中科大运筹学研究生考试样题
- 格式:doc
- 大小:179.00 KB
- 文档页数:2
管理运筹学复习题第一章一、单项选择题1.用运筹学分析与解决问题的过程是一个( B )A.预测过程B.科学决策过程C.计划过程D.控制过程2.运筹学运用数学方法分析与解决问题,以达到系统的最优目标。
可以说这个过程是一个( C )A.解决问题过程B.分析问题过程C.科学决策过程D.前期预策过程3从趋势上看,运筹学的进一步发展依赖于一些外部条件及手段,其中最主要的是( C )A.数理统计 B.概率论 C.计算机 D.管理科学4运筹学研究功能之间关系是应用( A )A.系统观点 B.整体观点 C.联系观点 D.部分观点5运筹学的主要目的在于求得一个合理运用人力、物力和财力的( B )A.最优目标B.最佳方案C.最大收益D.最小成本6.运筹学的主要研究对象是各种有组织系统的( C )A.近期目标与具体投入B.生产计划及盈利C.管理问题及经营活动D.原始数据及相互关系7.运筹学研究和解决问题的优势是应用各学科交叉的方法,其具有的典型特性为( A )A.综合应用 B.独立研究 C.以计算为主 D.定性与定量8.数学模型中,“s·t”表示( B )A. 目标函数B. 约束C. 目标函数系数D. 约束条件系数9.用运筹学解决问题的核心是( B )A.建立数学模型并观察模型 B.建立数学模型并对模型求解C.建立数学模型并验证模型 D.建立数学模型并优化模型10.运筹学作为一门现代的新兴科学,起源于第二次世界大战的( B )A.工业活动B.军事活动C.政治活动D.商业活动11.运筹学是近代形成的一门( C )A.管理科学 B.自然科学 C.应用科学 D.社会科学12.用运筹学解决问题时,要对问题进行( B )A.分析与考察B.分析和定义C.分析和判断D.分析和实验13.运筹学中所使用的模型是( C )A.实物模型B.图表模型C.数学模型D.物理模型14.运筹学的研究对象是( B )A.计划问题 B.管理问题 C.组织问题 D.控制问题二、多项选择题1.运筹学的主要分支包括( ABDE )A.图论B.线性规划 C .非线性规划 D.整数规划 E.目标规划三、简答题1.运筹学的数学模型有哪些缺点?答:(1)数学模型的缺点之一是模型可能过分简化,因而不能正确反映实际情况。
中科大运筹学研究生考试样题运筹学一.某投资者有30000元可供为期四年的投资。
现有下列五项投资机会可供选择:A :四年内,投资者可在每年年初投资,每年每元投资可获到0.2元,每年获利后将本利重新投资。
B :在四年内,投资者应在第一年年初或第三年年初投资,每两年每元投资可获利润0.5元,两年后获利。
然后可将本利再重新投资。
C :在四年内,投资者应在第一年年初投资,三年后每元投资可获利0.8元。
获利后可将本利重新投资。
这项投资最多不超过20000元。
D :在四年内,投资者应在第二年年初投资,两年后每元投资可获利0.6元。
获利后可将本利重新投资。
这项投资最多不超过15000元。
E :在四年内,投资者应在第一年年初投资,四年后每元投资可获利1.7元。
这项投资最多不超过20000元。
投资者在四年内应如何投资,使他在四年后所获利润最大?写出这个问题的线性规划模型,不用求解。
二.证明:若线性规划问题有界,则该问题的目标函数一定可以在其可行域的顶点达到最优。
三.设有如下线性规划问题123123123123ax 2351771.251071007M Z x x x x x x s t x x x x x x =+-?++=-+≥??≥≥≥??,,中国科学院——中国科学技术大学招收攻读硕士学位研究生入学考试模拟试题一试求:(1)该问题的对偶问题;(2)该问题的最优解;(3)若目标函数中的1x 的系数由2变为2+θ,试讨论最优解的变化;(4)若增加一个新的约束条件:12314837x x x --≤,问题的最优解有无变化,为什么?四.分配甲、乙、丙、丁四个人去完成五项任务。
每人完成各项任务时间如表所示。
由于任务数多于人数,故规定其中有一个人可兼完成两项任务,其余三人每五.用动态规划的方法求下列网络图从起点到终点的最短路线及长度。
北京科技大学2011年硕士学位研究生入学考试试题试题编号:810 试题名称:运筹学______________ (共4 页)适用专业:系统工程 ________________________________________________ 说明:所有答案必须写在答题纸上,做在试题或草稿纸上无效。
一、填空题(20分,每空2分)1若对偶问题为无界解,则原问题____________________________________ .2. __________________________________________________________ 0.618法在[2 , 6]区间上取的初始点是____________________________________________________ .3. 最速下降法的搜索方向____________________ 。
牛顿法的搜索方向为 ______________________________________ .拟牛顿法的搜索方向为 _____________________________________ .4. 若p(k)是f (X)在X(k)处的下降方向,则需满足 ____________________________ 。
5. 在一维搜索min f(X(k)• 'P(k))中,■ 一0当f(X)为非正定二次函数时,最优步长■ k满足________________________ ,当f (X)为正定二次函数时,最优步长■ k= ______________ 。
6. 两阶段法中,若第一阶段目标函数最优值不为0,则原问题__________________ 。
7. 在拟牛顿算法中要求H (k)对称正定是为了保证搜索方向p(k) = -H (k)g(k)_______________________ 。
二.(10分)试建立下面问题的线性规划数学模型(不需要求解)有一艘货轮,分前、中、后三个舱位,它们的容积与最大允许载重量见表1。
运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、无界解和无可行解四种。
2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明如果在该空格中增加一个运量运费将增加4 。
3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错?错4、如果某一整数规划:MaxZ=X1+X2X 1+9/14X2≤51/14—2X1+X2≤1/3X 1,X2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X1=3/2,X2=10/3,MaxZ=6/29,我们现在要对X1进行分枝,应该分为 X1≤1 和 X1≥2 。
5、在用逆向解法求动态规划时,fk (sk)的含义是:从第k个阶段到第n个阶段的最优解 .6.假设某线性规划的可行解的集合为D,而其所对应的整数规划的可行解集合为B,那么D和B的关系为 D 包含 B7。
已知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条件均为“≤"型不等式)(2)对偶问题的最优解: Y=(5,0,23,0,0)T8。
线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10。
若整数规划的松驰问题的最优解不符合整数要求,假设Xi =bi不符合整数要求,INT(bi)是不超过b i 的最大整数,则构造两个约束条件:Xi≥INT(bi)+1 和 Xi≤INT(bi),分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。
11. 知下表是制订生产计划问题的一张LP最优单纯形表(极大化问题,约束条件均为“≤"型不等式)其中问:(1)对偶问题的最优解: Y=(4,0,9,0,0,0)T (2)写出B-1=二、计算题(60分)1、已知线性规划(20分)MaxZ=3X1+4X2X 1+X2≤52X1+4X2≤123X1+2X2≤8X 1,X2≥02)若C2从4变成5,最优解是否会发生改变,为什么?3)若b2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X6,其P6=(2,3,1)T,C6=4该产品是否应该投产?为什么?解:1)对偶问题为Minw=5y1+12y2+8y3y1+2y2+3y3≥3y1+4y2+2y3≥4y1,y2≥02)当C2从4变成5时,σ4=-9/8σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
运筹学A卷)一、单项选择题(从下列各题四个备选答案中选出一个正确答案,答案选错或未选者,该题不得分。
每小题1分,共10分)1.线性规划具有唯一最优解是指A.最优表中存在常数项为零B.最优表中非基变量检验数全部非零C.最优表中存在非基变量的检验数为零D.可行解集合有界2.设线性规划的约束条件为则基本可行解为A.(0, 0, 4, 3) B.(3, 4, 0, 0)C.(2, 0, 1, 0) D.(3, 0, 4, 0)3.则A.无可行解B.有唯一最优解mednC.有多重最优解D.有无界解4.互为对偶的两个线性规划, 对任意可行解X 和Y,存在关系A.Z > W B.Z = WC.Z≥W D.Z≤W5.有6 个产地4个销地的平衡运输问题模型具有特征A.有10个变量24个约束B.有24个变量10个约束C.有24个变量9个约束D.有9个基变量10个非基变量A.标准型的目标函数是求最大值B.标准型的目标函数是求最小值C.标准型的常数项非正D.标准型的变量一定要非负7. m+n-1个变量构成一组基变量的充要条件是A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关8.互为对偶的两个线性规划问题的解存在关系A.原问题无可行解,对偶问题也无可行解B.对偶问题有可行解,原问题可能无可行解C.若最优解存在,则最优解相同D.一个问题无可行解,则另一个问题具有无界解9.有m个产地n个销地的平衡运输问题模型具有特征A.有mn个变量m+n个约束…m+n-1个基变量B.有m+n个变量mn个约束C.有mn个变量m+n-1约束D.有m+n-1个基变量,mn-m-n-1个非基变量10.要求不超过第一目标值、恰好完成第二目标值,目标函数是A.)(m in22211+-+++=ddpdpZB.)(m in22211+-+-+=ddpdpZC.)(m in22211+---+=ddpdpZD.)(m in22211+--++=ddpdpZ二、判断题(你认为下列命题是否正确,对正确的打“√”;错误的打“×”。
考研运筹学真题及答案考研运筹学真题及答案考研运筹学是管理学专业的一门重要课程,也是考研中的一项难点。
为了帮助考生更好地备考运筹学,本文将介绍一些常见的考研运筹学真题及答案,供考生参考。
一、线性规划线性规划是运筹学中的重要概念,也是考研运筹学中的常见考点。
下面是一道典型的线性规划题目:题目:某公司生产两种产品A和B,每单位产品A的利润为3万元,每单位产品B的利润为4万元。
生产一个单位产品A需要1小时的人工时间和2小时的机器时间,生产一个单位产品B需要2小时的人工时间和1小时的机器时间。
公司每天可用的人工时间为8小时,机器时间为10小时。
问如何安排生产,使得利润最大化?解答:首先,设生产产品A的单位数为x,生产产品B的单位数为y。
根据题目中的条件,我们可以列出以下的约束条件:1x + 2y ≤ 8 (人工时间的约束条件)2x + 1y ≤ 10 (机器时间的约束条件)x ≥ 0 (产品A的非负约束条件)y ≥ 0 (产品B的非负约束条件)同时,我们需要定义一个目标函数,即利润的表达式。
根据题目中的条件,利润的表达式为:Max Z = 3x + 4y将约束条件和目标函数综合起来,我们可以得到线性规划问题的标准形式:Max Z = 3x + 4ys.t.1x + 2y ≤ 82x + 1y ≤ 10x ≥ 0y ≥ 0求解这个线性规划问题,可以使用单纯形法或者其他求解方法。
最终得到的解就是使得利润最大化的生产安排。
二、排队论排队论是运筹学中的另一个重要概念,也是考研运筹学中的考点之一。
下面是一道典型的排队论题目:题目:某银行有两个窗口,每个窗口的服务时间服从指数分布,服务率分别为μ1和μ2。
假设到达银行的客户服从泊松分布,到达率为λ。
求客户等待时间的期望。
解答:根据排队论的基本原理,客户等待时间的期望可以通过利用排队模型中的公式来计算。
在这个题目中,我们可以使用M/M/2模型来进行求解。
M/M/2模型是指到达过程和服务过程都服从泊松分布,且有两个服务通道。
《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
运筹学考研真题及答案运筹学考研真题及答案一、选择题1. 在线性规划中,若最优化问题的对偶问题有最优解,则原始问题也有最优解。
(正确)解析:线性规划理论中对偶定理:“若原始问题的对偶问题有可行解,且存在最优解,则原始问题也有最优解。
”2. 若在线性规划的单纯形法中,某一回路上的所有非基变量(非基变量为0)均为0,则这一问题无有限最优解。
(错误)解析:所有非基变量为0时,相应的基变量可以任意非负,问题有无穷多最优解。
3. 在线性规划中,若某元组在原始问题和对偶问题下都是可行解,则该元组是原始问题和对偶问题的最优解。
(错误)解析:若某元组在原始问题和对偶问题下都是可行解,则该元组满足原始问题的可行性和对偶问题的可行性,但并不一定是最优解。
4. 线性规划的最优性条件是原始问题的可行解和对偶问题的可行解所对应的目标函数值相等。
(正确)解析:线性规划理论中最优性条件:“若原始问题的可行解与对偶问题的可行解所对应的目标函数值相等,则解是原始问题和对偶问题的最优解。
”5. 线性规划的可行性要求约束条件为不等式约束。
(错误)解析:线性规划的可行性要求是所有约束条件都满足,包括等式约束和不等式约束。
二、填空题1. 与线性规划的相对论证法相对应的是(单纯形法)。
解析:线性规划的相对论证法和单纯形法是互为相对的两种求解方法。
2. 在线性规划中,若最优差异为0,则最优解是(非唯一)。
解析:最优差异为0意味着最优解是非唯一的,有多个最优解。
3. 线性规划的最优性条件是(对偶定理)与最优条件相对应。
解析:线性规划的最优性条件是对偶定理,而最优条件是原始问题的可行解和对偶问题可行解所对应的目标函数值相等。
4. 在线性规划中,若一个可行解在原始问题和对偶问题下都是最优解,则称为(互补性)条件。
解析:若一个可行解在原始问题和对偶问题下都是最优解,则满足互补性条件。
三、应用题1.某公司生产两种产品A和B,每个产品的制造工序及所需时间如下表,在一天内,公司有8小时的工时可用,每个工序只能由一名员工负责完成。
运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。
答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。
运筹学
一.某投资者有30000元可供为期四年的投资。
现有下列五项投资机会可供选择:
A :四年内,投资者可在每年年初投资,每年每元投资可获到0.2元,每年获利后将本利重新投资。
B :在四年内,投资者应在第一年年初或第三年年初投资,每两年每元投资可获利润0.5元,两年后获利。
然后可将本利再重新投资。
C :在四年内,投资者应在第一年年初投资,三年后每元投资可获利0.8元。
获利后可将本利重新投资。
这项投资最多不超过20000元。
D :在四年内,投资者应在第二年年初投资,两年后每元投资可获利0.6元。
获利后可将本利重新投资。
这项投资最多不超过15000元。
E :在四年内,投资者应在第一年年初投资,四年后每元投资可获利1.7元。
这项投资最多不超过20000元。
投资者在四年内应如何投资,使他在四年后所获利润最大?写出这个问题的线性规划模型,不用求解。
二.证明:若线性规划问题有界,则该问题的目标函数一定可以在其可行域的顶点达到最优。
三.设有如下线性规划问题
123
123123123ax 2351771.251071007M Z x x x x x x s t x x x x x x =+-⎧++=⎪⎪⎪-+≥⎨⎪
⎪≥≥≥⎪⎩
,,
中国科学院——中国科学技术大学 招收攻读硕士学位研究生入学考试模拟试题一
试求:(1)该问题的对偶问题;
(2)该问题的最优解;
(3)若目标函数中的1x 的系数由2变为2+θ,试讨论最优解的变化;
(4)若增加一个新的约束条件:1231483
7x x x --≤,问题的最优解有无
变化,为什么?
四.分配甲、乙、丙、丁四个人去完成五项任务。
每人完成各项任务时间如表所示。
由于任务数多于人数,故规定其中有一个人可兼完成两项任务,其余三人每
五.用动态规划的方法求下列网络图从起点到终点的最短路线及长度。