用几何性质优化解析几何计算
- 格式:doc
- 大小:356.00 KB
- 文档页数:8
高考解析几何中线段比值问题
在高考解析几何中,线段比值问题是比较常见的一类问题。
这类问题通常涉及到直线、圆、椭圆、双曲线等几何图形,以及点、线段之间的位置关系和长度计算。
以下是一些解决线段比值问题的方法和思路:
1. 利用坐标表示线段长度:在解析几何中,可以通过坐标来表示点的位置,进而计算线段的长度。
对于线段比值问题,可以将线段的两个端点坐标求出,然后利用两点间距离公式计算出线段长度,再进行比值计算。
2. 利用几何性质:解析几何中的几何图形具有一些特殊的性质,例如圆的性质、椭圆的性质、双曲线的性质等。
在解决线段比值问题时,可以利用这些性质来简化计算,例如利用圆的切线性质、椭圆的定义等。
3. 建立函数关系式:对于一些复杂的线段比值问题,可以通过建立函数关系式来解决。
例如,可以设出线段长度的变量,然后根据题目条件列出方程,进而求出线段比值。
4. 利用三角形相似或全等:在一些情况下,可以通过判断线段所在的三角形是否相似或全等来解决线段比值问题。
如果两个三角形相似或全等,则它们对应边的比值相等。
5. 数形结合:在解决线段比值问题时,要注重数形结合,将几何图形与代数计算相结合,通过画图、观察等方法帮助理解和解决问题。
需要注意的是,具体的解题方法会因题目不同而有所差异,需要根据具体情况选择合适的方法。
同时,在解题过程中要注意对题目的条件和要求进行仔细分析,避免出现错误。
解析几何大题的解题步骤和策略
当涉及解析几何大题时,下面是一般的解题步骤和策略:
1.阅读理解:仔细阅读题目,理解问题陈述、已知条件和要求,
确保对问题的要求和约束有清晰的理解。
2.建立坐标系:根据题目描述和已知条件,确定合适的坐标系。
选择适当的坐标可以简化问题的计算和分析。
3.列出方程:根据题目的几何关系,用已知条件建立方程。
可
以利用距离公式、斜率公式、点斜式等几何关系公式来列出方程。
4.解方程组:利用求解方程组的方法来找到未知变量的值。
可
以使用代入法、消元法、梯度下降法等方法来求解方程组。
5.分析图形特征:通过计算、分析和绘制图形,找出图形的性
质和特征。
可以利用角度、长度等几何性质来推断和解答问题。
6.检查和回答:在得出计算结果之后,进行合理性检查,确保
计算的准确性。
最后,回答问题,给出相应的解释和结论。
在解析几何大题时,要善于运用几何知识和创造性思维,注意问题的合理性和准确性。
同时,从不同的角度分析和解决问题,灵活运用几何性质和解题策略,可以更好地应对解析几何大题。
根据具体的题目和难度,可能需要使用不同的方法和技巧,因此灵活性和实践经验也是很重要的因素。
空间解析几何解密立体形与空间曲线的解题技巧在空间解析几何中,立体形和空间曲线是我们经常遇到的问题。
解题的过程中,掌握准确的解题技巧可以帮助我们更好地理解和解析这些几何问题。
本文将介绍一些解密立体形和空间曲线的解题技巧,帮助读者更好地应对这些问题。
一、立体形立体形是三维空间中的物体,如立方体、圆锥、圆柱等等。
在解析几何中,我们常常需要求解这些立体形的体积、表面积等问题。
下面将介绍解题时的一些技巧:1. 确定坐标系:首先,我们需要确定一个适合的坐标系来描述立体形的位置和形状。
通常我们可以选择直角坐标系或者柱坐标系、球坐标系等。
在选择坐标系时,要考虑到问题的简化和计算的方便性。
2. 分析几何性质:在确定了坐标系后,我们需要分析立体形的几何性质,比如边长、半径、高度等。
通过对这些几何性质的了解,我们可以建立数学模型,从而求解问题。
3. 利用解析几何公式:解析几何中有一系列的公式和定理,比如体积、表面积的计算公式,以及平面与立体形的交点等。
在解题过程中,我们可以灵活运用这些公式,将几何问题转化为代数问题,从而求解。
二、空间曲线空间曲线是三维空间中的曲线,如直线、圆锥曲线、椭球曲线等。
解题时,我们需要掌握一些技巧来解密这些曲线的性质和方程。
下面将介绍解题时的一些技巧:1. 参数方程与一般方程的转换:空间曲线常常可以使用参数方程进行描述,通过引入参数,我们可以更好地理解和分析空间曲线的性质。
同时,我们也需要掌握将参数方程转换为一般方程的技巧,以便求解问题。
2. 对称性与轴线方程:空间曲线通常具有对称性,比如与坐标轴相交的点对称,或者轴对称。
利用对称性的特点,我们可以推导出曲线的轴线方程,从而更好地解析曲线的性质和特点。
3. 切线和法线的计算:对于空间曲线上的一点,求解切线和法线是我们经常需要做的问题。
通过计算曲线方程的导数,我们可以求得该点处的切线和法线方程。
这样,我们可以更好地分析曲线的变化趋势和轨迹。
结语通过掌握解密立体形与空间曲线的解题技巧,我们可以更好地理解和解析这些几何问题。
例谈平面几何法解决解析几何问题的几种途径周华【期刊名称】《中学数学》【年(卷),期】2016(000)013【总页数】4页(P78-81)【作者】周华【作者单位】江苏省启东市吕四中学【正文语种】中文众所周知,解析几何是高中数学的主要内容,也是历年高考的首选题型.解析几何的本质是用代数方法研究几何问题,数形结合是其主要特征.因此,灵活运用代数知识的同时,充分利用问题中的“几何性质”,往往是解决解析几何问题的关键.在解决高中解析几何问题时,若能够巧妙地运用平面几何知识,不仅能够有效解决问题,而且会使问题变得简洁明了.特别是在高三复习过程中,能将相关知识点联系起来,将平面几何与解析几何融为一体,在提高解题的技能和速度的同时,也使学生解题中感受到数学的无限魅力.下面笔者就从平面几何的一些性质出发,探讨几类解析几何问题的巧妙解法.中位线定理是平面几何中较容易掌握和理解的结论,在解析几何题中经常含有中点一类的信息,若能在解析几何中巧妙地加以运用,则会使有关问题变得更加简单容易,利于解题.例1设椭圆上一点P到左准线的距离为10,F是该椭圆的左焦点,若点M满足解析:如图1,设F′为椭圆的右焦点,连接PF′.因为所以M是线段PF的中点,从而OM为△PFF′的中位线,则.又点P到椭圆左准线的距离为10,椭圆离心率e=,所以|PF|=10×=6,从而|PF′|=10-6= 4,故评注:本解法是从几何角度入手,巧妙地利用了三角形的中位线的性质,充分发挥了数形结合的作用,揭示了题目的本质.解析几何经常是点、线之间的关系,经常会涉及点、线的对称问题,若能巧妙用好直线与点的对称问题,就能轻松求解.例2如图2,使抛物线y=ax2-1(a≠0)上总有关于直线l:x+y=0对称的两点,试求实数a的取值范围.解析:设P1(x1,y1),P2(x2,y2)是抛物线上关于直线l对称的两点,直线P1P2的方程为y=x+b.因为直线与抛物线有两个相异的交点,所以联立方程组得方程ax2-x-(1+ b)=0,Δ>0,即1+4a(1+b)>0.由韦达定理知x1+x2=由对称性质知,线段P1P2的中点既在直线P1P2上,又在直线l上,故有解得b=-代入1+4a(1+b)>0,解得a>在解析几何题中,常常会有过已知曲线内某一个定点,作互相垂直的直线一类题,从几何图形看,构造了矩形,就可以用矩形里的性质解题,取得意想不到的效果. 例3已知AC、BD为圆:x2+y2=4的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值为______.解法一:如图3,S四边形ABCD=当且仅当AC=BD时取“=”号,且Smax=此时圆心O到AC、BD的距离OE、OF相等,在正方形OEMF中,由OM=,得到OE=在Rt△AOE中,由勾股定理得到AE=故当AC=BD=时,S四边形ABCD取到最大值Smax=5.解法二:如图4,设E、F分别为AC、BD的中点,则在矩形OEMF中,OE2+OF2=OM2=3.又AC2+BD2=4(4-OE)2+4(4-OF)2=20,则S四边形ABCD=当且仅当AC=BD时,取“=”号. 评注:在解题时,需要灵活思考,解法一巧用基本不等式及特殊的纯几何图形直接求解,解法二是在解法一的基础上优化了解题过程,变正方形为矩形.可见,在解决解析几何题时,我们不妨考虑得细致一点儿,方法多样一点儿,则能灵活解决相关问题.垂直平分线定理是平面几何中常见并且运用较为广泛的定理,也是我们熟知的定理,若能在解析几何中巧妙运用,则可避开复杂运算,使解答直观容易.例4如图5,A、B是两个定点,且|AB|=2,动点M到点A的距离是4,线段MB的垂直平分线l交MA于点P,直线k垂直于直线AB,且点B到直线k的距离为3.求证:点P到点B的距离与到直线k的距离之比为定值.证明:以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系,则A(-1,0),B(1,0).因为直线l为线段MB的垂直平分线,所以|PM|=|PB|,所以|PA|+|PB|=|PA|+|PM|=|MA|=4.所以点P的轨迹是以A、B为两焦点,长轴为4的椭圆,易求其方程为=1,直线k是椭圆的准线.根据定义知,点P到点B的距离与到直线k的距离之比为e=评注:本题巧妙地运用垂直平分线定理及椭圆定义很快使问题获解.圆和三角形是平面几何中的基本图形,也是解析几何问题中常见的“构造”元素,所以圆和三角形的有关性质的应用,在解析几何问题中是十分重要的.例如,解析几何中曲线上的两动点连线过定点问题是高考考查的重点内容之一,是近年来高考、竞赛的常见题.此类问题定中有动,动中有定,常与轨迹问题、曲线系问题相结合,深入考查直线与圆、圆锥曲线的关系等相关知识,若利用图形中的几何特征来解题能起到事半功倍的作用.例5如图6,在平面直角坐标系xOy中,已知圆C:x2+y2=r2和直线l:x=a (其中r和a均为常数,且0<r<a),M为l上一动点,A1、A2为圆C与x轴的两个交点,直线MA1、MA2与圆C的另一个交点分别为P、Q,求证:直线PQ过定点,并求出该定点的坐标.分析:此题解法很多,若按照解析几何的基本思路循规蹈矩,即用代数方法解决几何问题,设出点的坐标,找出题目中的关系,转化为代数关系式,解得结果.思路简单、清晰,学生易上手,但由于题中涉及的未知量较多,因此运算过程复杂,计算量大,需要学生有足够的耐心和细心,一般学生很难解到最终结果(具体解法略),若能关注到图形的几何特征即可很快得到结果.证明:运用圆直径所对的圆周角是直角,建立代数关系,列出动点P、Q满足的曲线系方程,求出动直线PQ的方程,得出定点.由题设可知,A1(-r,0),A2(r,0),设M点的坐标为(a,t),直线MA1的斜率为k1,MA2的斜率为k2,则MA1的方程为y=k1(x+r),过点M(a,t),则t=k1(a+r),得到k1=MA2的方程为y=k2(x-r),过点M(a,t),则t=k2(a-r),得到k2=.连接AQ并延长交直线x=a与N,如图6所示,由于A1A2是圆C的直径,A1Q⊥MQ,所以直线A1Q的方程为y=-(x+r),将k2代入,即y=-x+r),得N点坐标为同理,连接PA2并延长交直线x=a于点N′,得直线PA2的方程为y=-可知N′的坐标为⊥,所以N和N′实际为同一点.根据几何特征,P、Q、N、M四点共圆,P、Q在以MN为直径的圆上,即(x-a)2+(y-t)所以PQ为两圆的交线,求得PQ的方程为(x-a)2+(y-令 y=0,得x=,故直线PQ恒过定点评注:在解析几何题设中均隐藏着一些特定的几何特征.利用图形中的几何特征,寻找代数关系,真正体现了数形结合的思想.避开烦琐复杂的整理、转化的过程,而借助于几何特征建立曲线系,设而不解,运算的量小,不易出错.这种方法在很多题目中都可应用,在解析几何繁杂的运算中利用图形的几何特征解题将起到事半功倍的作用.平行线分线段成比例是初中几何的一个重点内容,而在解析几何中若能巧用此定理,则可减少计算量,降低解题难度.例6已知直线x-2y+2=0经过椭圆C=1(a> b>0)的左顶点A和上顶点D,椭圆C的右顶点为B,S为椭圆C上位于x轴上方的动点,直线AS、BS与直线l:x=分别交于M、N两点.(Ⅰ)求椭圆C的方程;(Ⅱ)求线段MN的长度的最小值;(Ⅲ)当线段MN的长度最小时,在椭圆C上是否存在这样的点T,使得△TSB的面积为?若存在,确定点T的个数;若不存在,说明理由.解析:(Ⅰ)过程略)(Ⅱ)如图8,过点S作SE垂直于x轴,设S(x0,y0),显然SE∥l,则有所以又由,得,所以由基本不等式得MI+NI≥当且仅当MI= NI=时取等号,即线段MN的长度的最小值为(Ⅲ)由(Ⅱ)可得N⊥,此时BS的方程为x+y-2=0,S⊥,所以|BS|=,要使椭圆C上存在点T,使得△TSB的面积等于只需T到直线BS的距离等于,所以T 在平行于BS且与BS距离等于的直线l′上.设直线l′:x+y+t=0,则由,解得t=-或t=-.经检验t=-不符合,故只有二个.评注:第(Ⅱ)问巧妙运用平行线分线段成比例,找出线段与线段的相等关系,从而得到结论,大大减小运算量,使解题速度大大提高.此解法体现的另一思路是圆锥曲线中与顶点相关的线段可以考虑将圆锥曲线的方程变形,然后用平方差公式得到相关比例,使解题的运算量大大减小.角平分线定理在初中虽然仅出现在习题中,但它在高中内容中时常出现,若作为结论加以介绍,并学会应用,将使解决有关问题变得简单易行.例7已知椭圆=1,F1、F2分别为其左、右焦点,P为椭圆上一动点,I为△F1F2P 的内心,延长PI交F1F2于点M,求的值.解析:如图9,因为I为△F1F2P的内心,连接F1I,F2I,则F1I、F2I、PI分别是三角形F1F2P的角平分线,由角平分线的性质定理可得,即所以评注:本题结合角平分线定理,使问题简单明了,角平分线定理可以用正弦定理证明,便于理解和记忆.总之,解析几何中,“解析”只是方法,“几何”才是本质.平面几何在教学目标上侧重于培养学生的作图识图能力和逻辑推理能力.只有利用平面几何相关知识,正确把握问题中各个对象的位置关系,并转化出其内在的数量关系,才能用解析的方法顺利解决问题.教学中若利用平面几何知识可避免烦琐计算,收到意想不到的解题效果;这样不仅能起到变难为易、化繁为简的作用,还有助于打破学生学习过程中易于形成的一种思维定势,有益于学生的发散性思维的培养.F。
“设而不求”在解析几何中的应用“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点,避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”解题;(2)根据题意,整体消参或整体代入等.一、巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求[典例1] 在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.[解析] 法一:设A (x A ,y A ),B (x B ,y B ),由抛物线定义可得|AF |+|BF |=y A +p 2+y B +p2=4×p2⇒y A +y B =p . 由⎩⎪⎨⎪⎧x 2a 2-y 2b 2=1,x 2=2py可得a 2y 2-2pb 2y +a 2b 2=0, 所以y A +y B =2pb 2a 2=p ,解得a =2b ,故该双曲线的渐近线方程为y =±22x .法二:(点差法)设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p 2,|BF |=y 2+p2,|OF |=p 2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .易知直线AB 的斜率k AB =y 2-y 1x 2-x 1=x 222p -x 212p x 2-x 1=x 2+x 12p .由⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b2=1,得k AB =y 2-y 1x 2-x 1=b 2(x 1+x 2)a 2(y 1+y 2)=b 2a2·x 1+x 2p ,则b 2a 2·x 1+x 2p =x 2+x 12p ,所以b 2a 2=12⇒b a =22,所以双曲线的渐近线方程为y =±22x . [答案] y =±22x 二、中点弦或对称问题,可以利用“点差法”,此法实质上是“设而不求”的一种方法 [典例2] (1)△ABC 的三个顶点都在抛物线E :y 2=2x 上,其中A (2,2),△ABC 的重心G 是抛物线E 的焦点,则BC 所在直线的方程为________.(2)抛物线E :y 2=2x 上存在两点关于直线y =k (x -2)对称,则k 的取值范围是________. [解析] (1)设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),易知G ⎝⎛⎭⎫12,0,则⎩⎨⎧x 1+x 2+23=12,y 1+y 2+23=0,从而⎩⎨⎧x 0=x 1+x 22=-14,y 0=y 1+y22=-1,即M ⎝⎛⎭⎫-14,-1, 又y 21=2x 1,y 22=2x 2,两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率k BC=y 1-y 2x 1-x 2=2y 1+y 2=22y 0=1y 0=-1,故直线BC 的方程为y -(-1)=-⎝⎛⎭⎫x +14,即4x +4y +5=0. (2)当k =0时,显然成立.当k ≠0时,设两对称点为B (x 1,y 1),C (x 2,y 2),BC 的中点为M (x 0,y 0),由y 21=2x 1,y 22=2x 2,两式相减得(y 1+y 2)·(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率k BC =y 1-y 2x 1-x 2=2y 1+y 2=22y 0=1y 0,由对称性知k BC =-1k,点M 在直线y =k (x -2)上,所以y 0=-k ,y 0=k (x 0-2),所以x 0=1.由点M 在抛物线内,得y 20<2x 0,即(-k )2<2,所以-2<k <2,且k ≠0.综上,k 的取值范围为(-2,2).[答案] (1)x +y +54=0 (2)(-2,2)三、中点弦或对称问题的“点差法”求解 [典例3]已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点?[解] 假设存在直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.设A (x 1,y 1),B (x 2,y 2),易知x 1≠x 2,由⎩⎨⎧x 21-y 212=1,x 22-y222=1,两式相减得(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)2=0,又x 1+x 22=1,y 1+y 22=1, 所以2(x 1-x 2)-(y 1-y 2)=0, 所以k AB =y 1-y 2x 1-x 2=2, 故直线l 的方程为y -1=2(x -1),即y =2x -1.由⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1,消去y 得2x 2-4x +3=0, 因为Δ=16-24=-8<0,方程无解,故不存在一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.(说明最后验证Δ>0是十分必要的)四、求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,此法实质上也是设而不求[典例4] 已知F 为抛物线C :y 2=2x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.[解析] 法一:由题意知,直线l 1,l 2的斜率都存在且不为0,F ⎝⎛⎭⎫12,0,设l 1:x =ty +12,则直线l 1的斜率为1t,联立方程得⎩⎪⎨⎪⎧y 2=2x ,x =ty +12,消去x 得y 2-2ty -1=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-1.所以|AB |=t 2+1|y 1-y 2|=t 2+1·(y 1+y 2)2-4y 1y 2=t 2+14t 2+4=2t 2+2, 同理得,用1t 替换t 可得|DE |=2t 2+2,所以|AB |+|DE |=2⎝⎛⎭⎫t 2+1t 2+4≥4+4=8,当且仅当t 2=1t2,即t =±1时等号成立,故|AB |+|DE |的最小值为8.法二:由题意知,直线l 1,l 2的斜率都存在且不为0,F ()12,0,不妨设l 1的斜率为k ,则l 1:y =k ()x -12,l 2:y =-1k()x -12由⎩⎪⎨⎪⎧y 2=2x ,y =k ⎝⎛⎭⎫x -12,消去y 得k 2x 2-(k 2+2)x +k 24=0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1+2k 2.由抛物线的定义知,|AB |=x 1+x 2+1=1+2k 2+1=2+2k2.同理可得,用-1k 替换|AB |中k ,可得|DE |=2+2k 2,所以|AB |+|DE |=2+2k 2+2+2k 2=4+2k 2+2k 2≥4+4=8,当且仅当2k2=2k 2,即k =±1时等号成立,故|AB |+|DE |的最小值为8. [答案] 8。
解析几何巧妙解题思路总结解析几何巧妙解题思路总结一.直线和圆的方程一.直线和圆的方程1.理解直线的斜率的概念,理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、掌握直线方程的点斜式、掌握直线方程的点斜式、两点式、两点式、一般式,并能根据条件熟练地求出直线方程.一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系.线的方程判断两条直线的位置关系. 3.了解二元一次不等式表示平面区域..了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用..了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法..了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质..掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质..掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质..掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用..了解圆锥曲线的初步应用. 【例题解析】 考点1.1.求参数的值求参数的值求参数的值求参数的值是高考题中的常见题型之一求参数的值是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,构造方程解之构造方程解之. . 例1.(2009年安徽卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线222y px =的焦点为(2,0),则4p =,故选D. 考点2. 2. 求线段的长求线段的长求线段的长求线段的长也是高考题中的常见题型之一求线段的长也是高考题中的常见题型之一,,其解法为从曲线的性质入手其解法为从曲线的性质入手,,找出点的坐标找出点的坐标,,利用距离公式解之离公式解之. .例2.(2009年四川卷)已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3 B.4 C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x bì=-+Þ++-=Þ+=-í=+î,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-´-=.故选C 例3.(2006年四川卷)如图,把椭圆2212516x y +=的长轴的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆2212516x y +=的方程知225, 5.a a =\=∴12345677277535.2aPF P F P F P F P F P F P F a ´++++++==´=´= 故填35. 考点3. 3. 曲线的离心率曲线的离心率曲线的离心率曲线的离心率是高考题中的热点题型之一曲线的离心率是高考题中的热点题型之一,,其解法为充分利用其解法为充分利用: : (1)(1)椭圆的离心率椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁越大则椭圆越扁); );(2) (2) 双曲线的离心率双曲线的离心率e =ac ∈(1, (1, +∞+∞+∞) (e ) (e 越大则双曲线开口越大越大则双曲线开口越大). ).结合有关知识来解题结合有关知识来解题. .例4.(2008年全国卷)文(年全国卷)文(44)理()理(44)已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -= D .221610x y -=考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程:解答过程: 2,4,ce c a=== 所以22,12.a b \==故选(A). 小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会. 例5.(2008年广东卷)已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于(到右准线的距离之比等于( )A. 2B.332 C. 2 D.4 考查意图: 本题主要考查双曲线的性质和离心率e =ac∈(1, +∞) 的有关知识的应用能力. 解答过程:依题意可知解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.4.求最大求最大求最大((小)值求最大求最大((小)值, , 是高考题中的热点题型之一是高考题中的热点题型之一其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是特别是,,一些题目还需要应用曲线的几何意义来解答一些题目还需要应用曲线的几何意义来解答. .例6.(2006年山东卷年山东卷))已知抛物线y 22=4x,=4x,过点过点P(4,0)P(4,0)的直线与抛物线相交于的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是的最小值是 . 考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P(4,0)的直线为()()224,8164,y k x k x x x =-\-+=()()122222222122284160,8414416232.k x k x k k y y x x k k \-++=+æö\+=+=´=+³ç÷èø 故填32. 考点5 5 圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线的基本概念和性质圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.(2007年广东卷文)年广东卷文)在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y=x 相切于坐标原点O.椭圆9222y ax +=1与圆C 的一个交点到椭圆两焦点的距离之和为10. (1)求圆C 的方程;的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由. [考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.行推理运算的能力和解决问题的能力. [解答过程] (1) 设圆C 的圆心为的圆心为 (m, n) 则,222,m n n =-ìïí×=ïî 解得2,2.m n =-ìí=î所求的圆的方程为所求的圆的方程为 22(2)(2)8x y ++-= (2) 由已知可得由已知可得 210a = , 5a =. 椭圆的方程为椭圆的方程为 221259x y += , 右焦点为右焦点为 F( 4, 0) ; 假设存在Q 点()222cos ,222sin q q -++使QF OF =, ()()22222cos 4222sin 4q q-+-++=.整理得整理得 s i n 3c o s 22q q=+, 代入代入 22sin cos 1q q +=. 得:210cos 122cos 70q q ++= , 122812222cos 11010q -±-±==<-.因此不存在符合题意的Q 点. 例8.(2007年安徽卷理)年安徽卷理)如图,曲线G 的方程为)0(22³=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的轴的 正半轴相交于正半轴相交于 A 与点B. 直线直线 AB 与 x 轴相交于点C. (Ⅰ)求点(Ⅰ)求点 A 的横坐标的横坐标 a 与点与点 C 的横坐标c 的关系式;的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A 因为.2,||22t a a t OA =+=所以 由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+t y c x又因点A 在直线BC 上,故有,12=+ta c a将(1)代入上式,得,1)2(2=++a a a ca 解得解得 )2(22+++=a a c . (II )因为))2(22(++a a D ,所以直线CD 的斜率为的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值. 例9.已知椭圆2222x y E :1(a b 0)a b +=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求:,求: (1)椭圆E 的离心率;(2)双曲线C 的方程. 解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ),则221122x y 1a b+=,222222x y 1a b +=,二式相减得:,二式相减得: 21212AB 21212y y (x x )b k x x (y y )a -+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =, 则c2e a 2==;(2)椭圆E 的右准线为22a(2c)x 2c cc===,双曲线的离心率11e 2e==, 设P(x,y)是双曲线上任一点,则:是双曲线上任一点,则: 22(x 2)(y 1)|PM |2|x 2c ||x 2c |-+-==--,两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去;,不合题意,舍去;当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法;“点差法”是处理弦的中点与斜率问题的常用方法; (2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题利用向量求曲线方程和解决相关问题利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:典型例题:例10.(2008年山东卷)双曲线C 与椭圆22184x y +=有相同的焦点,直线y=x 3为C 的一条渐近线. (1)求双曲线C 的方程;的方程;(2)过点P(0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合)当12PQ QA QB l l ==,且3821-=+l l 时,求Q 点的坐标. 考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力. 解答过程:(Ⅰ)设双曲线方程为22221x y a b -=, 由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,\对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线的一条渐近线\3ba = 解得解得 221,3ab ==,\双曲线C 的方程为2213y x -=(Ⅱ)解法一:(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零. 设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k -. 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. 111111114444()44x k k x k k y y l l l l ì=--ìï-=+ïï\Þííïï-==-îïî 11(,)A x y 在双曲线C 上,上,\2121111616()10k l l l +--=. \222211161632160.3k k l l l ++--=\2221116(16)32160.3k k l l -++-=同理有:2222216(16)32160.3k k l l -++-=若2160,k -=则直线l 过顶点,不合题意.2160,k \-¹12,l l \是二次方程22216(16)32160.3k x x k -++-=的两根. 122328163k l l \+==--,24k \=,此时0,2k D >\=±. \所求Q 的坐标为(2,0)±. 解法二:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 1PQ QA l = , Q \分PA的比为1l . 由定比分点坐标公式得由定比分点坐标公式得1111111111144(1)14401x x k k y y l l l l l l l ìì-==-+ïï+ïï®íí+ïï=-=ïï+îî下同解法一下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-. 12PQ QA QB l l == , 111222444(,4)(,)(,)x y x y kkkl l \--=+=+. 11224y y l l \-==, 114y l \=-,224y l =-,又1283l l +=-,121123y y \+=,即12123()2y y y y +=. 将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=. 230k -¹ ,否则l 与渐近线平行. 212122224483,33k y y y y k k -\+==--. 222244833233k k k -\´=´--.2k \=±(2,0)Q \±. 解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k- 1PQ QA l = ,11144(,4)(,)x y kkl \--=+. \1114444k kx x kl -==-++.同理同理 1244kx l =-+. 1212448443kx kx l l +=--=-++. 即 2121225()80k x x k x x +++=. (*)又 22413y kx y x =+ìïí-=ïî消去y 得22(3)8190k x kx ---=. 当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -¹. 由韦达定理有:由韦达定理有: 12212283193k x x k x x k ì+=ïï-íï=-ï-î代入(*)式得)式得24,2k k ==±. \所求Q 点的坐标为(2,0)±. 例11.(2007年江西卷理)年江西卷理)设动点P 到点A(-l ,0)和B(1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.为坐标原点.[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合 运用数学知识进行推理运算的能力和解决问题的能力.运用数学知识进行推理运算的能力和解决问题的能力.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos2d d d d q =+-,2212124()4sin d d d d q =-+,即2121244sin 212d d d d q l -=-=-<(常数),点P 的轨迹C 是以A B ,为焦点,实轴长221a l =-的双曲线.的双曲线.方程为:2211x y l l-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上.在双曲线上.即2111511012l l l l l -±-=Þ+-=Þ=-,因为01l <<,所以512l -=. ②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x l lì-=ï-íï=-î得:2222(1)2(1)(1)()0k x k x k l l l l l éù--+---+=ëû, 由题意知:2(1)0k l l éù--¹ëû,所以21222(1)(1)k x x k l l l --+=--,2122(1)()(1)k x x k l l l l --+=--. 于是:22212122(1)(1)(1)k y y k x x kl l l =--=--.因为0=×ON OM ,且M N ,在双曲线右支上,所以在双曲线右支上,所以 2121222122212(1)0(1)5121011231001x x y y k x x k x x l l l l l l l l l l l l l ll -ì+=ì-ì=ï>-ïïï+-+>ÞÞÞ<<+--íííïïï>+->>îîï-î. 由①②知,51223l -<≤.解法2:(1)同解法1 (2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB l l l l l=-=Þ+-=-,因为01l <<,所以512l -=; ②当12x x ¹时,002222212111111y x k y x y xMN ×-=Þïïîïïíì=--=--l l l l l l . 又001MN BE y k k x ==-.所以22000(1)y x x l l l -=-;由2MON p =∠得222002MN x y æö+=ç÷èø,由第二定义得2212()222MN e x x a æö+-éù=ç÷êúëûèø 22000111(1)211x x x l l ll æö=--=+--ç÷--èø. 所以2220(1)2(1)(1)y x x l l l l -=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x l l l l l l l ì-=-ïí-=--+-ïî得20(1).23x l l -=-因为01x >,所以2(1)123l l->-,又01l <<,C BA oy x解得:51223l -<<.由①②知51223l -<≤.考点7 利用向量处理圆锥曲线中的最值问题利用向量处理圆锥曲线中的最值问题利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易. 例12.设椭圆E 的中心在坐标原点O ,焦点在x 轴上,离心率为33,过点C(1,0)-的直线交椭圆E 于A 、B 两点,且CA2BC = ,求当AOB D 的面积达到最大值时直线和椭圆E 的方程. 解答过程:因为椭圆的离心率为33,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1ì+=í=+î得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则1224m y y 2m 3+=+…………① 又CA 2BC =,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………②由①②得:128m y 2m 3=+,224m y 2m 3-=+,则AOB 1221m S |y y |6||22m 3D =-=+=66322|m ||m |£+, 当23m 2=,即6m 2=±时,AOB D 面积取最大值,面积取最大值,此时2122222t32m y y 2m 3(2m 3)-==-++,即t 10=,所以,直线方程为6x y 102±+=,椭圆方程为222x 3y 10+=. 小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易. 例13.已知P A (x 5,y)=+,PB (x 5,y)=- ,且|P A||P B|6+= , 求|2x 3y 12|--的最大值和最小值. 解答过程:设P(x,y),A(5,0)-,B(5,0),因为|P A ||PB|6+=,且|AB|256=<,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆,的椭圆,椭圆方程为22x y 194+=,令x 3cos ,y 2sin =q =q , 则|2x 3y 12|--=|62cos()12|4pq +-,当cos()14pq +=-时,|2x 3y 12|--取最大值1262+,当cos()14pq +=时,|2x 3y 12|--取最小值1262-. 小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题利用向量处理圆锥曲线中的取值范围问题解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域问题. 例14.(2006年福建卷)年福建卷) 已知椭圆2212x y +=的左焦点为F , O 为坐标原点. (I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程;相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==\=-=-圆过点O 、F , \圆心M 在直线12x =-上. 设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =得2213(),22t -+=解得 2.t =±\所求圆的方程为2219()(2).24x y ++±=(II )设直线AB 的方程为(1)(0),y k x k =+¹代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F ,\方程有两个不等实根. ylG ABF OF EP DBA Oy x记1122(,),(,),A x y B x y AB 中点00(,),N x y 则21224,21k x x k +=-+AB \的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++¹\-<<\点G 横坐标的取值范围为1(,0).2- 例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA|,|OB|,|OF| 成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ×=×;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围. 解答过程:(1)因|OA |,|OB|,|OF| 成等比数列,故22|OB |a|OA |c |OF|== ,即2a A(,0)c , 直线l :ay (x c)b=--,由2a y (x c)a ab b P(,)bc c y xa ì=--ïïÞíï=ïî, 故:22ab a ab b ab PA (0,),OP (,),FP (,)c c c c c =-==-,则:222a b PA OP PA FP c×=-=×,即PA OP PA FP ×=× ;(或P A (OP FP)P A (PF PO)P A OF 0×-=×-=×=,即PA OP PA FP ×=× ) (2)由44422222222222222ay (x c)a a a c (b )x 2cx (a b )0b b b b b x a y a b ì=--ïÞ-+-+=íï-=î,由4222212422a c (a b )b x x 0a b b -+=<-得:4422222b a b c a a e 2e 2.>Þ=->Þ>Þ>(或由DFDO k k >Þa bb a->-Þ2222222222b c a a e 2e 2=->Þ>Þ>)小结:向量的数量积在构造等量关系中的作用举足轻重,向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,而要运用数量积,必须先恰当地求出各个点的坐标. 例16.已知a (x,0)= ,b (1,y)=,(a 3b)(a 3b)+^- ,(1)求点P(x,y)的轨迹C 的方程;的方程;(2)若直线y kx m(m 0)=+¹与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围. 解答过程:(1)a 3b +=(x,0)3(13(1,,y)(x 3,3y)+=+,a 3b -=(x,0)3(13(1,,y)(x 3,3y)-=--, 因(a 3b)(a 3b)+^- ,故(a 3b)(a 3b)0+×-=,即22(x 3,3y)(x 3,3y)x 3y 30+×--=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx mx 3y 3=+ìí-=î得:222(13k )x 6kmx 3m 30----=, 设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0D =----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k=+=-, 即A 、B 的中点为223km m(,)13k 13k --, 则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k -=----, 将D(0,1)-的坐标代入,化简得:24m 3k 1=-,PQCBA xy O则由222m 13k 04m 3k 1ì+->ïí=-ïî得:2m 4m 0->,解之得m 0<或m 4>,又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+¥ . 小结:求变量的范围,要注意式子的隐含条件,否则会产生增根现象. 考点9 利用向量处理圆锥曲线中的存在性问题利用向量处理圆锥曲线中的存在性问题存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立. 例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0×= ,|BC|2|AC|=, (1)求椭圆的方程;)求椭圆的方程;(2)如果椭圆上的两点P ,Q 使PCQ Ð的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =?请说明理由;请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y14b+=,不妨设C 在x 轴上方,轴上方,由椭圆的对称性,|BC|2|AC|2|OC||AC||OC|==Þ= ,又AC BC 0×=AC OC Þ^,即ΔOCA 为等腰直角三角形,为等腰直角三角形,由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=; (2)假设总存在实数λ,使得PQ λAB =,即AB //PQ ,由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1ì+=ïÞ+--+--=íï=-+î, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=×=+,以k -代k 得2Q 23k 6k 1x 13k+-=+, 故P Q P Q PQ P Q P Q yy k(x x )2k 1k x x x x 3-+-===--,故AB //PQ , 即总存在实数λ,使得PQ λAB =. 评注:此题考察了坐标系的建立、待定系数法、椭圆的对称性、向量的垂直、向量的共线及探索性问题的处理方法等,是一道很好的综合题. 考点10 利用向量处理直线与圆锥曲线的关系问题利用向量处理直线与圆锥曲线的关系问题直线和圆锥曲线的关系问题,直线和圆锥曲线的关系问题,一般情况下,一般情况下,是把直线的方程和曲线的方程组成方程组,是把直线的方程和曲线的方程组成方程组,进一进一步来判断方程组的解的情况,但要注意判别式的使用和题设中变量的范围. 例18.设G 、M 分别是ABC D 的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =l ,(1)求点C 的轨迹方程;的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OPOQ 0×= 若存在,求出直线m 的方程;若不存在,请说明理由. 解答过程:(1)设C(x,y),则x yG(,)33, 因为GM AB =l ,所以GM //AB ,则xM(,0)3,由M 为ABC D 的外心,则|MA ||MC |=,即2222x x ()a (x)y 33+=-+,整理得:2222x y 1(x 0)3a a+=¹;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3aa =-ìïí+=¹ïî得:22222(13k )x 6k ax 3a (k 1)0+++-=,设1122P(x ,y ),Q(x ,y ),则21226k a x x 13k +=+,221223a (k 1)x x 13k -=+,22212121212y y k (x a )(x a )k [x x a (x x )a ]=--=-++=2222k a 13k-+, 由OP OQ 0×=得:1212x x y y 0+=,即2222223a (k 1)2k a13k 13k --+=++,解之得k 3=±,又点(a,0)在椭圆的内部,直线m 过点(a,0),故存在直线m ,其方程为y 3(x a)=±-. 小结:(1)解答存在性的探索问题,一般思路是先假设命题存在,再推出合理或不合理的结果,然后做出正确的判断;然后做出正确的判断;(2)直线和圆锥曲线的关系问题,一般最终都转化成直线的方程和圆锥曲线的方程所组成的方程组的求解问题. 专题训练与高考预测专题训练与高考预测一、选择题一、选择题1.如果双曲线经过点(6,3),且它的两条渐近线方程是1y x 3=±,那么双曲线方程是(),那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-= 2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n-=有公共的焦点,那么双曲线的的渐近线方程为(为( ) A.15x y 2=± B. 15y x2=± C. 3x y 4=± D. 3y x 4=± 3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴,轴, 且12FMF 60Ð=°,则椭圆的离心率为(,则椭圆的离心率为( ) A.12 B.22 C.33 D.324.二次曲线22x y 14m+=,当m [2,1]Î--时,该曲线的离心率e 的取值范围是(的取值范围是( )A.23[,]22B. 35[,]22C.56[,]22D. 36[,]225.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C 的右支相交于不重合的两点,则实数k 的取值范围是(的取值范围是( )A.(2,2)-B.(1,2)C.[2,2)-D.[1[1,,2)6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为(抛物线的焦点的轨迹方程为( ) A. 22xy1(y0)34+=¹B. 22x y 1(y 0)43+=¹ C. 22x y 1(x 0)34-=¹ D. 22x y 1(x 0)43-=¹二、填空题二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by ax 上一点,若021=×PF PF 21tan 21=ÐF PF ,则椭圆的离心率为,则椭圆的离心率为 ______________ . 8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,轴正方向上的一定点,若过点若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ . 9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k ×=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;F 2F 1A 2A 1PNM oy x FQoyx②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292;③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP ,OQ 的斜率之积为14-,则22|OP ||OQ|+等于定值20 . 把你认为正确的命题的序号填在横线上_________________ . 三、解答题三、解答题 11.已知两点A(2,0),B(2,0)-,动点P 在y 轴上的射影为Q ,2PA PB 2PQ ×=, (1)求动点P 的轨迹E 的方程;的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标. 12.如图,1F (3,0)-,2F (3,0)是双曲线C 的两焦点,直线4x 3=是双曲线C 的右准线,12A ,A是双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点,两点, (1)求双曲线C 的方程;的方程;(2)求证:12FM F N × 是定值. 13.已知OFQ D 的面积为S ,且OFFQ 1×= ,建立如图所示坐标系,,建立如图所示坐标系, (1)若1S 2=,|OF|2= ,求直线FQ 的方程;的方程;(2)设|OF|c(c 2)=³,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求当|OQ |取得最小值时的椭圆方程. 14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0×= ,3PM MQ 2=-,BAMQ E T HP o yx(1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 轴上存在一点0E(x ,0),使得ABE D 为等边三角形,求0x 的值. 15.已知椭圆)0(12222>>=+b a b y a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量.是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点,是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使NPNM PN PM MN MP ×××,,成公差小于零的等差数列,数列, (Ⅰ)点P 的轨迹是什么曲线?的轨迹是什么曲线? (Ⅱ)若点P 坐标为),(00y x ,q 为PN PM 与的夹角,求tan θ.参考答案参考答案一. 1.C .提示,设双曲线方程为提示,设双曲线方程为11(x y)(x y)33+-=l ,将点(6,3)代入求出l 即可. 2.D .因为双曲线的焦点在因为双曲线的焦点在x 轴上,故椭圆焦点为22(3m 5n ,0)-,双曲线焦点为22(2m 3n ,0)+,由22223m 5n 2m 3n -=+得|m |22|n |=,所以,双曲线的渐近线为6|n |3y x 2|m |4=±=± . 3.C .设1|MF |d =,则2|MF |2d =,12|FF |3d =,11212|FF |c 2c 3d3e a2a|MF ||MF |d 2d 3=====++ . 4.C .曲线为双曲线,且曲线为双曲线,且512>,故选C ;或用2a 4=,2b m =-来计算. 5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义数形结合,利用梯形中位线和椭圆的定义. 二.7.解:设c 为为椭圆半焦距,∵021=×PF PF ,∴21PF PF ^ . 又21tan 21=ÐF PF ∴ïïïîïïïíì==+=+212)2(122122221PF PF a PF PF c PF PF解得:255()93,cc e aa === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由,由 y=x-x 0 可得3x 2-4x 0x+2x 02-12=0, x 22+2y 22=12 34021x x x =+,31222021-=×x x x ,则,则 2020221221212363234889164)(||x x xx x x x x x -=--=-+=-.∴||13144212x x x -×+=,即202363223144x -××=. ∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =×=+-=- . 10.②④. 三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-,P A (2x,y)=-- ,PB (2x,y)=---,22P A PB x 2y ×=-+ ,因为2PA PB 2PQ ×= ,所以222x 2y 2x -+=,即动点P 的轨迹方程为:22y x 2-=; (2)设直线m :y k(x 2)(0k 1)=-<<,依题意,点C 在与直线m 平行,且与m 之间的距离为2的直线上,的直线上, 设此直线为1m :y kx b =+,由2|2k b |2k 1+=+,即2b 22kb 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=,则22224k b 4(k 1)(b 2)0D =---=,即22b 2k 2+=,…………②由①②得:25k 5=,10b 5=,此时,由方程组222510y x C(22,10)55y x 2ì=+ïÞíï-=î . 12.解:(1)依题意得:c 3=,2a4c 3=,所以a 2=,2b 5=,所求双曲线C 的方程为22x y145-=;(2)设00P(x ,y ),11M(x ,y ),22N(x ,y ),则1A (2,0)-,2A (2,0),100A P (x 2,y )=+ ,200A P (x 2,y )=- ,1110A M (,y )3= ,222A N (,y )3=- , 因为1A P 与1A M 共线,故01010(x 2)y y 3+=,01010y y 3(x 2)=+,同理:0202y y 3(x 2)=--, 则1113F M (,y )3= ,225F N (,y )3=-, 所以12FM F N ×=1265y y 9-+=202020y 6599(x 4)---=20205(x 4)206541099(x 4)-´--=-- . 13.解:(1)因为|OF|2= ,则F(2,0),OF (2,0)=,设00Q(x ,y ),则00FQ (x 2,y )=- ,0OF FQ 2(x 2)1×=-= ,解得05x 2=,由0011S |OF ||y ||y |22=×== ,得01y 2=±,故51Q(,)22±,所以,PQ 所在直线方程为y x 2=-或y x 2=-+;(2)设00Q(x ,y ),因为|OF|c(c 2)=³,则00FQ (x c,y )=- ,)))设椭圆方程为22x y a b +=222594a4b í+=ïî所以,椭圆方程为x y106+=MQ 2-)2-Q(,0)3)(x,)22-22(k 2)k -,2(,)k k-2(x )k k k-=--2k=+2E(k+的距离等于3|2221212(x x )(y y )=-+-=22241k 1k k -×+,所以,422231k 21k k |k |-=+,解得:3k 2=±,011x 3= . 15.解:(1)∵a b y c x c F M M 21,),0,(=-=-则,∴acb k OM 2-= . ∵AB OM a b k AB与,-=是共线向量,∴a bac b -=-2,∴b=c,故22=e . (2)设1122121212,,,2,2,FQ r F Q r F QF r r a F F c q ==Ð=\+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r q +-+--===-³-=+ 当且仅当21r r =时,cos θ=0,∴θ]2,0[pÎ . 16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得)得(1,),PM MP x y =-=--- ),1(y x NP PN ---=-=, )0,2(=-=NM MN . 所以所以 )1(2x MN MP +=× . 122-+=×y x PN PM , )1(2x NP NM -=× . 于是,于是, NP NM PN PM MN MP ×××,,是公差小于零的等差数列等价于是公差小于零的等差数列等价于îîïíì<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 îíì>=+0322x y x . 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P 的坐标为),(00y x 。
用几何性质优化解析几何计算
教学设计
海口市第一中学数学组
李哲慧
2012年12月
《用几何性质优化解析几何计算》教学设计
引言:我们在解决解析几何问题时,常常会遇到计算,而有些题目繁琐的计算影响了我们学习解析几何的感情。
同时我们又发现一些题目涉及到平面图形的几何性质,如果利用这些性质,可以优化解析几何计算,但我们的学生常常忽略这些重要的性质,本节课意在遇到可以用几何性质优化计算的问题时,不要忽略几何性质,步入繁琐的计算,甚至解不出题目。
一、教学任务分析
1.学情分析:学生已学完高中数学的全部内容,初步掌握解析几何的基本概念、基本题型、基本方法,但灵活应用基础知识解决综合题的能力较弱,计算能力有
待提高,优化计算意识不强。
2.高考中的解析几何:解析几何属高考必考内容,考题涉及图形的几何性质及计算,主要考察数形结合思想,方程思想,对应和运动变化思想等数学思想,既要
求学生的理解能力、分析问题的能力,同时对计算能力要求很高。
3.展示“优化”计算:通过一些题目的几何性质,得出对题目优化计算的解法,同时与代
数法对比,展示用几何性质优化解析几何计算,提高学生数形结合的
解题能力,提高运算速度。
4.学生参与体验:整个过程师生互动,学生观察、体验,在题目的变式中提高发散思维
能力,在题目的由浅入深变换中感受举一反三。
二、教学目标
1.知识层面:由中点(分点)、中垂线,联系三角形中位线、平行线分线段成比例、圆的几何性质、圆锥曲线定义等,要求学生熟悉掌握图形的几何性质,并能灵
活应用。
2.技能方面:①通过对比加强用几何性质优化解析几何计算的能力;
②通过题目的层层深入,提高学生举一反三的能力;
③通过改变题目部分条件,培养学生的发散思维能力,进而提高探究能力。
3.情感方面:在师生互动与学生的交流中,探究问题的发现,分享成功解决问题的喜悦,开阔视野,提升思维的品质,感受几何性质对解析几何计算的优化.
三、重点、难点
重点:用几何性质优化计算.
难点:1.将代数语言转化为几何语言;
2.用几何性质得出简洁的结论.
答案:2
2
(9)1x y -+=
为 。
连2PF ,OT ,因为PT TF ⋅22PF a +=,所2PF PQ =
DP DQ
=,五、板书设计。