高考文科数学立体几何解题技巧5.13
- 格式:docx
- 大小:253.00 KB
- 文档页数:7
高考立体几何解题技巧
在高考立体几何解题过程中,我们需要掌握一些技巧,帮助我们更好地解决问题。
以下是一些常用的技巧:
1. 空间想象能力:立体几何题目通常涉及三维空间的关系,因此我们需要具备较强的空间想象能力。
可以通过画图、模型等方式辅助思考和理解题目。
2. 几何关系的转换:有时候,立体几何问题可以通过转换为平面几何问题来解决。
我们可以尝试在某个平面上进行投影或者进行截面的分析,将立体问题转化为二维几何问题来解决。
3. 利用相似三角形:在立体几何问题中,相似三角形的性质经常被用到。
通过找出共性和相似关系,我们可以推导出一些有用的结论,从而解决问题。
4. 使用平行四边形法则:在解决立体几何问题时,我们可以运用平行四边形的性质。
例如,如果某个角度为90度,那么某
些边和角度之间可能存在平行四边形关系,可以利用平行四边形法则求解。
5. 应用平面几何定理:立体几何与平面几何密切相关,因此一些平面几何定理也可以在解决立体几何问题时使用。
例如,利用圆锥的旋转对称性可以得到一个圆锥的表面积和体积的关系。
6. 巧妙使用一点一线:有时候,一个线段或一个点的位置可以帮助我们推导出其他线段或点的位置,从而解决问题。
在解题
过程中,我们需要善于发现和运用这些信息。
总之,在解决高考立体几何问题时,需要充分理解题意,巧妙应用几何知识和技巧,灵活运用不同的解题方法。
通过反复联系和练习,提高自己的解题能力和水平。
高考数学中的立体几何解题方法总结在高考数学中,立体几何是一个重要的考点。
对于大部分学生来说,立体几何是比较新颖的知识点,需要掌握一些特定的解题方法。
本文将总结一些高考数学中的立体几何解题方法,以便于广大考生能够更好地应对高考数学考试。
一、立体几何基本概念在解决立体几何问题之前,首先需要理解一些基本概念。
立体几何主要包括三维图形、视图、棱锥、棱柱、圆锥、圆柱、球体等。
学生需要认真理解这些概念,并掌握绘制三维图形的技巧,以便于快速准确地分析问题。
二、立体几何定理掌握一些常见的立体几何定理十分必要。
例如,平行截面定理、截棱锥定理、圆锥与平面的位置关系、球的性质等等。
这些定理可以帮助学生在解决一些复杂的立体几何题目时,能够快速找到规律,从而准确解决问题。
三、快速计算体积的方法体积是立体几何题目中最常见的考点。
理解如何快速计算体积可以帮助学生在有限的时间内快速解决问题。
例如,计算实体的体积可以分别计算各部分的体积再相加;计算投影面积的体积可以利用截线公式或剖面法等方法。
此外,还应当掌握利用相似关系计算体积的方法,以便于解决一些复杂的题目。
四、快速计算表面积的方法表面积的计算同样是立体几何中常见的考点。
学生需要掌握表面积的计算方法,并能够快速灵活地运用这些方法。
例如,计算立体几何的表面积可以分解成各个面的表面积再相加;计算圆锥的表面积可以利用母线和圆周角的关系等等。
五、快速计算正多面体体积的方法对于正多面体的体积计算,学生需要掌握一些类比和相似关系等方法。
例如,正八面体的体积可以利用正四面体体积乘以3的方法;正二十面体的体积可以利用正四面体体积乘以5的方法。
这些方法可以帮助学生在复杂的题目中快速计算正多面体的体积。
以上五点是掌握高考数学中的立体几何解题方法的基础。
学生需要认真理解这些方法,并在解决立体几何题目时不断运用,直到形成自己的解题风格。
通过不断练习和总结,相信大家一定可以在高考数学中取得好成绩!。
分析高中数学立体几何的解题技巧高中数学中的立体几何是较难的一部分,其中涉及到如立体的投影、截面、重心等概念,要想在解题时做到熟练应用这些概念,需要有一定的技巧和方法。
下面就分析一下高中数学立体几何的解题技巧。
一、观察图形,理解问题在解题时首先要仔细观察题目中给出的图形,理解问题。
包括对有关对象的名称、形状、相对位置等进行定义和理解,同时对问题要有一个清晰的思维模型,即想象该立体在三维空间中的形态。
通过准确地理解题目所描述的对象,可以更好地理解问题,也可以更好地解答问题。
二、掌握图形变形的方法在解题时,有时需要将给出的图形进行旋转、平移、对称等变形,以便建立与特定的坐标系等配合的新的图形,从而更好地揭示、利用问题的特征。
因此,要熟练掌握图形变形的方法,同时理解各种变形后所得到的新图形的性质。
三、熟练运用定理和公式在解题中,需要熟练掌握各种立体几何定理和公式,如平行截面定理、垂线截面定理、梯形截面定理等,也需要熟练掌握计算体积、表面积等的公式。
四、使用建模技巧建模技巧是数学解题时非常重要的技巧,具体指将实际问题抽象成数学模型,再利用数学符号和工具进行分析、推理和求解。
在立体几何中,也可以采用建模技巧,将问题转化为数学模型,更好地解决问题。
五、看清题目中的“隐含条件”有时在题目中可能有隐含条件,而如果没有读懂题目中的这些隐含条件,有时会误解题意,从而导致错误的答案。
因此,在解题时需要认真阅读题目,弄清所有的隐含条件,搞清所有的范畴限制,而不仅仅依赖数值计算。
六、总结规律,归纳概念学习立体几何需要总结规律、归纳概念,以帮助自己更好地理解和应用相关概念。
当遇到一类问题时,要学会找到其中的共性特征,总结归纳出其规律,再将其应用到类似的问题中,从而更好地解答问题。
以上就是关于高中数学立体几何解题的技巧和方法的分析,希望能对同学们在学习、应用和解答问题过程中有所帮助。
刍议高中数学中的立体几何解题技巧
立体几何解题技巧:
1、注意它的定义:首先要了解立体几何的各个概念,把它们心中栩栩
如生,当面对新概念时可以有个大概印象以类比先行理解,同时可以
借助相关图片辅助记忆。
2、先把图形想象清楚:在进行解题前一定要先把题目描述的几何体形
象地想象清楚,这样有利于利用相关定理进行解题,因为定理能够让
我们更有效的进行推理。
3、把定理有效运用:立体几何很多定理都是从事先假设好的,所以我
们在解题过程中只要把假设情况匹配合理即可,把定理有效运用,比
如一些关于勾股定理、三角形内心定理等等。
4、尝试着画出图形:有些题目可能是要求推断得出一个图形,而全都
用语言描述出来可能会有些困难,在此时建议画出图来来看关系,这
样可以更快的解决问题。
5、注意细节问题:高中数学很多题目都要求我们判断一个图形的关系,正确的判断出正确的关系需要我们注意一些细节问题,比如是否有共边、共点、对称轴等等。
6、多多练习:熟能生巧,只有大量地练习题目才能在解题上取得突破,多多思考问题,形成自己的思维分析方式,同时可以积累相关定理,
熟记一些重要的小细节,使得在进行高中几何解题时能更加便利。
解决高中数学中的立体几何问题的技巧与方法高中数学中的立体几何问题是学习者常常遇到的难点之一。
掌握解决这类问题的技巧和方法,有助于提升学习效率和解题能力。
本文将介绍一些解决高中数学中的立体几何问题的技巧与方法,帮助学习者更好地理解和应对这个领域的挑战。
一、画图准确在解决立体几何问题时,准确的图形是解题的基础。
因此,学习者需要养成细心观察和准确描绘图形的习惯。
画图时,应注意每一个线段、角度和形状的相对关系。
可以使用直尺、圆规等工具帮助画出准确的图形,避免出现不必要的错误。
二、理解立体几何基本概念在解决立体几何问题时,理解立体几何的基本概念非常重要。
这些基本概念包括平行、垂直、对称、相似、全等等。
学习者应该熟悉并理解这些概念的几何定义和性质,以便在解题过程中能够准确地运用它们。
三、运用立体几何定理和定律高中数学中有许多立体几何的定理和定律,学习者需要熟悉并灵活运用。
例如,平行线与截线定理可以用来确定平行线与平面的关系;空间中两条垂直平分线的交点在该线段的中点等。
运用这些定理和定律,可以简化解题过程,提高解题效率。
四、利用立体几何等距原理利用立体几何等距原理是解决数学中立体几何问题的重要方法。
该原理指出,如果两个几何体的形状和大小完全相同,则它们的性质和关系也相同。
在解题过程中,如果能够找到两个或多个形状完全相同的几何体,就可以将问题转化为更简单的几何关系,从而更容易解决问题。
五、建立几何模型为了更好地理解和解决立体几何问题,学习者可以尝试建立几何模型。
几何模型能够帮助学习者形象地展示和观察问题,从而更容易找出解题的思路和方法。
通过动手实践建立几何模型,能够增加对立体几何性质和关系的直观认识,提高解题的准确性和效率。
六、多思考、多练习解决立体几何问题需要思维的灵活性和逻辑推理能力。
学习者应该养成多思考、多练习的习惯,通过大量的练习来提高解题的技巧和速度。
在解题过程中,遇到困难或者不理解的地方,可以请教老师或者同学,进行思路的交流和互动,有助于拓宽解题思路和提高解题能力。
立体几何大题题型及解题方法立体几何大题一般考以下五个方面:一、平行位置关系的证明1、证明线面平行(重点)解题方法:(1)线面平行判定定理;(2)面面平行的性质定理。
2、证明面面平行解题方法:(1)面面平行的判定定理;(2)面面平行判定定理的推论;(3)垂直于同一直线的两平面平行;(4)平行平面的传递性。
3、平行位置关系的探索(1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。
二、垂直位置关系的证明1、证明线线垂直解题方法:2、证明线面垂直(重点)解题方法:3、证明面面垂直4、垂直位置关系的探索(1)对命题条件的探索;(2)对命题结论的探索;(3)通过翻折来探索。
三、求空间距离1、点到平面的距离解题方法:2、空间线段长解题方法:(1)解三角形法;(2)列方程法。
四、求几何体体积五、求空间角1、异面直线所成的角2、直线与平面所成的角考点一:如何判断空间中点、线、面的位置关系(排除法)考点二:平行位置关系的证明证明题一般的解题步骤:一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法,如果无法确定,则要通过逆向思维来分析题目;二、看题目是否需要作辅助线(创造条件),证明平行位置问题一般作的辅助线是连等分点,特别是中点;三、根据确定的证明方法,看该方法需要多少个条件,然后看题目给的条件通过什么方式给,如果是间接条件则需要推理证明得出,如果是直接条件或隐含条件则直接罗列;四、准备好条件后,再次检查条件是否都满足,是否都罗列了,最后得出结论;五、规范书写答案过程:一般过程为1、作辅助线;2、准备间接条件;3、罗列直接条件或隐含条件;4、得出结论。
1、证明线面平行(重点)解题方法:2、证明面面平行解题方法:(1)面面平行的判定定理(最常用方法):(2)面面平行判定定理的推论:(3)垂直于同一直线的两平面平行;(4)3、平行位置关系的探索考点三、垂直位置关系的证明证明垂直的解题步骤:一、根据题目的问题,确定要证明什么;根据题目的条件,确定用什么证明方法,如果无法确定,则要通过逆向思维来分析题目;二、要注意先确定谁垂直于谁,如1、证明线线垂直时常考虑其中一条直线垂直于另一条直线所在的平面,究竟选择哪一条直线垂直于另一条直线所在的平面,需要通过对条件及图形结构做深入细致分析、尝试、判断。
如何解决高考数学中的立体几何题在高考数学中,立体几何题是一个常见的考点,也是考生普遍感觉难以解决的问题之一。
立体几何题的解答需要掌握一定的几何知识和解题技巧。
下面将介绍一些解决高考数学中的立体几何题的方法和技巧。
一、掌握基础几何知识解决立体几何题首先需要掌握基础几何知识,包括立体图形的性质、体积和表面积的计算公式等。
熟练掌握这些基础知识可以帮助我们快速理解和解答立体几何题目。
二、分析题目,确定解题思路解决立体几何题的关键是正确地分析题目,确定解题思路。
在解答题目之前,我们应该仔细读题,理解题意,并分析给出的条件和要求。
根据题目中的信息,我们可以确定使用的几何知识和解题方法。
三、画图辅助推理在解答立体几何题时,可以通过画图辅助推理的方法来帮助理解题意,推导解题过程。
画出几何图形可以很直观地展示问题,帮助我们更好地理解并解决问题。
四、运用几何定理和性质在解答立体几何题目时,应该灵活运用几何定理和性质。
比如,当涉及到平行关系时,我们可以应用平行线的性质,通过角度对应相等、内错角和等于180度的性质来解答问题。
此外,还可以利用三角形的性质和圆锥的性质等进行推理和计算。
五、运用代数方法解题解决立体几何题目时,有时也可以运用代数方法进行解答。
通过设立方程、利用等式关系等代数技巧,将几何问题转化为代数问题,从而求解方程并得到正确答案。
六、多练习,熟练掌握解题技巧高考数学中的立体几何题目都是可以通过多练习来掌握解题技巧的。
通过反复练习各类立体几何题目,不断总结和归纳解题技巧,逐渐熟练掌握解题方法,提高解题能力和准确性。
七、注意审题和解题过程的准确性在解答立体几何题目时,我们需要特别注意审题和解题过程的准确性。
要仔细分析题目中的条件和要求,确保理解正确。
在解题过程中,要注意推理和计算的准确性,避免出现错误。
总结起来,解决高考数学中的立体几何题需要掌握基础知识,分析题目确定解题思路,运用几何定理和性质,画图辅助推理,运用代数方法解题,多练习并注意准确性。
高考数学技巧掌握立体几何的关键解题思路在高考数学考试中,立体几何是一个重要的考点。
对于很多学生来说,立体几何题目的解答常常是一大难题。
因此,掌握一些解题思路和技巧是非常关键的。
本文将为大家分享一些高考数学中解答立体几何题目的关键思路。
一、认真审题第一步,我们需要仔细阅读题目。
在阅读题目的过程中,我们要特别注意题目中给出的条件和要求。
立体几何题目通常会给出图形的特征、已知条件以及需要求解的问题。
清晰地理解题意能够帮助我们更好地进行解题。
同时,我们需要注意题目中是否给出了明确的几何信息。
例如,是否给出了图形的尺寸、图形的形状等等。
这些信息对于我们后续的解题过程非常重要。
二、建立几何模型在解答立体几何题目时,我们需要建立一个几何模型,以帮助我们更好地理解题意和解题。
几何模型通常是一个几何图形,可以是一个三维立体图形或者是一个平面图形。
建立几何模型的过程可以通过手绘图形或者是使用几何软件来完成。
无论是哪种方式,我们需要将题目中给出的信息和条件准确地反映在模型中。
只有建立了准确的几何模型,我们才能更好地进行后续的解题过程。
三、运用几何定理和公式在解决立体几何题目时,我们需要熟练掌握一些几何定理和公式。
这些定理和公式是我们解题的基础,可以帮助我们快速定位解题的关键点。
例如,在求解体积问题时,我们可以运用立方体的体积公式V = a³,圆柱体的体积公式V = πr²h等等。
在求解表面积问题时,我们也可以运用球体表面积公式S = 4πr²,正方体表面积公式 S = 6a²等等。
掌握这些公式可以让我们在解题过程中更加得心应手。
此外,我们还要熟悉一些几何定理,如平行线之间的性质、相似三角形的性质等等。
掌握这些定理可以帮助我们在解题过程中判断图形之间的关系,进而快速解题。
四、利用空间想象力在解答立体几何题目时,想象力是一个非常重要的因素。
我们需要善于利用我们的空间想象力,去想象和理解立体图形之间的位置关系和形状。
数学立体几何高考题答题技巧高中数学的学习对学生来讲非常重要,尤其是几何部分可以提升学生的思维能力。
下面我给高考考生带来数学立体几何答题技巧,希望对你有帮助。
高考数学立体几何答题技巧01、合理安排,保持清醒。
数学考试在下午,建议中午休息半小时左右,睡不着闭闭眼睛也好,尽量放松。
然后带齐用具,提前半小时到考场。
02、通览全卷,摸透题情。
刚拿到试卷,一般较紧张,不宜匆忙作答,应从头到尾通览全卷,尽量从卷面上获取更多的信息,摸透题情。
这样能提醒自己先易后难,也可防止漏做题。
03、解答题规范有序。
一般来说,试题中容易题和中档题占全卷的80%以上,是考生得分的主要来源。
对于解答题中的容易题和中档题,要注意解题的规范化,关键步骤不能丢,如三种语言文字语言、符号语言、图形语言的表达要规范,逻辑推理要严谨,计算过程要完整,注意算理算法,应用题建模与还原过程要清晰,合理安排卷面结构……对于解答题中的难题,得满分很困难,可以采用“分段得分”的策略,因为高考阅卷是“分段评分”。
比如可将难题划分为一个个子问题或一系列的步骤,先解决问题的一部分,能解决到什么程度就解决到什么程度,获取一定的分数。
有些题目有好几问,前面的小问你解答不出,但后面的小问如果根据前面的结论你能够解答出来,这时候不妨引用前面的结论先解答后面的,这样跳步解答也可以得分。
高考数学立体几何知识1、有关平行与垂直线线、线面及面面的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题包括论证、计算角、与距离等中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行垂直、线面平行垂直、面面平行垂直相互转化的思想,以提高逻辑思维能力和空间想象能力。
2、判定两个平面平行的方法:1根据定义--证明两平面没有公共点;2判定定理--证明一个平面内的两条相交直线都平行于另一个平面;3证明两平面同垂直于一条直线。
高考数学应试技巧之立体几何在高考中,数学是考生必须要面对的必修科目之一,而立体几何也是其中难度较大的一部分。
在高考中,立体几何通常占据一定比例的分值,因此掌握好立体几何应试技巧对于整个数学成绩的提升有着非常重要的作用。
在本文中,我将介绍一些高考数学立体几何应试技巧,希望能够对广大考生有所帮助。
一、抓住重点难点在立体几何的学习中,我们需要把握住某些重点难点,这些知识点往往决定了整个部分的难度和重要性。
以下是一些高考立体几何的重难点:1. 空间向量和平面向量的相互转化;2. 向量叉乘的定义和性质;3. 直线和平面的方程式和性质,如平面法向量的确定;4. 空间几何中的相交线和平面、轴的求法;5. 三棱锥和四棱锥的性质和特征,以及如何求它们的体积;6. 球体的性质和公式,如球的面积和体积的计算。
以上这些内容都是高考立体几何中难度较大也较为重要的知识点,考生需花费更多的时间和精力去深入学习。
二、解题方法与技巧在考场上,考生需要注意一些解题方法和技巧,以使解题更顺利。
以下是一些常见的解题技巧:1. 画图法:立体图形通常较难想象,可以通过一些手绘图解来帮助解题。
可以在图纸上画出与题目相符合的立体图形,然后通过图形来解答问题。
尤其是在容易出错的计算过程中,可以通过画各个过程图来实现规范化计算。
2. 应用向量计算:在空间向量和平面向量的知识点中,向量计算是一种应用非常广泛的解题方法。
通过把题目所给的向量与需要求解的向量相互运算,可以求解出问题的答案。
例如,求两条直线的夹角、直线上的点到平面的距离等,都可以采用向量方法来解决。
3. 利用坐标系解题:在解决空间几何中的问题时,可以利用三维坐标系来解决。
这种方法可以将三维几何问题转化为平面几何问题,使问题更加明确化和规范化。
比如,若需要求两直线的交点,则可通过方程式,建立坐标系,进而求解问题。
4. 利用相似性质解决问题:在解决三棱锥、四棱锥题目时,我们可以利用它们的相似性质来帮助解决问题。
高中文科数学个性化辅导课程
α
l
l
αβ
γ
m β
α
l
βαβαα
//,////⇒⎪⎭
⎪
⎬⎫
⊂且相交m l m l m l m l ////⇒⎪⎭
⎪
⎬⎫
=⋂=⋂βγαγβαα
α⊥⇒⎪⎪⎭
⎪
⎪
⎬⎫⊂=⋂⊥⊥l AB AC A AB AC AB
l AC l ,高考文科数学立体几何解题技巧
1.判定线面平行的方法
定义:如果一条直线和一个平面没有公共点。
(1)直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)
ααα////l l m m l ⇒⎪⎭
⎪
⎬⎫
⊄⊂ (2)如果两个平面平行,那么其中一个平面内的直线必平行于另一个平面。
αββα////l l ⇒⎭
⎬⎫
⊂
(3)平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面。
2.判定面面平行的方法
(1)如果一个平面内有两条相交直线都平行于另一个平面,那么这两平面平行。
(2)垂直于同一直线的两个平面平行。
(3)平行于同一平面的两个平面平行。
3.面面平行的性质
(1)两平行平面没有公共点。
(2)如果两平面平行,那么一个平面上的任一直线平行于另一平面。
(3)垂直于两平行平面中一个平面的直线,必垂直于另一个平面。
(4)如果两平行平面被第三个平面所截,那么它们的交线平行。
4.判定线面垂直的方法
定义:如果一条直线和平面内的任何一条直线都垂直,则线面垂直。
(1)如果一条直线和一个平面内的两条相交线垂直,那么这条直线垂直于该平面。
m
l α
m β
α
l
A
B
C
α
l
//a a αββα⎫
⇒⊥⎬⊥⎭
,l a a a l αβαββ
α⊥⎫⎪=⇒⊥⎬⎪⊂⊥⎭a a b
b αα⊥⎫⇒⊥⎬⊂⎭
l βα
βαβα⊥⇒⎭
⎬⎫⊂⊥l l (2)如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面。
αα⊥⇒⎭
⎬⎫
⊥b a b a // (3)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(4)如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面。
(5)如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面。
5.判定两线垂直的方法
(1)如果一条直线和平面垂直,则这条直线与平面内任一直线垂直。
(2)如果一个平面经过另一平面的一条垂线,那么这两个平面互相垂直。
6. 定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。
(2)范围:]90,0[︒︒ 当︒=0θ时,α⊂l 或α//l ,当︒=90θ时,α⊥l
A
O
θ
P
α
β a
α
a β
l α
α a
b
高中文科数学个性化辅导课程
【高考强化训练】
1.如图,四棱锥P一ABCD中,AB=AD=2BC=2,BC//AD,AB⊥AD,△PBD为正三角形.且PA=2√3.
(1)证明:平面PAB⊥平面PBC;
(2)若点P到底面ABCD的距离为2,E是线段PD上一点,且PB//平面ACE,求四面体A−CDE的体积.
2.如图,已知AF⊥面ABCD,四边形ABEF为矩形,四边形ABCD为直角梯形,∠DAB= 90∘,AB//CD,AD=AF=CD=1,AB=2.
(1)求证:AF//面BCE;(2)求证:AC⊥面BCE;(3)求三棱锥E−BCF的体积.
3.如图,在四棱锥P−ABCD中,底面ABCD是正方形.点E是棱PC的中点,平面ABE 与棱PD交于点F.
(1)求证:AB//EF;
(2)若PA=AD,且平面PAD⊥平面ABCD,求证:AF⊥平面PCD.
4.如图,四棱锥P−ABCD的底面为平行四边形,M为PC中点.
(1)求证:BC//平面PAD;(2)求证:AP//平面MBD.
5.如图,在四棱锥P−ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.
(Ⅰ)求证:PE⊥BC;(Ⅱ)求证:平面PAB⊥平面PCD;(Ⅲ(Ⅱ))求证:EF//平面PCD.
5.在四棱锥E−ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.
(Ⅰ)求证:DE//平面ACF;(Ⅱ)求证:BD⊥AE;
(Ⅲ)若AB=√2CE=2,求三棱锥F−ABC的体积.
高中文科数学个性化辅导课程
6.如图,在三棱锥A−BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF//平面ABC;(2)AD⊥AC.
7.如图,在四棱锥S−ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为1的正方形,侧棱SA=4,AC与BD相交于点O.
(1)证明:SO⊥BD;(2)求三棱锥O−SCD的体积.
8.四棱锥P−ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB//平面AEC;
(Ⅱ)设AP=1,AD=√3,三棱锥P−ABD的体积V=√3
,求A
4
到平面PBC的距离.
AD.9.四棱锥P−ABCD中,PA⊥CD,AD//BC,∠ADC=∠PAB=90∘,BC=CD=1
2 (I)M为PD的中点,试证明:直线CM//平面PAB;
(II)证明:平面PAB⊥平面PBD.
10.如图,四棱锥P−ABCD的底面ABCD是平行四边形,平面PBD⊥平面ABCD,PB= PD,PA⊥PC,CD⊥PC,O,M分别是BD,PC的中点,连结OM.
求证:(1)OM//平面PAD;(2)OM⊥平面PCD.
11.如图,在四棱锥P−ABCD中,底面是正方形,侧面PAD⊥底面ABCD,且PA=PD=
√2
AD,若E、F分别为PC、BD的中点.
2
(Ⅰ)求证:EF//平面PAD;(Ⅱ)求证:EF⊥平面PDC.
高中文科数学个性化辅导课程
11.如图,在四棱锥P−ABCD中,底面ABCD是矩形,平面PAD⊥平面ABCD,AP=AD,M,N分别为棱PD,PC的中点.
求证:(1)MN//平面PAB;(2)AM⊥平面PCD.
12.直三棱柱ABC−A1B1C1中,AB=AC,M,N,P分别为BC,CC1,BB1的中点.求证:(1)平面AMP⊥平面BB1C1C;(2)A1N//平面AMP.
13.如图,已知四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.
求证:(1)AP//平面BDM;(2)AP//GH.。