正交实验举例20160729
- 格式:docx
- 大小:67.68 KB
- 文档页数:9
测试用例设计方法--正交试验法详解正交试验法介绍正交试验法是研究多因素、多水平的一种试验法,它是利用正交表来对试验进行设计,通过少数的试验替代全面试验,根据正交表的正交性从全面试验中挑选适量的、有代表性的点进行试验,这些有代表性的点具备了“均匀分散,整齐可比”的特点。
正交表是一种特制的表格,一般用L n (m k)表示,L 代表是正交表,n 代表试验次数或正交表的行数,k 代表最多可安排影响指标因素的个数或正交表的列数,m 表示每个因素水平数,且有n=k*(m-1)+1。
正交表的特点正交表具有以下两个特点。
正交表必须满足这两个特点,有一条不满足,就不是正交表。
每列中不同数字出现的次数相等。
这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条件。
在任意2列其横向组成的数字对中,每种数字对出现的次数相等。
这个特点保证了试验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性。
使用正交试验法的原因对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,试验的规模很大,由于时间和成本的限制我们不可能进行全面试验,但是具体挑其中的哪些测试用例进行测试我们心里拿不准,总担心不做不挑选的那些测试用例会遗漏一些严重缺陷。
为了有效的、合理地减少测试的工时与费用,我们利用正交试验法来设计测试用例。
正交试验法就是安排多因素试验、寻求最优水平组合的一种高效率的试验设计方法。
我们用测试实例来进行说明使用正交试验法设计测试用例的好处。
测试需求:某所大学通信系共2个班级,刚考完某一门课程,想通过“性别”、“班级”和“成绩”这三个查询条件对通信系这门课程的成绩分布,男女比例或班级比例进行人员查询: 根据“性别”=“男,女”进行查询 根据“班级”=“1班,2班”查询 根据“成绩”=“及格,不及格”查询按照传统设计——全部测试分析上述测试需求,有3个被测元素,被测元素我们称为因素,每个因素有两个取值,我们称之为水平值,所以全部测试用例个数是2*2*2=8,参见下表序号性别班级成绩1女1班及格2女1班不及格3女2班及格4女2班不及格5男1班及格6男1班不及格7男2班及格8男2班不及格利用正交表设计测试用例,我们得到的测试用例个数是n=3*(2-1)+1=4,对于三因素两水平的刚好有L4(23)的正交表可以套用,于是用正交表试验法得出4个测试用例如下:序号性别班级成绩1女1班及格2女2班不及格3男1班不及格4男2班及格根据实际需要可以在用正交试验法设计用例的基础上补充一些测试用例。
正交实验法设计测试用例例子正交实验法(Orthogonal Experimental Design)是一种设计测试用例的方法,通过合理选择测试用例,可以有效减少测试工作量,提高测试效率。
正交实验法的核心思想是通过一定的设计原则,选择一组具有独立性和均匀性的测试用例,以覆盖系统的各个方面,从而发现系统中的问题。
以下是使用正交实验法设计测试用例的一些例子:1. 网页登录功能测试:通过正交实验法设计测试用例,测试网页登录功能的正确性和稳定性。
测试用例包括用户名和密码长度的不同组合、是否输入正确的用户名和密码、是否支持记住密码等等。
2. 购物车功能测试:通过正交实验法设计测试用例,测试购物车功能的正确性和稳定性。
测试用例包括添加商品到购物车的不同顺序、添加不同数量的商品、删除商品、修改商品数量等等。
3. 文件上传功能测试:通过正交实验法设计测试用例,测试文件上传功能的正确性和稳定性。
测试用例包括上传不同类型的文件、上传不同大小的文件、上传多个文件、上传文件的同时进行其他操作等等。
4. 数据库查询功能测试:通过正交实验法设计测试用例,测试数据库查询功能的正确性和性能。
测试用例包括查询不同条件的数据、查询不同数量的数据、查询数据的同时进行其他操作等等。
5. 网络连接功能测试:通过正交实验法设计测试用例,测试网络连接功能的正确性和稳定性。
测试用例包括连接不同类型的网络、连接不同网络的速度、在连接过程中进行其他操作等等。
6. 手机应用程序测试:通过正交实验法设计测试用例,测试手机应用程序的正确性和稳定性。
测试用例包括不同操作系统的手机、不同型号的手机、在不同网络环境下使用等等。
7. 网络游戏测试:通过正交实验法设计测试用例,测试网络游戏的正确性和稳定性。
测试用例包括不同操作系统的电脑、不同网络环境下使用、同时进行其他操作等等。
8. 电子邮件发送功能测试:通过正交实验法设计测试用例,测试电子邮件发送功能的正确性和稳定性。
正交试验设计方法讲义及举例正交试验设计方法是一种多因素试验设计方法,它能够有效地减少试验所需的样本数量,提高试验结果的精确性和可靠性。
正交试验设计方法是在已知因素水平的情况下选择对试验结果影响最大的因素进行研究的一种方法。
以下是正交试验设计方法的讲义及举例:一、正交试验设计方法的原理及步骤:1.原理:正交试验设计方法通过选择适当的正交表,将多个因素的不同水平组合进行排列,使各因素的变化对试验结果影响均匀化,从而获得准确可靠的试验结果。
2.步骤:a.确定试验因素及其水平:根据试验目的确定需要研究的因素及其水平。
b.选择正交表:根据试验因素的个数和水平确定适用的正交表,正交表能够保证试验结果的均匀性和可靠性。
c.设计试验方案:根据选择的正交表,将试验因素的水平进行组合,获得试验方案。
d.进行试验:按照试验方案进行实际试验。
e.分析试验结果:对试验结果进行统计分析,获得对试验因素的影响程度及其交互作用等信息。
f.微调试验方案:根据试验结果微调试验方案,迭代优化试验过程。
二、正交试验设计方法的优点:1.降低样本数量:正交试验设计方法能够通过对试验水平的排列组合,使试验因素的水平均匀分布,从而减少试验所需的样本数量。
2.提高试验效率:正交试验设计方法能够在有限样本量下获得更多的试验信息,提高试验效率。
3.确保结果可靠:正交试验设计方法通过保证试验因素的均匀分布,减少人为因素的干扰,从而保证试验结果的可靠性和准确性。
4.揭示因素交互作用:正交试验设计方法能够揭示因素之间的交互作用,进一步优化设计过程。
三、正交试验设计方法的举例:例如,公司要研究一种新的洗发水对头发柔顺度的影响,试验主要包括3个因素:洗发水品牌(A、B、C)、洗发水用量(X、Y、Z)和洗发水停留时间(T1、T2、T3)。
根据正交试验设计方法,按照以下步骤进行设计:1.选择正交表:根据3个因素和各因素的水平,选择适用的正交表,如L9正交表。
2.设计试验方案:根据L9正交表,将3个因素的水平进行组合,得到9个试验方案,每个方案分别测试一种组合情况。
用正交法测定几种因素对蔗糖酶活力的影响目的要求1.初步掌握正交实验设计方法的使用2.求出蔗糖酶的最适温度和最适pH值实验原理酶的催化作用是在一定条件下进行的,它受多种因素的影响,如:底物浓度、酶浓度、溶液的pH值和离子浓度、温度、抑制剂和激活剂等都能影响催化反应的速度。
通常是在其他因素恒定的条件下,通过对某因素在一系列变化条件下的酶活性测定,求得该因素对酶活力的影响,这是单因素的简单比较法。
本实验用正交法测定温度、pH值、底物浓度和酶浓度四种因素对蔗糖酶活性的影响,这是多因素(≥3)的实验方法。
正交法是通过正交表安排多因素实验,利用统计数学原理进行数据分析的一种科学方法,它符合“以尽量少的试验,获得足够的、有效的信息”的实验设计原则。
正交试验法的程序为下列八个步骤:(1)确定试验目的。
实验目的是多种多样的,如找出产品质量指标的最佳组合、确定最佳工艺条件等。
本实验的目的是为了提高酶的反应速度,提高酶的活力。
(2)选择质量特性指标。
应选择能提高或改进的质量特性及因素效应。
对于本实验来说就是产物(葡萄糖)生成量的多少。
(3)选定相关因素。
即选择和确定可能对实验结果或质量特性值有影响的那些因素,可人为控制与调节的因素,如温度、pH等。
这些因素之间有相互独立性。
(4)确定水平。
水平,又称位级,是因素的一个给定值或一种特定的措施,或一种特定的状态。
水平也就是因素变化的各种状态。
在确定水平时,应考虑选择范围、水平数和水平位置。
如本实验的温度水平可以选择20℃、30 ℃、50 ℃三个水平。
(5)选用正交表。
应从因素数、水平数以及有无重点因素需要强化考察等各方面综合考虑选用正交表。
一般情况下,首先根据水平数选用2或3系列表,然后,以容纳试验因素数,选用实验次数最少的正交表。
如有重点考察的因素,则根据其多考察的水平数,选混合型正交表。
(6)配列因素水平,制定实验方案。
按随机原则,把因素配列于选用的正交表中,制定实验的顺序、时间等,即制定实验具体方案。
正交试验设计经典案例
一、L9(3^4)正交试验设计
这个实验设计是一个L9(3^4)正交试验设计,用于研究铜锌合金中锌的含量、冶炼时间、冷却速率和成型压力对铜锌合金硬度的影响。
在这个设计中,有四个因素(锌的含量、冶炼时间、冷却速率和成型压力)和三个水平(低、中、高)。
该试验的九个试验条件如下表所示。
2、L16(4^5)正交试验设计
这个实验设计是一个L16(4^5)正交试验设计,用于研究发酵生产中,发酵液pH 值、生物量、发酵温度、曲菌培养基和曲菌翻转次数对干酪根的质量影响。
在这个设计中,有五个因素(发酵液pH值、生物量、发酵温度、曲菌培养基和曲菌翻转次数)和四个水平(低、中低、中高、高)。
该试验的十六个试验条件如下表所示。
3、L16(4^5)正交试验设计
这个实验设计是一个L16(4^5)正交试验设计,用于研究太阳能集热器的建造,包括集热面积、集热器长度、集热器宽度、太阳能采集器的形状和位置对太阳能集热器效率的影响。
在这个设计中,有五个因素(集热面积、集热器长度、集热器宽度、太阳能采集器的形状和位置)和四个水平(低、中低、中高、高)。
该试验的十六个试验条件如下表所示。
以上这些都是经典的正交试验设计案例,这些设计都遵循着统计学中的一些原则和方法,有效地结合了多个因素的影响,将因素控制在一定范围内,从而帮助我们更好地理解问题并提出相应的解决方案。
正交试验设计法一、定义:正交试验设计法就是利用正交表来合理安排多因素试验的一种方法。
二、常用术语1、指标:指标就是试验要考察的效果。
常用X、Y、Z……来表示。
▼定量指标:能够用数量来表示的试验指标,如重量、尺寸、温度。
▼定性指标:不能用数量来表示的试验指标,如颜色、味道、外观。
●定性指标量化:可用打分法、分等法。
2、因素:因素是指对试验指标可能产生影响的原因。
因素是在试验中应当加以考察的重点内容。
一般用大写字母A、B、C……来表示。
3、水平(位级):位级是指因素在试验中所处的状态或条件。
常用阿拉伯数字1、2、3……来表示。
如: A1、A2、A3、B1、B2、B3。
三、正交表 (已设计好的标准化表格,是进行正试验法的基本工具)1、日本型正交表:由日本质量管理专家田口玄一博士创立。
该正交试验设计法,除需试验的因素外,还要研究分析因素与因素之间的交互作用,一起上列,对试验结果的分析用方差分析等方法,过程较复杂。
2、中国型正交表是由以我国张千里教授为首的中国专家所创立。
它不考虑因素之间的交互作用,而将其交互作用融于试验之中,对试验结果的分析采用极差分析法,简单的用“看一看”与“算一算”相结合的分析、简单、易行、同样能得到满意的结论,是一种实用的试验方法,很适合现场应用。
四、正交表的特点:1、均衡分散性:每一列中各种字码出现的次数相同,保证试验条件均衡地分散在配合完全的位级组合之中,因而代表性强,容易出现好条件。
2、整齐可比性:任意两列中全部有序数字对出现次数都是相同的。
保证了在各个位级的效果之中,最大限度地排除了其他因素的干扰,能最有效地进行比较,作出展望。
五、用中国型正交表安排试验的步骤 1、明确试验目的 2、确定考察指标 3、挑因素、选位级,制定因素位级表 ①挑因素的原则: ▼分析影响指标的各种因素,排除: 不可控因素 对指标影响不大的因素 已掌握得好的因素(让其固定在适当位置上) ▼选对指标可能影响大,又无把握的因素。
回首页正交试验设计法正交试验设计法的基本思想正交表正交表试验方案的设计试验数据的直观分析正交试验的方差分析常用正交表1.正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。
它简单易行,计算表格化,使用者能够迅速掌握。
下边通过一个例子来说明正交试验设计法的基本想法。
[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。
试制定试验方案。
这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。
而定量因子各水平间的距离可以相等,也可以不相等。
这个三因子三水平的条件试验,通常有两种试验进行方法:(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。
用图表示就是图1 立方体的27个节点。
这种试验法叫做全面试验法。
全面试验对各因子与指标间的关系剖析得比较清楚。
但试验次数太多。
特别是当因子数目多,每个因子的水平数目也多时。
试验量大得惊人。
如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。
如果应用正交实验法,只做25次试验就行了。
而且在某种意义上讲,这25次试验代表了15625次试验。
图1 全面试验法取点..........(Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之:↗A1B1C1 →A2↘A3 (好结果)如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之:↗B1A3C1 →B2 (好结果)↘B3得出结果以B2为最好,则固定B于B2,A于A3,使C变化之:↗C1A3B2→C2 (好结果)↘C3试验结果以C2最好。
于是就认为最好的工艺条件是A3B2C2。
这种方法一般也有一定的效果,但缺点很多。
首先这种方法的选点代表性很差,如按上述方法进行试验,试验点完全分布在一个角上,而在一个很大的范围内没有选点。
因此这种试验方法不全面,所选的工艺条件A3B2C2不一定是27个组合中最好的。
其次,用这种方法比较条件好坏时,是把单个的试验数据拿来,进行数值上的简单比较,而试验数据中必然要包含着误差成分,所以单个数据的简单比较不能剔除误差的干扰,必然造成结论的不稳定。
简单对比法的最大优点就是试验次数少,例如六因子五水平试验,在不重复时,只用5+(6-1)×(5-1)=5+5×4=25次试验就可以了。
考虑兼顾这两种试验方法的优点,从全面试验的点中选择具有典型性、代表性的点,使试验点在试验范围内分布得很均匀,能反映全面情况。
但我们又希望试验点尽量地少,为此还要具体考虑一些问题。
如上例,对应于A有Al、A2、A3三个平面,对应于B、C也各有三个平面,共九个平面。
则这九个平面上的试验点都应当一样多,即对每个因子的每个水平都要同等看待。
具体来说,每个平面上都有三行、三列,要求在每行、每列上的点一样多。
这样,作出如图2所示的设计,试验点用⊙表示。
我们看到,在9个平面中每个平面上都恰好有三个点而每个平面的每行每列都有一个点,而且只有一个点,总共九个点。
这样的试验方案,试验点的分布很均匀,试验次数也不多。
当因子数和水平数都不太大时,尚可通过作图的办法来选择分布很均匀的试验点。
但是因子数和水平数多了,作图的方法就不行了。
试验工作者在长期的工作中总结出一套办法,创造出所谓的正交表。
按照正交表来安排试验,既能使试验点分布得很均匀,又能减少试验次数,图2正交试验设计图例而且计算分析简单,能够清晰地阐明试验条件与指标之间的关系。
用正交表来安排试验及分析试验结果,这种方法叫正交试验设计法。
2.正交表本书附录给出了常用的正交表。
为了叙述方便,用L代表正交表,常用的有L8(27),L9(34),L16(45),L8(4×24),L12(211),等等。
此符号各数字的意义如下:L8(27)7为此表列的数目(最多可安排的因子数)2为因子的水平数8为此表行的数目(试验次数)L18(2×37)有7列是3水平的有1列是2水平的L18(2×37)的数字告诉我们,用它来安排试验,做18个试验最多可以考察一个2水平因子和7个3水平因子。
在行数为mn型的正交表中(m,n是正整数),试验次数(行数)=Σ(每列水平数一1)+l (1)如L8(27),8=7×(2-1)+l利用上述关系式可以从所要考察的因子水平数来决定最低的试验次数,进而选择合适的正交表。
比如要考察五个3水平因子及一个2水平因子,则起码的试验次数为5×(3-1)+1×(2-1)+1=12(次)这就是说,要在行数不小于12,既有2水平列又有3水平列的正交表中选择,L18(2×37)适合。
正交表具有两条性质:(1)每一列中各数字出现的次数都一样多。
(2)任何两列所构成的各有序数对出现的次数都一样多。
所以称之谓正交表。
例如在L9(34)中(见表1),各列中的l、2、3都各自出现3次;任何两列,例如第3、4列,所构成的有序数对从上向下共有九种,既没有重复也没有遗漏。
其他任何两列所构成的有序数对也是这九种各出现一次。
这反映了试验点分布的均匀性。
返回3.试验方案的设计安排试验时,只要把所考察的每一个因子任意地对应于正交表的一列(一个因子对应一列,不能让两个因子对应同一列),然后把每列的数字"翻译"成所对应因子的水平。
这样,每一行的各水平组合就构成了一个试验条件(不考虑没安排因子的列)。
对于[例1],因子A、B、C都是三水平的,试验次数要不少于3×(3-1)+1=7(次)可考虑选用L9(34)。
因子A、B、C可任意地对应于L9(34)的某三列,例如A、B、C分别放在l、2、3列,然后试验按行进行,顺序不限,每一行中各因素的水平组合就是每一次的试验条件,从上到下就是这个正交试验的方案,见表2。
这个试验方案的几何解释正好是图2。
三个3水平的因子,做全面试验需要33=27次试验,现用L9(34)来设计试验方案,只要做9次,工作量减少了2/3,而在一定意义上代表了27次试验.。
再看一个用L9(34)安排四个3水平因子的例子。
[例2]某矿物气体还原试验中,要考虑还原时间(A)、还原温度(B)、还原气体比例(D)、气体流速(C)这四个因子对全铁合量X〔越高越好)、金属化率Y(越高超好)、二氧化钛含量Z(越低越好)这三项指标的影响。
希望通过试验找出主要影响因素,确定最适工艺条件。
首先根据专业知以确定各因子的水平:时间:A1=3(小时),A2=4(小时),A3=5(小时)温度:B1=1000(℃),B2=1100(℃),B3=1200(℃)流速:Cl=600(毫升/分),C2=400(毫升/分),C3=800(毫升/分)CO:H2:D1=1:2,D2=2:1,D3=1:1这是四因子3水平的多指标(X、Y、Z)问题,如果做全面试验需34=81次试验,而用L9(34)来做只要9次。
具体安排如表3。
同全面试验比较,工作量少了8/9。
由于缩短了试验周期,可以提高试验精度,时间越长误差于扰越大。
并且对于多指标问题,采用简单对比法,往往顾此失彼,最适工艺条件很难找;而应用正交表来设计试验时可对各指标通盘考虑,结论明确可靠。
返回4.试验数据的直观分析正交表的另一个好处是简化了试验数据的计算分折。
还是以[例1]为例来说明。
按照表2的试验方案进行试验,测得9个转化率数据,见表4。
通过9次试验,我们可以得两类收获。
第一类收获是拿到手的结果。
第9号试验的转化率为64,在所做过的试验中最好,可取用之。
因为通过L9(34)已经把试验条件均衡地打散到不同的部位,代表性是好的。
假如没有漏掉另外的重要因素,选用的水平变化范围也合适的话,那么,这9次试验中最好的结果在全体可能的结果中也应该是相当好的了,所以不要轻易放过。
第二类收获是认识和展望。
9次试验在全体可能的条件中(远不止33=27个组合,在试验范围内还可以取更多的水平组合)只是一小部分,所以还可能扩大。
精益求精。
寻求更好的条件。
利用正交表的计算分折,分辨出主次因素,预测更好的水平组合,为进一步的试验提供有份量的依据。
其中I、Ⅱ、Ⅲ分别为各对应列(因子)上1、2、3水平效应的估计值,其计算式是:Ⅰi(Ⅱi,Ⅲi)=第i列上对应水平1(2,3)的数据和K1 为1水平数据的综合平均=Ⅰ/水平1的重复次数Si为变动平方和=[例1]的转化率试验数据与计算分析见表4。
先考虑温度对转比率的影响。
但单个拿出不同温度的数据是不能比较的,因为造成数据差异的原因除温度外还有其他因素。
但从整体上看,80℃时三种反应时间和三种用碱量全遇到了,86℃时、90℃时也是如此。
这样,对于每种温度下的三个数据的综合数来说,反应时间与加碱量处于完全平等状态,这时温度就具有可比性。
所以算得三个温度下三次试验的转化率之和:80℃:ⅠA=xl+x2+x3=31+54+38=123;85℃:ⅡA=x4+x5+x6=53+49+42=144;90℃:ⅢA=x7+x8+x9=57+62+64=183。
分别填在A列下的Ⅰ、Ⅱ、Ⅲ三行。
再分别除以3,表示80℃、85℃、90℃时综合平均意义下的转化率,填入下三行Kl、K2、K3。
R行称为极差,表明因子对结果的影响幅度。
同样地,为了比较反应时间;用碱量对转化率的影响,也先算出同一水平下的数据和IB、ⅡB、ⅢB,Ic、Ⅱc、Ⅲc,再计算其平均值和极差。
都填入表4中;由此分别得出结论:温度越高转化率越好,以90℃为最好,但可以进一步探索温度更好的情况。
反应时间以120分转化率最高。
用碱量以6%转化率最高。
所以最适水平是A3B2C2。
返回5.正交试验的方差分析(一)假设检验在数理统计中假设检验的思想方法是:提出一个假设,把它与数据进行对照,判断是否舍弃它。
其判断步骤如下:(1)设假设H。
正确,可导出一个理论结论,设此结论为R。
;(2)再根据试验得出一个试验结论,与理论结论相对应,设为R1;(3)比较R。
与Rl,若R。
与Rl没有大的差异,则没有理由怀疑H。
,从而判定为:"不舍弃H。