高中物理动量八大题型整理(有题有答案)
- 格式:doc
- 大小:2.07 MB
- 文档页数:38
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.如图所示,一小车置于光滑水平面上,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,AO部分粗糙且长L=2m,动摩擦因数μ=0.3,OB部分光滑.另一小物块a.放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内.a、b两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动.(取g=10m/s2)求:(1)物块a与b碰后的速度大小;(2)当物块a相对小车静止时小车右端B到挡板的距离;(3)当物块a相对小车静止时在小车上的位置到O点的距离.【答案】(1)1m/s (2) (3) x=0.125m【解析】试题分析:(1)对物块a,由动能定理得:代入数据解得a与b碰前速度:;a、b碰撞过程系统动量守恒,以a的初速度方向为正方向,由动量守恒定律得:,代入数据解得:;(2)当弹簧恢复到原长时两物块分离,a以在小车上向左滑动,当与车同速时,以向左为正方向,由动量守恒定律得:,代入数据解得:,对小车,由动能定理得:,代入数据解得,同速时车B端距挡板的距离:;(3)由能量守恒得:,解得滑块a与车相对静止时与O点距离:;考点:动量守恒定律、动能定理。
高考物理动量定理解题技巧及经典题型及练习题( 含答案 ) 含分析一、高考物理精讲专题动量定理1.如图甲所示,物块A、 B 的质量分别是m A=4.0kg 和 m B= 3.0kg。
用轻弹簧拴接,放在圆滑的水平川面上,物块 B 右边与竖直墙壁相接触。
还有一物块 C 从 t= 0 时以必定速度向右运动,在 t =4s 时与物块 A 相碰,并立刻与 A 粘在一同不再分开,所示。
求:C的 v- t 图象如图乙(1) C 的质量 m C;(2) t = 8s 时弹簧拥有的弹性势能E p1, 4~12s 内墙壁对物块 B 的冲量大小 I;(3) B 走开墙后的运动过程中弹簧拥有的最大弹性势能E p2。
【答案】( 1) 2kg ;( 2)27J,36N·S;( 3)9J【分析】【详解】(1)由题图乙知, C 与 A 碰前速度为 v1= 9m/s ,碰后速度大小为 v2=3m/s ,C 与 A 碰撞过程动量守恒m C v1= (m A+ m C)v2解得 C 的质量 m C=2kg。
(2) t = 8s 时弹簧拥有的弹性势能E =(m + m )v22=27Jp11AC2取水平向左为正方向,依据动量定理,4~12s 内墙壁对物块 B 的冲量大小I=(m A+ m C)v3-(m A+ m C)(-v2) =36N·S(3)由题图可知,12s 时 B 走开墙壁,此时A、C 的速度大小 v3=3m/s ,以后 A、 B、 C 及弹簧构成的系统动量和机械能守恒,且当A、 C 与 B 的速度相等时,弹簧弹性势能最大(m A+ m C)v3= (m A+ m B+ m C)v41(m A+ m C) v32=1(m A+ m B+ m C) v42+ E p222解得 B 走开墙后的运动过程中弹簧拥有的最大弹性势能E p2= 9J。
2.如下图,长为L 的轻质细绳一端固定在地高度为 H。
现将细绳拉至与水平方向成30O 点,另一端系一质量为m ,由静止开释小球,经过时间的小球, O 点离t 小球抵达最低点,细绳恰巧被拉断,小球水平抛出。
高中物理动量定理常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。
质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。
现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D 点。
已知B 、C 两点间的距离x =2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s ,两滑块均视为质点。
求:(1)圆弧轨道AB 的半径R;(2)甲与乙碰撞后运动到D 点的时间t 【答案】(1) (2)【解析】 【详解】(1)甲从B 点运动到C 点的过程中做匀速直线运动,有:v B 2=2a 1x 1; 根据牛顿第二定律可得:对甲从A 点运动到B 点的过程,根据机械能守恒: 解得v B =4m/s ;R=0.8m ;(2)对甲乙碰撞过程,由动量守恒定律: ;若甲与乙碰撞后运动到D 点,由动量定理:解得t=0.4s2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。
求(1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。
【答案】(1)20N ∙s ,方向竖直向下(2)202kg m/s ⋅, 与水平方向的夹角为45° 【解析】 【详解】(1)物体做平抛运动,则有:212h gt =解得:t =2s则物体从抛出到落到地面过程重力的冲量I=mgt =1×10×2=20N•s方向竖直向下。
(2)在竖直方向,根据动量定理得I=p y -0。
可得,物体落地时竖直方向的分动量p y =20kg•m/s物体落地时水平方向的分动量p x =mv 0=1×20=20kg•m/s故落地时物体的动量22202kg m/s x y p p p =+=⋅设落地时动量与水平方向的夹角为θ,则1y xp tan p θ==θ=45°3.质量0.2kg 的球,从5.0m 高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g 取10m/s 2.求小球对钢板的作用力. 【答案】78N 【解析】 【详解】自由落体过程 v 12=2gh 1,得v 1=10m/s ; v 1=gt 1 得t 1=1s小球弹起后达到最大高度过程0− v 22=−2gh 2,得v 2=9m/s 0-v 2=-gt 2 得t 2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft ′-mg t ′=mv 2-(-mv 1) 其中t ′=t -t 1-t 2=0.05s 得F =78N由牛顿第三定律得F ′=-F ,所以小球对钢板的作用力大小为78N ,方向竖直向下;4.如图所示,两个小球A 和B 质量分别是m A =2.0kg,m B =1.6kg,球A 静止在光滑水平面上的M 点,球B 在水平面上从远处沿两球的中心连线向着球A 运动,假设两球相距L ≤18m 时存在着恒定的斥力F ,L >18m 时无相互作用力.当两球相距最近时,它们间的距离为d =2m,此时球B 的速度是4m/s.求:(1)球B 的初速度大小; (2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s= ;(2) 2.25F N =;(3) 3.56t s =【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
高考物理高考物理动量定理常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小; (2)小球落到圆弧轨道2上时的动能大小。
【答案】(1)25(2+(2)62.5J 【解析】 【详解】(1)设小球在圆弧轨道1最低点时速度大小为0v ,根据动量定理有0I mv =解得05m /s v =在轨道最低端,根据牛顿第二定律,20v F mg m R-=解得252N F ⎛=+ ⎝⎭ 根据牛顿第三定律知,小球对轨道的压力大小为252N 2F '⎛⎫=+ ⎪ ⎪⎝⎭(2)设小球从轨道1抛出到达轨道2曲面经历的时间为t , 水平位移:0x v t =竖直位移:212y gt =由勾股定理:222x y R +=解得1s t = 竖直速度:10m /s y v gt ==可得小球的动能()22k y 021162.5J 22v E mv m v ==+=2.一个质量为60千克的蹦床运动员从距离水平蹦床网面上3.2米的高处自由下落,触网后沿竖直方向蹦回到离水平网面5米高处.已知运动员与网接触的时候为1.2秒。
求运动员和网接触的这段时间内,网对运动员的平均作用力F (g 取10 m /s 2)。
【答案】1500N ,方向竖直向上 【解析】 【详解】设运动员从h 1处下落,刚触网的速度为1128m s v gh == (方向向下)运动员反弹到达高度h 2 ,离网时速度为22210m s v gh ==(方向向上)在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有()()21 F mg t mv mv -=--解得=1500N F ,方向竖直向上。
高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C的质量?②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1)2kg(2)9J【解析】试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2即m c=2 kg②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v4得E p=9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.5.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律6.匀强电场的方向沿x轴正向,电场强度E随x的分布如图所示.图中E0和d均为已知量.将带正电的质点A在O点由能止释放.A离开电场足够远后,再将另一带正电的质点B放在O点也由静止释放,当B在电场中运动时,A、B间的相互作用力及相互作用能均为零;B离开电场后,A、B间的相作用视为静电作用.已知A的电荷量为Q,A和B的质量分别为m和.不计重力.(1)求A在电场中的运动时间t,(2)若B的电荷量q =Q,求两质点相互作用能的最大值E pm(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m【答案】(1)(2)145QE0d (3)Q【解析】【分析】【详解】解:(1)由牛顿第二定律得,A在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得运动时间 t ==(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得QE0d =mqE0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得:q≤Q则B所带电荷量的最大值为:q m =Q7.氡是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氡气会随气体进入肺脏,氡衰变时放出α射线,这种射线像小“炸弹”一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.若有一静止的氡核22286Rn 发生α衰变,放出一个速度为0v 、质量为m 的α粒子和一个质量为M 的反冲核钋21884Po 此过程动量守恒,若氡核发生衰变时,释放的能量全部转化为α粒子和钋核的动能。
高考物理动量定理解题技巧及经典题型及练习题( 含答案 )一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为 g,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求:(1)整个过程中摩擦阻力所做的总功;(2)人给第一辆车水平冲量的大小。
【答案】 (1)-3kmgL; (2) m 10kgL。
【解析】【分析】【详解】(1)设运动过程中摩擦阻力做的总功为W,则W=-kmgL-2kmgL=-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL。
(2)设第一辆车的初速度为v0,第一次碰前速度为v1,碰后共同速度为v2,则由动量守恒得mv1=2mv2kmgL 1mv121mv02 22k (2 m)gL01(2 m)v22 2由以上各式得v010kgL所以人给第一辆车水平冲量的大小I mv0 m 10kgL2.一质量为 0.5kg 的小物块放在水平地面上的 A 点,距离 A 点 5m 的位置 B 处是一面墙,如图所示,物块以v0=9m/s 的初速度从 A 点沿 AB 方向运动,在与墙壁碰撞前瞬间的速度为 7m/s ,碰后以6m/s 的速度反向运动直至静止. g 取 10m/s 2.(1)求物块与地面间的动摩擦因数μ;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)0.32 (2)F=130N【解析】试题分析:( 1)对 A 到墙壁过程,运用动能定理得:,代入数据解得:μ=0.32.(2)规定向左为正方向,对碰墙的过程运用动量定理得:F△ t=mv′﹣mv,代入数据解得:F=130N.3.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值0 时,安全气囊爆开.某次试验中,质量1=1 600 kg的试验车F m以速度 v1= 36 km/h正面撞击固定试验台,经时间t 1= 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I的大小及 F 的大小;00(2)若试验车以速度v1 撞击正前方另一质量 2 =1 600 kg、速度v2=18 km/h同向行驶的m汽车,经时间 t 2=0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】( 1)I0 = 1.6 ×10 4 N·s , 1.6 ×10 5N;( 2)见解析【解析】【详解】(1) v1 = 36 km/h = 10 m/s ,取速度 v1的方向为正方向,由动量定理有-I0 = 0 -m1v1①将已知数据代入①式得I0 = 1.6×410N·s②由冲量定义有I0 = F0t1③将已知数据代入③式得F0 = 1.6×510N④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m v + m v = (m+ m )v⑤112212对试验车,由动量定理有-Ft2= m1v- m1v1⑥将已知数据代入⑤⑥式得F= 2.5×410N⑦可见 F< F0,故试验车的安全气囊不会爆开⑧4.如图所示,质量为 m=245g 的木块(可视为质点)放在质量为M =0.5kg 的木板左端,足够长的木板静止在光滑水平面上,木块与木板间的动摩擦因数为μ= 0.4,质量为 m0= 5g 的子弹以速度 v0=300m/s 沿水平方向射入木块并留在其中(时间极短),子弹射入后,g 取10m/s 2,求:(1)子弹进入木块后子弹和木块一起向右滑行的最大速度v1(2)木板向右滑行的最大速度 v2(3)木块在木板滑行的时间 t【答案】 (1) v 1= 6m/s (2) v 2=2m/s (3) t=1s【解析】【详解】(1)子弹打入木块过程,由动量守恒定律可得:m 0v 0=(m 0 +m)v 1解得:v 1= 6m/s(2)木块在木板上滑动过程,由动量守恒定律可得:(m 0+m)v 1=(m 0+m+M )v 2解得:v 2=2m/s(3)对子弹木块整体,由动量定理得:﹣ μ(m 0+m)gt=(m 0+m)(v 2 ﹣v 1 )解得:物块相对于木板滑行的时间v 2 v 11stg5. 如图所示 , 两个小球 A 和 B 质量分别是 m A = 2.0kg, m B = 1.6kg, 球 A 静止在光滑水平面上的 点 , 球 B 在水平面上从远处沿两球的中心连线向着球 A 运动 , 假设两球相距 ≤18m 时存ML在着恒定的斥力F , L > 18m 时无相互作用力 . 当两球相距最近时 , 它们间的距离为d = 2m,此时球 B 的速度是 4m/s. 求 :(1) 球 B 的初速度大小 ; (2) 两球之间的斥力大小 ;(3) 两球从开始相互作用到相距最近时所经历的时间.【答案】 (1) v B0 9ms ; (2) F 2.25N ; (3) t3.56s【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;( 2)在两球相距 L > 18m 时无相互作用力,B 球做匀速直线运动,两球相距L ≤18m 时存在着恒定斥力 F ,B 球做匀减速运动,由动能定理可得相互作用力( 3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.( 1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是 t 。
高中物理动量定理常见题型及答题技巧及练习题(含答案)及解析一、高考物理精讲专题动量定理1.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.2.如图所示,固定在竖直平面内的4光滑圆弧轨道AB 与粗糙水平地面BC 相切于B 点。
质量m =0.1kg 的滑块甲从最高点A 由静止释放后沿轨道AB 运动,最终停在水平地面上的C 点。
现将质量m =0.3kg 的滑块乙静置于B 点,仍将滑块甲从A 点由静止释放结果甲在B 点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
高中物理动量守恒定律真题汇编(含答案)一、高考物理精讲专题动量守恒定律1.如下图,质量为 M=2kg 的小车静止在光滑的水平地面上,其AB 局部为半径R=0.3m一一1 一的光滑一圆孤,BC 局部水平粗糙,BC 长为L=0.6m .一可看做质点的小物块从A 点由静止4(1)小物块与小车 BC 局部间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度.【答案】(1) 0.5 (2) 1m/s 【解析】解:(1)小物块滑到C 点的过程中,系统水平方向动量守恒那么有: (M m)v 0所以滑到C 点时小物块与小车速度都为 0由能量守恒得:mgR mgLR解得: R 0.5L(2)小物块滑到B 位置时速度最大,设为 必,此时小车获得的速度也最大,设为V 2由动量守恒得:mv 1 Mv 2121 2 由能重寸恒得:mgR — mv 1— Mv 2 22联立解得:v 2 1m / s2.如下图,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧 MN 的半径为R=3.2m,水平局部NP 长L=3.5m,物体B 静止在足够长的平板小车 C 上,B 与小车的接触 面光滑,小车的左端紧贴平台的右端.从 M 点由静止释放的物体 A 滑至轨道最右端P 点后 再滑上小车,物体 A 滑上小车后假设与物体 B 相碰必粘在一起,它们间无竖直作用力. A 与释放,滑到C 点刚好相对小车停止.小物块质量 m=1kg,取 g=10m/s 2.求:平台水平轨道和小车上外表的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相取 g=10m/s 2,求等.物体A 、B 和小车C 的质量均为1kg,K(1)物体A 进入N 点前瞬间对轨道的压力大小?考点:牛顿第二定律;动量守恒定律;能量守恒定律(2)物体A 在NP 上运动的时间? (3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为 0.5s (3)物体A 最终离小车左端的距离为33m 16【解析】试题分析:(1)物体A 由M 到N 过程中,由动能定理得: 在N 点,由牛顿定律得 F N -m A g=m A 联立解得F N =3m A g=30N由牛顿第三定律得,物体 A 进入轨道前瞬间对轨道压力大小为:(2)物体A 在平台上运动过程中2m A gR=m A v NF N ' =3A g=30N(imAg=mAa 2 L=v N t-at 代入数据解得t=0.5s t=3.5s (不合题意,舍去)(3)物体A 刚滑上小车时速度 v 〔= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体 A 组成系统动量守恒,而物体 B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为 L 1,那么,1 2 129mgL 1 — mv 1 - 2mv 2 解得:L [=1m2 24物体A 与小车匀速运动直到 A 碰到物体B, A, B 相互作用的过程中动量守恒:(m A + m B )v 3= m A V 2此后A, B 组成的系统与小车发生相互作用,动量守恒,且到达共同速度V 4(m A + m B )v 3+m C v 2=" (m" A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,那么mgL 2 1mv 22 1 2 22mv 3213mv 42解得:23 1_2= — m16物体A 最终离小车左端的距离为,33 x=L i -L 2=— m163.光滑水平轨道上有三个木块A 、B 、 C,质量分别为 m A 3m 、m Bmb m ,开始时B 、C 均静止,A 以初速度V o 向右运动, 起,此后A 与B 间的距离保持不变.求A 与B 相撞后分开,B 又与C 发生碰撞并粘在一 B 与C碰撞前B 的速度大小.239 _94PU 经过 次a 盘变和 次3盘变,取后变成铅的同位 素.(填入铅的三种同位素 206 Pb 、282Pb 、282Pb 中的一种)(2)某同学利用如下图的装置验证动量守恒定律.图中两摆摆长相同,悬挂于同一高度,A 、B 两摆球均很小,质量之比为 1 :2.当两摆均处于自由静止状态时,其侧面刚好 接触.向右上方拉动 B 球使其摆线伸直并与竖直方向成 45.角,然后将其由静止释放.结果观察到两摆球粘在一起摆动,且最大摆角成 30..假设本实验允许的最大误差为土猊,此 实验是否成功地验证了动量守恒定律? 【解析】【详解】(1)设发生了 x 次“衰变和y 次3衰变,【解析】 【分析】设A 与B 碰撞后,A 的速度为V A , B 与C 碰撞前B 的速度为%, B 与C 碰撞后粘在一起的 速度为V,由动量守恒定律得: 对A 、B 木块:m A V o对B 、C 木块:M B由A 与B 间的距离保持不变可知 v A v 联立代入数据得:m A V A m B V Bmb4 .[物理出彳3—5] (1)天然放射性元素207【答案】(1) 8, 4, 82Pb ; (2)根据质量数和电荷数守恒可知,2x-y+82=94, 239=207+4x;由数学知识可知,x=8, y=4.假设是铅的同位素206,或208,不满足两数守恒, 因此最后变成铅的同位素是282Pb(2)设摆球A 、B 的质量分别为 m A 、m B,摆长为l, B 球的初始高度为h i,碰撞前B 球 的速度为V B .在不考虑摆线质量的情况下,根据题意及机械能守恒定律得h 1 l(1 cos45)①1 22m B V B m B ghi ②设碰撞前、后两摆球的总动量的大小分别为P i 、P 2.有 P i = m B V B ③所以,此实验在规定的范围内验证了动量守恒定律.5.氢是一种放射性气体,主要来源于不合格的水泥、墙砖、石材等建筑材料.呼吸时氨气 会随气体进入肺脏,氢衰变时放出射线,这种射线像小 炸弹〞一样轰击肺细胞,使肺细胞受损,从而引发肺癌、白血病等.假设有一静止的氢核222Rn 发生 衰变,放出一个速度为V .、质量为m 的 粒子和一个质量为 M 的反冲核针288 Po 此过程动量守恒,假设氢核发 生衰变时,释放的能量全部转化为粒子和针核的动能.(1)写衰变方程;联立①②③式得同理可得联立④⑤式得代人条件得由此可以推出 P m B J 2gl (1 cos45 ) ④F 2 (m A m B R2gl(1 cos30 )⑤P 2 m A m B 1 cos30 - - -------- J d P 1 m B . 1 cos452P2… —1.03⑦P(2)求出反冲核针的速度;(计算结果用题中字母表示相反;(3) m 【解析】 【分析】 【详解】(1)由质量数和核电荷数守恒定律可知,核反响方程式为222 218 4..86Rn 84 Po+2He (2)核反响过程动量守恒,以 a 离子的速度方向为正方向 由动量守恒定律得mv 0 Mv 0解得vmv 0■,负号表示方向与 a 离子速度方向相反 M(3)衰变过程产生的能量21 2 1 2M m mv oE -mv 2 - Mv 2-2 22M由爱因斯坦质能方程得2E mc解得M m mv 2m ------------ 5——2Mc 26.如下图,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕.点下摆,当摆到最低点 B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处 A.求男演员落地点 C 与O 点的水平距离s.男演员质量 m 1 和女演员质量 m 2之比m 1 :m 2=2,秋千的质量不计,秋千的摆长为R, C 点比.点低5R.【答案】8R 【解析】【分析】 【详解】两演员一起从从 A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为 m,那么12(3)求出这一衰变过程中的质量亏损.(计算结果用题中字母表示)2222184 ..【答木】(1) 86 Rn 84 Po 2 He ; (2) vmv o负号表示方向与“离子速度方向2M m mv 0 2Mc 2mgR -mv1 2女演员刚好能回到高处,机械能依然守恒:m2gR -m2v12女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:(m l m2) v m2v l m1v2③根据题意:m1 :m2 2有以上四式解得:v22 2gR1c 8R接下来男演员做平抛运动:由4R -gt2,得t —2 . g因而:s v2t 8R;【点睛】两演员一起从从A点摆到B点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;此题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.7.光滑水平面上质量为1kg的小球A,以2.0m/s的速度与同向运动的速度为 1.0m/s、质量为2kg的大小相同的小球B发生正碰,碰撞后小球B以1.5m/s的速度运动.求:I~~J S I(1)碰后A球的速度大小;(2)碰撞过程中A、B系统损失的机械能.【答案】V A 1.0m/s, E损0.25J【解析】试题分析:(1)碰撞过程中动量守恒,由动量守恒定律可以求出小球速度.(2)由能量守恒定律可以求出损失的机械能.解:(1)碰撞过程,以A的初速度方向为正,由动量守恒定律得:m A V A+m B V B=m A V A+m B v B代入数据解:v A=1.0m/s②碰撞过程中A、B系统损失的机械能量为:_1 2,1 2 _ 1 y 2 _ 1 ,2KE损一]山正且? /8 ①山尸A/㈤胪B代入数据解得:E 损=0.25J 答:①碰后A 球的速度为1.0m/s ;②碰撞过程中A 、B 系统损失的机械能为 0.25J.【点评】小球碰撞过程中动量守恒、机械能不守恒,由动量守恒定律与能量守恒定律可以 正确解题,应用动量守恒定律解题时要注意正方向的选择.8 .如下图,光滑的水平地面上有一木板,其左端放有一重物,右方有一竖直的墙.重物质量为木板质量的2倍,重物与木板间的动摩擦因数为科使木板与重物以共同的速度 v o 向右运动,某时刻木板与墙发生碰撞,碰撞时间极短,碰撞后木板以原速率反弹长,重物始终在木板上.重力加速度为g.求木板从第一次与墙碰撞到再次碰撞所经历的时间4V 0 3~g解:木板第一次与墙碰撞后,向左匀减速直线运动,直到静止,再反向向右匀加速直线运动直到与重物有共同速度,再往后是匀速直线运动,直到第二次 撞墙. 木板第一次与墙碰撞后,重物与木板相互作用直到有共同速度V,动量守恒,有:2mv o - mv o = (2m+m) v, 解得: v=^-木板在第一个过程中,用动量定理,有: mv - m ( - v 0)=科2mgt…〜一 一 1? 1 2八用动能TE 理,有: -mv --IDV O =-科 2mgs木板在第二个过程中,匀速直线运动,有: s=vt 2,,一,…~、2v n 2v n I 4V n木板从第一次与墙碰撞到再次碰撞所经历的时间t=t l +t 2=—-+——-=一-3|Xg_ ……入……工……L,[W答:木板从第一次与墙碰撞到再次碰撞所经历的时间为34M【点评】此题是一道考查动量守恒和匀变速直线运动规律的过程复杂的好题,正确分析出 运动规律是关键.9 .如下图,带有 1光滑圆弧的小车 A 的半径为R,静止在光滑水平面上.滑块C 置于4木板B 的右端,A 、B 、C 的质量均为 m, A 、B 底面厚度相同.现 B 、C 以相同的速度向右 匀速运动,B 与A 碰后即粘连在一起,C 恰好能沿A 的圆弧轨道滑到与圆心等高.设木板足够处.那么:(重力加速度为 g)(1)B 、C 一起匀速运动的速度为多少?(2)滑块C 返回到A 的底端时AB 整体和C 的速度为多少?【解析】此题考查动量守恒与机械能相结合的问题.(1)设B 、C 的初速度为vo, AB 相碰过程中动量守恒,设碰后 AB 总体速度u,由12 1 2 12-mv 0 - 2mu - 3mu mgR 2 2 2解得 v o 2.3gR(2)C 从底端滑到顶端再从顶端滑到底部的过程中,满足水平方向动量守恒、机械能守恒,有 mv 0 2mu mv 1 2mv 210.如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 v 0滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 一的值. 0v 1【答案]一二三 %- 【解析】1 2试题分析:小滑块以水平速度 v 0右滑时,有:fL =0- - mv 2 (2分)2mv o 2mu ,解得 uV2C 滑到最高点的过程mv o 2mu 3mu1 2—mv 0 2-2mu 21mv ; - 2mv 2 2 22 解得:v 1 mgR, 35,3gR31 o 1 o小滑块以速度v 滑上木板到运动至碰墙时速度为vi,那么有 fL = — mv 1-—mv (2分)2 2滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为 丫2,那么有 mv i =(m 4m)v 2(2 分)1 2 1 2由总能重寸恒可得:fL= —mv 1 -- (m 4m)v 2 (2分)2 2 v 3上述四式联立,解得 一一(1分)v o 2考点:动能定理,动量定理,能量守恒定律.11.如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.…… M m2Mm 2【答案】(1) ------------------------- v 0 (2) -------------- v 0M m 2 Mg【解析】试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①一 M -w所以v=- ---------- v0 方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 Mv 0 mv 0Mv0 — mv0="Mv' v -------------------- 方 向向右M考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.12.如下图,粗细均匀的圆木棒 A 下端离地面高 H,上端套着一个细环 B. A 和B 的质 量均为m, A 和B间的滑动摩擦力为f,且fvmg.用手限制A 和B 使它们从静止开始自由 下落.当A 与地面碰撞后,A 以碰撞地面时的速度大小竖直向上运动,与地面发生碰撞时 间极短,空气阻力不计,运动过程中 A 始终呈竖直状态.求:假设 A 再次着地前B 不脱离A, A 的长度应满足什么条件?v'那么由动量守恒定律得:r~丘7 --------------(mg + D【解析】试题分析:设木棒着地时的速度为l v°,由于木棒与环一起自由下落,那么也=\Z两木棒弹起竖直上升过程中,由牛顿第二定律有:对木棒:『+ mg ai = -解得:山,方向竖直向下对环:・_ mg-/解得上m方向竖直向下可见环在木棒上升及下降的全过程中一直处于加速运动状态,所以木棒从向上弹起到再次着地的过程中木棒与环的加速度均保持不变2 vo木棒在空中运动的时间为在这段时间内,环运动的位移为--■ . ■要使环不碰地面,那么要求木棒长度不小于x,即,兰冈L>...................解得:+考点:考查了牛顿第二定律与运动学公式的综合应用【名师点睛】连接牛顿第二定律与运动学公式的纽带就是加速度,所以在做这一类问题时,特别又是多过程问题时,先弄清楚每个过程中的运动性质,根据牛顿第二定律求加速度然后根据加速度用运动学公式解题或者根据运动学公式求解加速度然后根据加速度利用牛顿第二定律求解力。
高中物理动量定理题20套(带答案)一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,质量M =1.0kg 的木板静止在光滑水平面上,质量m =0.495kg 的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。
质量m 0=0.005kg 的子弹以速度v 0=300m/s 沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g 取10m/s 2。
求: (1)物块的最大速度v 1; (2)木板的最大速度v 2;(3)物块在木板上滑动的时间t.【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。
【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m0v0=(m+m0)v1解得:v1=3m/s(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m+m0)v1=(M+m+m0)v2。
高中物理动量习题及答案高中物理动量习题及答案动量是物理学中一个重要的概念,描述了物体运动的特征。
在高中物理学习中,动量是一个必须掌握的内容。
下面将介绍一些高中物理动量习题及答案,希望对学生们的学习有所帮助。
1. 问题:一个质量为2kg的物体以速度10m/s向东运动,另一个质量为3kg的物体以速度5m/s向西运动,两个物体碰撞后,速度的变化是多少?解答:首先,我们需要计算两个物体的动量。
第一个物体的动量为2kg ×10m/s = 20kg·m/s,第二个物体的动量为3kg × (-5m/s) = -15kg·m/s。
由于动量守恒定律,碰撞后两个物体的动量之和仍然保持不变。
因此,两个物体碰撞后的总动量为20kg·m/s + (-15kg·m/s) = 5kg·m/s。
根据动量守恒定律,两个物体碰撞后的总动量等于碰撞前的总动量,所以速度的变化为5kg·m/s / (2kg +3kg) = 1m/s。
2. 问题:一个质量为0.5kg的物体以速度8m/s向东运动,另一个质量为1kg的物体以速度4m/s向西运动,两个物体碰撞后,速度的变化是多少?解答:同样地,首先计算两个物体的动量。
第一个物体的动量为0.5kg × 8m/s= 4kg·m/s,第二个物体的动量为1kg × (-4m/s) = -4kg·m/s。
根据动量守恒定律,碰撞后两个物体的总动量仍然保持不变,即4kg·m/s + (-4kg·m/s) =0kg·m/s。
因此,两个物体碰撞后的总动量为0kg·m/s,速度的变化为0kg·m/s / (0.5kg + 1kg) = 0m/s。
3. 问题:一个质量为2kg的物体以速度5m/s向东运动,另一个质量为4kg的物体以速度2m/s向西运动,两个物体碰撞后,速度的变化是多少?解答:计算两个物体的动量。
高中物理动量守恒定律题20套(带答案)及解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高中物理动量守恒定律常见题型及做题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心, Oc与Ob的夹角0=37°;过£点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh, ef与Oc交于c点,ecf与水平向右的方向所成的夹角为3(53° & pwi47° ),矩形区域内有方向水平向里的匀强磁场.质量m2=3X10-3 kg、电荷量q=3Xl0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5X10-3 kg的不带电小物体P 从轨道右端a以V O=8 m/s的水平速度向左运动, P、Q碰撞时间极短,碰后P以1m/s的速度水平向右弹回. P与ab间的动摩擦因数^=0.5, A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力, sin37° =0.6, cos37° =0.8,重力加速度大小g=10m/s2.求:⑴碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当3=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B I;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的(3值.______ 2 127 0一0【答案】(1) F N 4.6 10 2N (2) B1 1.25T (3)t -------------------- s, 1 900和 2 1430360【解析】【详解】解:(1)设P碰撞前后的速度分别为v1和v1 , Q碰后的速度为v21 2 1 2从a到b,对P,由动能TE理得:-m1gl — m1V1 — m1V02 2解得:v1 7m/s碰撞过程中,对P , Q系统:由动量守恒定律:m1v1 m1V l m2V2取向左为正方向,由题意v1 1m/s,解得:v2 4m/s2 V2b 点:对Q ,由牛顿第二定律得:F N m2g m2——R解得:F N 4.6 10 2 N(2)设Q 在c 点的速度为v c ,在b 到c 点,由机械能守恒定律:12 m 2 gR(1 cos )m 2v c 2解得:v c 2m/sQ 刚好不从gh 边穿出磁场,由几何关系: R d 1.6m解得:B I 1.25Tm 2v c .(3)当所加磁场B 2 2T ,「2 -- 1mqB 2要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,那么 Q 在磁场中运动轨迹对应的圆心dcos(180 )—解得:此时对应的 角:1 90和2 1431 2m 2v 22进入磁场后:Q 所受电场力 F qE 3 10 2Nm 2g , Q 在磁场做匀速率圆周运动由牛顿第二定律得:qV cB2 m 2vcq127运动周期:T2 m 2 qB 2那么Q 在磁场中运动的最长时间:T 127 ?2 m 2 360360 qB 2 127 ------ s360角最大,那么当gh 边或ef 边与圆轨迹相切,轨迹如下图:设最大圆心角为 ,由几何关系得:2.如下图,一辆质量M=3 kg的小车A静止在光滑的水平面上,小车上有一质量m=l kg 的光滑小球B,将一轻质弹簧压缩并锁定,此时弹簧的弹性势能为&=6J,小球与小车右壁距离为L=0.4m,解除锁定,小球脱离弹簧后与小车右壁的油灰阻挡层碰撞并被粘住,求:A丽网(编①小球脱离弹簧时的速度大小;②在整个过程中,小车移动的距离.【答案】(1) 3m/s (2) 0.1m【解析】试题分析:(1)除锁定后弹簧的弹性势能转化为系统动能,根据动量守恒和能量守恒列出等式得mv-Mv2=0E P - mv2 -Mv f 2 2代入数据解得:v i=3m/s v 2=1m/s(2)根据动量守恒和各自位移关系得m— M — x i+x2=Lt t代入数据联立解得:x2-=0.lm4考点:动量守恒定律;能量守恒定律.3.如图,质量分别为也、出E的两个小球A、B静止在地面上方,B球距地面的高度h=0.8m , A球在B球的正上方. 先将B球释放,经过一段时间后再将A球释放.当A球下落t=0.3s时,刚好与B球在地面上方的P点处相碰,碰撞时间极短,碰后瞬间A球的速度恰为零. % = ,重力加速度大小为g=lCta"广,忽略空气阻力及碰撞中的动能损失.AOP零IY 0,3m(i) B球第一次到达地面时的速度;(ii) P点距离地面的高度.【答案】v B 4m/sh p 0.75m【解析】试题分析:(i) B球总地面上方静止释放后只有重力做功,根据动能定理有m B gh - m B V B22可得B 球第一次到达地面时的速度 v B J 颂 4m/s (11) A 球下落过程,根据自由落体运动可得 A 球的速度v A gt设B 球的速度为V B ',那么有碰撞过程动量守恒NI A V ANI B V B 'm B V B ''..................................... 1 c 1c 1c碰撞过程没有动能损失那么有 一m A v A— m B v B ' — m B v B '' 22 2解得 v B ' 1m / s , v B '' 2m/ s度是指碰撞前A 对B 的速度.假设上述过程是质量为 2m 的玻璃球A 以速度v o 碰撞质量为m 的静止玻璃球B,且为对心碰撞,求碰撞后 A 、B 的速度大小.17 31【答案】V0——V04S 24【解析】设A 、B 球碰撞后速度分别为 V 1和v 2 由动量守恒定律得 2mv o= 2mv 1 + mv 25 .如图的水平轨道中, AC 段的中点B 的正上方有一探测器, C 处有一竖直挡板,物体 P 1沿轨道向右以速度 V 1与静止在A 点的物体P 2碰撞,并接合成复合体巳以此碰撞时刻为计 时零点,探测器只在 t 1=2 s H 12=4 s 内工作, P 1、P 2的质量都为 m=1 kg, P 与AC 间的 动摩擦因数为 四 二0.1, AB 段长L=4 m, g 取10 m/s 2, R 、P 2和P 均视为质点,P 与挡板的 碰撞为弹性碰撞.3m/ s小球B 与地面碰撞后根据没有动能损失所以 B 离开地面上抛时速度 v 0 v B 4m / s所以P 点的高度hp p 考点:动量守恒定律 2,2V0-^B- 0.75m 2g能量守恒4.牛顿的?自然哲学的数学原理?中记载, 它们碰撞前的接近速度之比总是约为15 : A 、B 两个玻璃球相碰, 16.别离速度是指碰撞后碰撞后的别离速度和B 对A 的速度,接近速且由题意知-^― 15解得 V I = -- V 0 ,4S31V 2=V 024⑴假设v i =6 m/s,求P 、P 2碰后瞬间的速度大小 v 和碰撞损失的动能 史;〔2〕假设P 与挡板碰后,能在探测器的工作时间内通过 B 点,求v i 的取值范围和 P 向左经过A 点时的最大动能E .【答案】〔1〕 9J 〔2〕 10m/s v vi v 14m/s 17J 【解析】试题分析:〔1〕由于P 1和P 2发生弹性碰撞,据动量守恒定律有: 附用=2网口 v 2 =碰撞过程中损失的动能为:v 1=14m/s 时,碰撞后的结合体 P 的最大速度为: 代入数据,可得通过 A 点时的最大动能为:Eg = 17j 考点:此题考查动量守恒定律、运动学关系和能量守恒定律6 .在光滑的水平面上,质量 m=1kg 的物体与另一质量为 m 物体相碰,碰撞前后它们的位 移随时间变解法一:根据牛顿第二定律,设P 1、P 2碰撞后的共同速度为P 做匀减速直线运动,加速度 V A,那么根据〔1〕问可得V A =V 1/2把P 与挡板碰撞前后过程当作整体过程处理经过时间t1, P 运动过的路程为S1,那么经过时间t2, P 运动过的路程为S2,那么 如果P 能在探测器工作时间内通过B 点,必须满足&W3LWs联立以上各式,解得 10m/s < V 1 < 14m/s V 1的最大值为 14m/s ,此时碰撞后的结合体P 有最大速度v A =7m/s1-口 4L = 2M 吗根据动能定理, 代入数据,解得E=17J解法二:从A 点滑动到C 点,再从C 点滑动到A 点的整个过程,P 做的是匀减速直线. 设加速度大小为 a,那么a=〔ig=1m/s 2设经过时间t, P 与挡板碰撞后经过 B 点,[学科网那么: vw-at,诬?口,乳 v=v 1/2假设t=2s 时经过B 点,可得 假设t=4s 时经过B 点,可得 v 1="14m/s"v 1=10m/s 那么v 1的取值范围为: 10m/s v v 1 v 14m/s必如== 7m/s化的情况如下图.求:(1)碰撞前m的速度v i和位的速度V2;(2)另一物体的质量m>o【答案】(1) v i 4m/s, V2 0; (2) m2 3kg.【解析】试题分析:(1)由s —t图象知:碰前,m的速度v1—16二0 4 m,. s , m处于静止t 4-0状态,速度v20(2)由s—t图象知:碰后两物体由共同速度,即发生完全非弹性碰撞—24 16 1m s碰后的共同速度vt 12 4根据动量守恒定律,有:m1V l(m( m2)v另一物体的质量m2m i v——v 3m l 3kgv考点:s—t图象,动量守恒定律7 .如下图,一轻质弹簧的一端固定在滑块B上,另一端与滑块C接触但未连接,该整体静止放在离地面高为H的光滑水平桌面上.现有一滑块A从光滑曲面上离桌面h高处由静止开始滑下,与滑块B发生碰撞并粘在一起压缩弹簧推动滑块C向前运动,经一段时间,滑块C脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.m A m, m B 2m, m C 3m ,求:(1)滑块A与滑块B碰撞结束瞬间的速度v;(2)被压缩弹簧的最大弹性势能 E Pmax;(3)滑块C 落地点与桌面边缘的水平距离【答案】(1) v 1V l -J2gh (2) mgh (3) 2JHh 3 3 6 3【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的 1 2速度为V i ,由机械能守恒定律有: m A gh 5 m A v 1解之得:v 1 2gh滑块A 与B 碰撞的过程, A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为 v,由动量守恒定律有:m A V im A m B v解之得:v 1V l 1J 2gh33 、(2)滑块A 、B 发生碰撞后与滑块 C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的 弹性势能最大时,滑块 A 、B 、C 速度相等,设为速度 v 2 由动量守恒定律有:m A v 1 m A m B m C v 21.22由机械能寸恒7E 律有: E pmax 2(m A m )B )vm A m B m e V21解得被压缩弹簧的最大弹性势能:E Pmax -mgh6(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块 A 、B 的速度为V3,滑块C 的速度为V4,分别由动量守恒定律和机械能守恒定律有:2—mAm B v 2解之得:V 30, V 4滑块C 从桌面边缘飞出后做平抛运动: s v 4tH 1gt 2 2解之得滑块C 落地点与桌面边缘的水平距离:s 2jHh38.如下图,光滑固定斜面的倾角 @=30: 一轻质弹簧一端固定,另一端与质量 M=3kg 的物体B 相连,初始时 B 静止.质量m=1kg 的A 物体在斜面上距 B 物体处s1=10cm 静止释 放,A 物体下滑过程中与 B 发生碰撞,碰撞时间极短,碰撞后与 B 粘在一起,碰后整 体经t=0.2s 下滑s2=5cm 至最低点.弹簧始终处于弹性限度内, A B 可视为质点,g 取10m/s 2.s.m A m B vm A m B V 3m C V 42 m A m B V3-m C V 4 2(1)从碰后到最低点的过程中,求弹簧最大的弹性势能;(2)碰后至返回到碰撞点的过程中,求弹簧对物体B的冲量大小.上【答案】(1) 1. 125J; (2) 10Ns【解析】【分析】(1)A物体下滑过程,A物体机械能守恒,求得A与B碰前的速度;A与B碰撞是完全非弹性碰撞,A、B组成系统动量守恒,求得碰后AB的共同速度;从碰后到最低点的过程中,A、B和弹簧组成的系统机械能守恒,可求得从碰后到最低点的过程中弹性势能的增加量.(2)从碰后至返回到碰撞点的过程中, A、B和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB的速度;对AB从碰后至返回到碰撞点的过程应用动量定理,可得此过程中弹簧对物体B 冲量的大小.【详解】0 1 2(1)A物体下滑过程,A物体机械能守恒,那么:mgS|Sin30 — mv02解得:v0J2gs i sin300 42 10 0.1 0.5 嗯1嗯A与B碰撞是完全非弹性碰撞,据动量守恒定律得:mv0 (m M )v1解得:v1 0.25mS从碰后到最低点的过程中, A、B和弹簧组成的系统机械能守恒,那么:一1 2 0E PT增—(m M )v1 (m M )gS2Sin30 2解得:E PT增1.125J(2)从碰后至返回到碰撞点的过程中, A、B和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB的速度大小v2 v1 0.25 ms以沿斜面向上为正,由动量定理可得:I T (m M )gsin300 2t (m M M (m M)%解得:I T 10N S9.如下图,用气垫导轨做“验证动量守恒〞实验中,完成如下操作步骤:A BA.调节天平,称出两个碰撞端分别贴有尼龙扣滑块的质量m i和m2.B.安装好A B光电门,使光电门之间的距离为50cm.导轨通气后,调节导轨水平,使滑块能够作运动.C.在碰撞前,将一个质量为m2滑块放在两光电门中间,使它静止,将另一个质量为m i滑块放在导轨的左端,向右轻推以下m i,记录挡光片通过A光电门的时间t i.D.两滑块相碰后,它们粘在一起向右运动,记录挡光片通过的时间t2.E.得到验证实3i的表达式 .m! m i m2【答案】匀速直线运动小车经过光电门的时间」———-t i t2【解析】【详解】为了让物块在水平方向上不受外力,因此当导轨通气后,调节导轨水平,使滑块能够作匀速直线运动;根据实验原理可知,题中通过光电门来测量速度,因此应测量小车经过光电门的时间l设光电门的宽度为l ,那么有:经过光电门的速度为V i - t il整体经过光电门的速度为:V2t2由动量守恒定律可知, miV i (m i+m2)v2代入解得:m i (m i m2) ----- .t i t2io.如下图,在水平面上有一弹簧,其左端与墙壁相连, O点为弹簧原长位置, .点左侧水平面光滑,水平段OP长L=im, P点右侧一与水平方向成分=的足够长的传送带与水平面在P点平滑连接,皮带轮逆时针转动速率为3m/s, 一质量为ikg可视为质点的物块A压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能跖=力,物块与OP段动摩擦因数串口2 =--“1 = 0」,另一与A完全相同的物块B停在P点,B与传送带的动摩擦因数3,传送带足够长,A与B的碰撞时间不计,碰后 A. B交换速度,重力加速度g=10巾/乒,现释放A,求:(2)从A. B 第一次碰撞后到第二次碰撞前, B 与传送带之间由于摩擦而产生的热量(3) A. B 能够碰撞的总次数【答案】(1)仔.=恤/可⑵12.25/⑶6次试题分析:(1)设物块质量为 m, A 与B 第一次碰前的速度为 H,那么:碰后B 沿传送带向上匀减速运动直至速度为零,加速度大小设为VB—.三.gm 2此过程相对运动路程 ’此后B 反向加速,加速度仍为'打,与传送带共速后匀速运动直至与A 再次碰撞,加速时间为此过程相对运动路程 ‘ ’‘全过程生热,(3) B 与A 第二次碰撞,两者速度再次互换,此后 A 向左运动再返回与 B 碰撞,B 沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰 撞.那么对A.B 和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为 n=2.25,所以碰撞总次数为 N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】此题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规 律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度11 .如下图,在光滑的水平面上,质量为 4m 、长为L 的木板右端紧靠竖直墙壁,与墙壁 不粘连.质量为 m 的小滑块(可视为质点)以水平速度 vo 滑上木板左端,滑到木板右端时 速度恰好为零.现小滑块以水平速度 v 滑上木板左端,滑到木板右端时与竖直墙壁发生弹(2)设A.B 第一次碰撞后的速度分别为=VB =那么:5 皿干阳T 丽8加必 解得:ui = gsii\& + 为 gesG = lOm/52 运动的时间位移为-t 2 = 0.45m 2=2 " imgL性碰撞,小滑块弹回后,刚好能够滑到木板左端而不从木板上落下,求 1 2 试题分析:小滑块以水平速度 v o 右滑时,有: fL =0- - mv 0 (2分)21 2 1 2小滑块以速度v 滑上木板到运动至碰墙时速度为 v i,那么有 fL = - mv i -- mv (2分)滑块与墙碰后至向左运动到木板左端,此时滑块、木板的共同速度为v2, 那么有 m, =(m 4m)v 2(2 分)1 2 1 . 一 . 2由总能重寸恒可得: fL= —mv 1 — - (m 4m)v 2 (2分) 2 2… … v 3上述四式联立,解得 一一(1分)v o 2 考点:动能定理,动量定理,能量守恒定律.12 .如下图,一质量为 M 的平板车B 放在光滑水平面上,在其右端放一质量为 m 的小 木块A, m 〈M,A 、B 间粗糙,现给 A 和B 以大小相等、方向相反的初速度 v0,使A 开始向 左运动,B 开始向右运动,最后 A 不会1t 离B,求:(1) A 、B 最后的速度大小和方向;(2)从地面上看,小木块向左运动到离出发点最远处时,平板车的速度大小和方向.试题分析:(1)由A 、B 系统动量守恒定律得:Mv0 —mv0= (M +m ) v ①M所以v=- ---------- v 0方向向右(2) A 向左运动速度减为零时,到达最远处,设此时速度为 (1) M m v o M m (2) 2M m 2 v o 2 Mg一的值. 0v'那么由动量守恒定律得:【解Mv 0 mv0、,,.Mv0 — mv0="Mv' v --------------------- 方向向右考点:动量守恒定律;点评:此题主要考查了动量守恒定律得直接应用,难度适中.。
高中物理高考物理动量定理常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.如图甲所示,平面直角坐标系中,0≤x ≤l 、0≤y ≤2l 的矩形区域中存在交变匀强磁场,规定磁场垂直于纸面向里的方向为正方向,其变化规律如图乙所示,其中B 0和T 0均未知。
比荷为c 的带正电的粒子在点(0,l )以初速度v 0沿+x 方向射入磁场,不计粒子重力。
(1)若在t =0时刻,粒子射入;在t <02T 的某时刻,粒子从点(l,2l )射出磁场,求B 0大小。
(2)若B 0=02c v l ,且粒子从0≤l ≤02T的任一时刻入射时,粒子离开磁场时的位置都不在y 轴上,求T 0的取值范围。
(3)若B 0=02c v l ,00l T v π=,在x >l 的区域施加一个沿-x 方向的匀强电场,在04T t =时刻入射的粒子,最终从入射点沿-x 方向离开磁场,求电场强度的大小。
【答案】(1)00v B cl =;(2)00l T v π≤;(3)()20421v E n cl π=+()0,1,2n =L . 【解析】 【详解】设粒子的质量为m ,电荷量为q ,则由题意得qc m=(1)粒子在磁场中做匀速圆周运动,设运动半径为R ,根据几何关系和牛顿第二定律得:R l =2000v qv B m R=解得0v B cl=(2)设粒子运动的半径为1R ,由牛顿第二定律得20001v qv B m R =解得12l R =临界情况为:粒子从0t =时刻射入,并且轨迹恰好过()0,2l 点,粒子才能从y 轴射出,如图所示设粒子做圆周运动的周期为T ,则002m lT qB v ππ== 由几何关系可知,在02T t =内,粒子轨迹转过的圆心角为 θπ=对应粒子的运动时间为1122t T T ππ== 分析可知,只要满足012T t ≥,就可以使粒子离开磁场时的位置都不在y 轴上。
联立解得0T T ≤,即00lT v π≤;(3)由题意可知,粒子的运动轨迹如图所示设粒子的运动周期为T ,则002m lT qB v ππ== 在磁场中,设粒子运动的时间为2t ,则21144t T T =+由题意可知,还有00244T T t =+ 解得0T T =,即00lT v π=设电场强度的大小为E ,在电场中,设往复一次所用的时间为3t ,则根据动量定理可得302Eqt mv =其中3012t n T ⎛⎫=+ ⎪⎝⎭()0,1,2n =L解得()2421v E n cl π=+()0,1,2n =L2.如图所示,一光滑水平轨道上静止一质量为M =3kg 的小球B .一质量为m =1kg 的小球A 以速度v 0=2m/s 向右运动与B 球发生弹性正碰,取重力加速度g =10m/s 2.求:(1)碰撞结束时A 球的速度大小及方向; (2)碰撞过程A 对B 的冲量大小及方向.【答案】(1)-1m/s ,方向水平向左(2)3N·s ,方向水平向右 【解析】【分析】A 与B 球发生弹性正碰,根据动量守恒及能量守恒求出碰撞结束时A 球的速度大小及方向;碰撞过程对B 应用动量定理求出碰撞过程A 对B 的冲量; 解:(1)碰撞过程根据动量守恒及能量守恒得:0A B mv mv Mv =+2220111222A B mv mv Mv =+ 联立可解得:1m/s B v =,1m/s A v =- 负号表示方向水平向左 (2)碰撞过程对B 应用动量定理可得:0B I Mv =- 可解得:3I N s =⋅ 方向水平向右3.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m 【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.4.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。
高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。
(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
高中物理动量定理题20套(带答案)含解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。
车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。
【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。
(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图甲所示,物块A 、B 的质量分别是m A =4.0kg 和m B =3.0kg 。
用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙壁相接触。
另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,C 的v -t 图象如图乙所示。
求:(1)C 的质量m C ;(2)t =8s 时弹簧具有的弹性势能E p1,4~12s 内墙壁对物块B 的冲量大小I ; (3)B 离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J ,36N·S ;(3)9J 【解析】 【详解】(1)由题图乙知,C 与A 碰前速度为v 1=9m/s ,碰后速度大小为v 2=3m/s ,C 与A 碰撞过程动量守恒m C v 1=(m A +m C )v 2解得C 的质量m C =2kg 。
动量题型整理八大题型分类:1、动量定理2、动量守恒的判断3、最大高度题型4、人船模型5、反冲题型6、子弹打木块7、动碰静模型8、弹簧和绳模型一、动量定理1.(2017·新课标全国Ⅲ卷)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动。
F随时间t变化的图线如图所示,则A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零1.AB【解析】由动量定理有Ft=mv,解得Ftvm=,t=1 s时物块的速率 1 m/sFtvm==,A正确;F–t图线与时间轴所围面积表示冲量,所以t=2 s时物块的动量大小为2 2 kg m/s 4 kg m/sp=⨯⋅=⋅,B正确;t=3 s时物块的动量大小为(2211) kg m/s 3 kg m/sp'=⨯-⨯⋅=⋅,C错误;t=4 s时物块的动量大小为(2212) kg m/s 2 kg m/sp''=⨯-⨯⋅=⋅,速度不为零,D错误。
2.(2017·新课标全国Ⅰ卷)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出。
在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略) A .30kg m/s ⋅B .5.7×102kg m/s ⋅C .6.0×102kg m/s ⋅D .6.3×102kg m/s ⋅2.A 【解析】设火箭的质量(不含燃气)为m 1,燃气的质量为m 2,根据动量守恒,m 1v 1=m 2v 2,解得火箭的动量为:p =m 1v 1=m 2v 2=30 kg m/s ⋅,所以A 正确,BCD 错误。
3.(2019·安徽省阜阳市第三中学模拟)2019年阜阳三中科学晚会中,科技制作社团表演了“震撼动量球”实验。
为感受碰撞过程中的力,在互动环节,表演者将球抛向观众,假设质量约为3 kg 的超大气球以2 m/s 速度竖直下落到手面,某观众双手上推,使气球以原速度大小竖直向上反弹,作用时间为0.2 s 。
忽略气球所受浮力及空气阻力,g =10 m/s 2。
则观众双手受的压力共计A .30 NB .60 NC .90 ND .120 N 【答案】C【解析】取竖直向下为正方向,对大气球由动量定理有:()mg F t mv mv '-⋅∆=-,代入数据解得:90N F =,故C 正确。
4.(2019·山西省晋城市高三下学期第三次模拟)太空中的尘埃对飞船的碰撞会阻碍飞船的飞行,质量为M 的飞船飞入太空尘埃密集区域时,需要开动引擎提供大小为F 的平均推力才能维持飞船以恒定速度v 匀速飞行。
已知尘埃与飞船碰撞后将完全黏附在飞船上,则在太空尘埃密集区域单位时间内黏附在飞船上尘埃的质量为 A .F M v +B .F M v -C .F M v -D .Fv【答案】D【解析】设单位时间内黏附在飞船上尘埃的质量为m 。
以单位时间内黏附在飞船上的尘埃为研究对象,根据动量定理有:Ft=mv –0,其中t =1 s ,可得:Fm v=,D 正确。
5.(2019·天津市和平区高三三模)质量0.1kg m =的小球以010m /s v =的初速度沿水平方向抛出,小球距离地面的高度是5m h =(210m /s g =),下面说法正确的是 A .小球落地时速度大小是102m /s B .小球在落地时重力的瞬时功率为102WC .小球在空中运动过程中,任意相等时间内小球动能变化相等D .小球在空中运动过程中,任意相等时间内小球动量变化相等 【答案】AD 【解析】A 、根据212h gt =,解得:2251s 10h t g ⨯===,则小球落地时竖直方向的速度210110m/s y v gt ==⨯=,则小球落地时速度大小222201010102m/s y v v v =+=+=,故A 正确;B 、小球在落地时重力的瞬时功率0.1101010W G y P mgv ==⨯⨯=,故B 错误;C 、由动能定理可得:k mgh E =∆,由于物体在竖直方向上是自由落体运动,物体下落的速度越来越大,所以在相同的时间内物体下降的高度也是越来越大,重力做的功越来越多,动能的变化量也是越来越大,故C 错误;D 、由动量定理可得:mg t m v ∆=∆,小球在空中运动过程中,任意相等时间内小球动量变化相等,故D 正确。
二、动量守恒的判断6.(2017·福建六校高二期中联考)如图所示,平板小车C 放在光滑水平地面上,A 、B 两物体(m A >m B )之间用一段细绳相连并有一被压缩的轻弹簧,放在平板小车C 上后,A 、B 、C 均处于静止状态.则在细绳被剪断后,A 、B 在C 上未滑离C 之前,A 、B 沿相反方向滑动的过程中A.若A、B与C之间的摩擦力大小相同,则A、B组成的系统动量守恒,A、B、C 组成的系统动量也守恒B.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,但A、B、C组成的系统动量守恒C.若A、B与C之间的摩擦力大小不相同,则A、B组成的系统动量不守恒,A、B、C组成的系统动量也不守恒D.以上说法均不对6.AB【解析】系统动量守恒的条件是合外力为零,通过分析研究对象的受力情况,确定合外力,即可进行分析和判断。
若A、B与C之间的摩擦力大小相同,在细绳被剪断后,弹簧释放的过程中,A、B所受的滑动摩擦力方向相反,则对于A、B组成的系统所受的合外力为零,动量守恒;对三个物体组成的系统,竖直方向上重力与支持力平衡,水平方向不受外力,合外力为零,所以A、B、C组成的系统动量也守恒,故A正确;若A、B与C之间的摩擦力大小不相同,在细绳被剪断后,弹簧释放的过程中,A、B所受的滑动摩擦力方向相反,则对于A、B组成的系统所受的合外力不为零,动量不守恒;但对三个物体组成的系统,合外力为零,A、B、C组成的系统动量仍守恒,故B正确、CD错误。
7.(2019·辽宁省沈阳市高三三模)如图甲所示,物块A、B间拴接一个压缩后被锁定的轻弹簧,整个系统静止放在光滑水平地面上,其中A物块最初与左侧固定的挡板相接触,B物块质量为4 kg。
现解除对弹簧的锁定,在A离开挡板后,B物块的v–t图如图乙所示,则可知A.物块A的质量为4 kgB.运动过程中物块A的最大速度为v m=4 m/sC.在物块A离开挡板前,系统动量守恒、机械能守恒D.在物块A离开挡板后弹簧的最大弹性势能为6 J【答案】BD【解析】A 、弹簧伸长最长时弹力最大,B 的加速度最大,此时A 和B 共速,由图知,AB 共同速度为:v 共=2 m/s ,A 刚离开墙时B 的速度为:v 0=3 m/s 。
在A 离开挡板后,取向右为正方向,由动量守恒定律,有:0()B A B m v m m v =+共,解得m A =2 kg ;故A 错误。
B 、当弹簧第一次恢复原长时A 的速度最大,由0B A A B B m v m v m v =+,2220111222B A A B B m v m v m v =+,解得A 的最大速度v A =4 m/s ,故B 正确。
C 、在A 离开挡板前,由于挡板对A 有作用力,A 、B 系统所受合外力不为零,所以系统动量不守恒;故C 错误。
D 、分析A 离开挡板后A 、B 的运动过程,并结合图象数据可知,弹簧伸长到最长时A 、B 的共同速度为v 共=2m/s ,根据机械能守恒定律和动量守恒定律,有:0()B A B m v m m v =+共,22011()22P B A B E m v m m v =-+共;联立解得弹簧的最大弹性势能 E p=6J ,故D 正确。
故选BD 。
三、最大高度题型8.(2017·宁夏育才中学高二月考)动量守恒定律和机械能守恒定律是我们解决物理问题常用的理论依据,请合理利用这两物理理论依据,解决以下物理情景中的具体问题:两质量分别为2M 和4M 的劈A 和B ,高度相同,放在光滑水平面上,A 和B 的倾斜面都是光滑曲面,曲面下端与水平面相切,如图所示,一质量为M 的物块位于劈A 的倾斜面上,距水平面的高度为h 。
物块从静止开始下滑,然后又滑上劈B 。
求:(1)物块第一次下滑到最低点时滑块速度的大小; (2)物块第一次下滑到最低点时劈A 速度的大小; (3)当滑块到达劈B 的最高点时,劈B 的速度大小; (4)滑块能够到达劈B 的最大高度H 。
参考答案:(1)23ghv = (2)3A gh v = (3)253ghV '= (4)815H h = 试题解析:(1)(2)设物块到达劈A 的底端时,物块和A 的速度大小分别为v 和v A 由机械能守恒和动量守恒得:2211222A mgh mv mv =+⨯① 2A mv mv =②联立得:23ghv =,3A gh v =9.(2016·新课标全国Ⅱ卷)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上。
某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h =0.3 m (h 小于斜面体的高度)。
已知小孩与滑板的总质量为m 1=30 kg ,冰块的质量为m 2=10 kg ,小孩与滑板始终无相对运动。
取重力加速度的大小g =10 m/s 2。
(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?(2)设小孩推出冰块后的速度为v 1,由动量守恒定律有 m 1v 1+m 2v 20=0④ 代入数据得v 1=1 m/s ⑤设冰块与斜面体分离后的速度分别为v 2和v 3,由动量守恒和机械能守恒定律有 m 2v 20= m 2v 2+ m 3v 3⑥2222202233111+222m v m m v v ⑦ 联立③⑥⑦式并代入数据得v 2=1 m/s ⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩10.【来源】河南省安阳三十六中2016-2017学年高二下学期期中物理试卷如图所示,质量为M 、内有半径为R 的半圆轨道的槽体放在光滑水平面上,左端紧靠台阶,质量为m 的小物体从半圆轨道的顶端A 点由静止释放,若槽内光滑,求: (1)小物体滑槽最低点时的速度v 1; (2)小物体和滑槽共速时的速度v 2; (3)小物体上升的最大高度h .答案及解析:10.解:(1)小物体由A 落至圆弧最低点时的过程,取圆弧最低点为势能零点,由机械能守恒定律得:mgR=mv 12 得 v 1=(2)小物体从最低点向上运动的过程中,m 与M 组成的系统在水平方向的动量守恒.取水平向右为正方向,由动量守恒定律有 mv 1=(M+m )v 2 解得:v 2=(3)小物体从最低点向上运动的过程中,M 和m 系统的机械能守恒,所以有 mv 12=(M+m )v 22+mgh 解得m 上升的最大高度:h=R .答:(1)小物体滑到圆弧最低点时的速度大小v 1是;(2)小物体和滑槽共速时的速度v 2是;(3)小物体上升的最大高度是R .11.【来源】河南省周口市中英文学校2016-2017学年高二下学期期中物理试卷在光滑的冰面上放置一个截面圆弧为四分之一圆的半径足够大的光滑自由曲面体,一个坐在冰车上的小孩手扶一小球静止在冰面上.已知小孩和冰车的总质量为m1小球的质量为m2,曲面体的质量为m3.某时刻小孩将小球以v0=4m/s的速度向曲面体推出(如图所示).(1)求小球在圆弧面上能上升的最大高度;(2)若m1=40kg,m2=2kg小孩将球推出后还能再接到小球,试求曲面质量m3应满足的条件.答案及解析:11.解:(1)小球与曲面组成的系统在水平方向动量守恒,以向左为正方向,由动量守恒定律得:m2v0=(m2+m3)v,系统机械能守恒,由机械能守恒定律得:m2v02=(m2+m3)v2+m2gh,解得:h=;(2)小孩推出球的过程小孩与球组成的系统动量守恒,以向左为正方向,由动量守恒定律得:m2v0﹣m1v1=0,球与曲面组成的系统在水平方向动量守恒,以向左为正方向,由动量守恒定律得:m2v0=﹣m2v2+m3v3,由机械能守恒定律得:m2v02=m2v22+m3v32,解得:v2=v0,;如果小孩将球推出后还能再接到球,则需要满足:v2>v1,解得:m3>kg;答:(1)小球在圆弧面上能上升的最大高度为;(2)若m 1=40kg ,m 2=2kg 小孩将球推出后还能再接到小球,曲面质量m 3应满足的条件是:m 3>kg .12.【来源】河南省豫东、豫北十所名校2014届高三阶段性测试(五)理综物理如图所示,静置于光滑水平面上的光滑斜劈质量为M 、倾角为θ(不超过30)、高为H ,一个质量为m 的小球以一定的水平初速度(大小未知)从斜劈底端沿斜劈向上运动,在水平面与斜面连接处没有机械能损失。