-最小值=84.3-64.3=20(g/L)2.确定组数和组距。
频数表一般设8-15组。
各组段的起点和终点分别称为下限和上限。
组距为相邻两组段的下限差。
组距i=R/组数≈R/10.本例w=20/10=2(g/L)3.确定组段值。
原始数据表第一组段应包含最小值,最末组段应包含最大值并写出其下限和上限值。
4.列出频数表。
采用划记法或计算机汇总。
•编制频数表的意义:•⑴由频数表可以看出频数分布的两个重要特征:集中趋势和离散趋势。
•⑵可以根据频数分布的不同类型,选择适当的统计方法,进行计算与分析。
频数分布的两个特征:①集中趋势(central tendency):变量值集中位置。
②离散(/中)趋势(tendency of dispersion):变量值围绕集中位置的分布情况。
离“中心”位置越远,频数越小;且围绕“中心”左右对称。
频数分布的类型:对称分布例题直方图偏态分布(集中位置偏向小的一侧叫正偏态,偏向大的一侧叫负偏态)。
偏态分布图示频数表的用途:1. 揭示资料的分布特征和分布类型2. 发现特大值和特小值3. 由组中值近似代表原始数据,便于手工计算集中趋势指标与离散趋势指标。
•集中趋势指标•平均数(average)•描述一组性质相同的观察值的集中趋势、中心位置或平均水平的指标•平均数是一组数据典型或有代表性的值。
•常用平均数的种类有:•算术均数•几何均数•中位数• 众数*• 调和均数*• 一、算术均数(arithmetic mean )1.适用资料:算术均数简称为均数(mean ),适用于正态分布或近似正态分布资料。
《定量资料数据的统计描述》教案标题:定量资料数据的统计描述教案一、教学目标1.理解什么是定量资料数据的统计描述。
2.掌握常见的统计描述方法:集中趋势与离散程度。
3.能够应用统计描述方法对实际问题进行分析和讨论。
二、教学内容1.定量资料数据的统计描述的定义和意义。
2.集中趋势的统计描述方法:平均数、中位数、众数。
3.离散程度的统计描述方法:极差、四分位数、方差、标准差。
4.实例分析和练习。
三、教学步骤步骤一:导入(10分钟)1.向学生介绍定量资料数据的统计描述的概念和意义。
2.引导学生思考:为什么我们需要对数据进行统计描述?步骤二:集中趋势的统计描述(20分钟)1.介绍平均数的概念和计算方法。
2.分享实际应用平均数的例子,并提示其局限性。
3.介绍中位数的概念和计算方法。
4.引导学生分析什么情况下使用中位数比平均数更合适。
5.介绍众数的概念和计算方法,并解释其应用场景。
步骤三:离散程度的统计描述(25分钟)1.介绍极差的概念和计算方法。
2.引导学生思考四分位数的意义和计算方法,并分享实际应用的例子。
3.介绍方差的概念和计算方法。
4.介绍标准差的概念和计算方法,并解释其在数据分析中的重要性。
5.引导学生讨论方差和标准差的应用场景。
步骤四:综合分析和应用(25分钟)1.提供实际问题或案例,并引导学生运用所学内容进行分析和讨论。
2.给予学生时间思考和解答问题。
3.分享学生的分析和答案,并引导学生进行互动讨论。
步骤五:总结和拓展(10分钟)1.回顾本节课学习的内容和重点,确保学生对定量资料数据的统计描述有所掌握。
2.提示学生可以进一步了解其他统计描述方法,如箱线图等。
3.激发学生对数据分析和统计描述的兴趣,引导学生向实际问题应用所学方法。
四、教学评估1.教师针对学生的学习情况进行同步评估,包括学生积极参与讨论、能够正确运用统计描述方法等。
2.可以布置课后作业,要求学生分析和描述给定的数据集。
五、教学资源1.PPT或黑板/白板2.实际数据案例3.学生练习题和课后作业六、教学延伸1.引导学生自行寻找相关的应用案例进行研究和分析。