步进电机驱动及控制技术解答
- 格式:doc
- 大小:38.00 KB
- 文档页数:4
步进电机控制方法及编程实例
步进电机在现代自动化控制系统中广泛应用,其精准的位置控制和相对简单的驱动方式使其成为许多工业和家用设备中的理想选择。
本文将介绍步进电机的控制方法及编程实例,帮助读者更好地理解和应用这一技术。
步进电机的基本原理
步进电机是一种将电能转换为机械能的电机,其运行原理基于磁场相互作用。
步进电机内部包含多个电磁线圈,根据电流方向和大小的不同来控制转子的运动。
通过逐个激活线圈,可以实现步进电机的准确位置控制,使其能够按照指定的步长旋转。
步进电机的控制方法
1.单相激励控制:最简单的步进电机控制方式之一。
通过依次激活每一相的线圈,
使电机按照固定步长旋转。
这种方法控制简单,但稳定性较差。
2.双相正交控制:采用两相电流的正交控制方式,提高了步进电机的稳定性和精
度。
可以实现正向和反向旋转,常用于对位置要求较高的应用场景。
3.微步进控制:将步进电机每个步进细分为多个微步进,以提高控制精度和减小振
动。
虽然增加了控制复杂度,但可以获得更平滑的运动和更高的分辨率。
步进电机的编程实例
下面以Python语言为例,演示如何通过控制步进电机的相序来实现简单的旋转控制。
通过以上代码,可以实现对步进电机的简单控制,按照设定的相序进行旋转,实现基本的位置控制功能。
结语
步进电机是一种常用的精准位置控制设备,掌握其控制方法和编程技巧对于工程师和爱好者来说都是有益的。
希望本文介绍的步进电机控制方法及编程实例能够帮助读者更好地理解和应用这一技术。
步进电动机的驱动和控制技术步进电动机的驱动和控制技术步进电动机与交直流电动机不同之处是,仅仅接上供电电源它是不会运行的,图11.29表示步进电动机的驱动和控制系统的基本组成。
该系统包括步进电动机、脉冲发生器、脉冲分配器、功率放大器以及直流功率电源等五个部分。
较复杂的驱动控制系统带有位置反馈的环节,组成闭环系统。
脉冲发生器和脉冲分配器脉冲发生器是产生步进电动机角位移或速度的控制脉冲电路。
步进电动机运行的转角或转速由脉冲发生器的脉冲频率(Hz或脉冲/s)所确定。
步进电动机的转角正比于输入的脉冲数,对应于脉冲信号数量,它是频率和时间的乘积。
例如一个步距角为1.8。
的步进电动机要旋转90°,则根据1.8×N=90,得到脉冲信号数量N=50。
θ=Nθ0式中θ-转角(°);N-脉冲个数;θ0-步距角(°/步)。
步进电动机的步距角是由其设计结构决定的,在以一般方式运行时,步进电动机的转角只能是步距角的整数倍,因此在设计步进电动机驱动系统时,必须考虑其步距角。
由硬件制作的脉冲发生器电路不胜枚举,学过数字电路的读者应该比较熟悉。
在当前微处理器大量渗透传动技术的形势下,利用微处理器的软硬件资源实现脉冲发生器的功能也是很容易的,在第12章中将对此有所介绍。
脉冲分配器是时序逻辑电路的一种,它接受脉冲发生器的控制脉冲信号,输出按一定时序排列的多路电平信号。
通常电机的脉冲分配器为环形分配器,即时序按环形移位封闭排列。
脉冲分配器的工作方式是与步进电动机的相数、拍数、运行状态、正反转等要求有关。
脉冲分配器可以由分立元件组成数字电路,但较复杂、可靠性差。
目前,脉冲分配器大多采用专用集成电路来组成,以完成各种脉冲分配方式。
PMM8713是一个16引脚的专门用于步进电机脉冲分配的集成电路芯片,具有把时钟脉冲分配给三相或四相绕组的功能,其原理图见图11.30。
它有六种脉冲分配方式可供选择(三相三种,四相三种)。
步进电机驱动及控制技术解答1.步进电机为什么要配步进电机驱动器才能工作?步进电机作为一种控制精密位移及大范围调速专用的电机, 它的旋转是以自身固有的步距角角(转子与定子的机械结构所决定)一步一步运行的, 其特点是每旋转一步,步距角始终不变,能够保持精密准确的位置。
所以无论旋转多少次,始终没有积累误差。
由于控制方法简单,成本低廉,广泛应用于各种开环控制。
步进电机的运行需要有脉冲分配的功率型电子装置进行驱动, 这就是步进电机驱动器。
它接收控制系统发出的脉冲信号,按照步进电机的结构特点,顺序分配脉冲,实现控制角位移、旋转速度、旋转方向、制动加载状态、自由状态。
控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。
步进电机的转速与脉冲信号的频率成正比。
角位移量与脉冲个数相关。
步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。
步进电机驱动器必须与步进电机的型号相匹配。
否则将会损坏步进电机及驱动器。
2.什么是驱动器的细分?运行拍数与步距角是什么关系?“细分”是针对“步距角”而言的。
没有细分状态,控制系统每发一个步进脉冲信号,步进电机就按照整步旋转一个特定的角度。
步进电机的参数,都会给出一个步距角的值。
如110BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这是步进电机固有步距角。
通过步进电机驱动器设置的细分状态,步进电机将会按照细分的步距角旋转位移角度,从而实现更为精密的定位。
以110BYG250A电机为例,列表说明:可以看出,细分数就是指电机运行时的真正步距角是固有步距角(整步)的几分指一。
例如,驱动器工作在10细分状态时,其步距角只有步进电机固有步距角的十分之一。
当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,步进电机旋转1.8°;而用细分驱动器工作在10细分状态时,电机只转动了0.18°。
步进电机驱动器及细分控制原理引言:步进电机是一种将电脉冲信号转化为机械转动的电动机。
步进电机驱动器是一种用于控制步进电机旋转的设备。
步进电机可以通过控制驱动器提供的电流和脉冲信号来精确地控制旋转角度和速度。
本文将介绍步进电机驱动器的工作原理以及细分控制的原理。
一、步进电机驱动器的工作原理:1.输入电流转换:驱动器将输入的电流信号转换为电压信号。
电流信号通常由控制器产生,通过选择合适的电阻来控制输入电流的大小。
2.逻辑控制:驱动器还会接收来自控制器的脉冲信号。
这些脉冲信号会相互间隔地改变驱动器输出的电压,从而驱动步进电机旋转。
脉冲信号的频率和脉冲数量会影响步进电机的转速和旋转角度。
3.输出电压控制:驱动器会根据输入的电流和脉冲信号控制输出的电压,使其适应步进电机的工作要求。
输出电压的频率和脉冲数有助于控制步进电机旋转的速度和角度。
二、细分控制原理:细分控制是指通过控制驱动器输出的电压脉冲信号来实现更精确的步进电机控制。
细分控制可以将步进电机的每个脉冲细分成更小的步进角度,从而提高步进电机的转动分辨率。
1.脉冲信号细分:通过改变驱动器的输出脉冲信号频率和脉冲数来实现脉冲信号的细分。
例如,如果驱动器输入100个脉冲,但只输出50个脉冲给步进电机,那么每个输入的脉冲就会分为两个输出脉冲,步进电机的旋转角度将更精确。
2.电流细分:通过改变驱动器输出的电流大小来实现电流的细分。
通常情况下,驱动器的输出电流会根据步进电机的转动需要进行控制。
细分控制可以使驱动器能够实现更精确的电流控制,进而控制步进电机的转动精度。
3.微步细分:微步细分是一种更高级的细分控制方法,通过改变驱动器输出的电压波形进行微步细分。
微步细分将步进电机的每个步进角度再次细分为更小的角度,进一步提高了步进电机的转动分辨率和平滑性。
总结:步进电机驱动器是通过将控制器产生的电流和脉冲信号转换为驱动步进电机的电压信号的设备。
细分控制是通过改变驱动器输出的电流和脉冲信号来实现更精确的步进电机控制。
《步进电机驱动控制技术及其应用设计研究》篇一一、引言步进电机是一种通过输入脉冲序列来驱动转动的电机,其运动方式为离散化的步进动作。
步进电机广泛应用于精密定位、速度控制以及数字化系统等场景。
本文将针对步进电机驱动控制技术及其应用设计进行研究,深入探讨其原理、特点以及在各个领域的应用。
二、步进电机驱动控制技术原理步进电机主要由定子、转子和驱动器三部分组成。
定子上有多个磁极,转子则由多个磁性材料制成的齿组成。
驱动器根据输入的脉冲序列,控制定子上的电流变化,从而产生旋转磁场,使转子按照一定的方向和角度进行转动。
步进电机驱动控制技术主要包括以下几种:1. 恒流驱动技术:通过恒流源对步进电机进行驱动,保证电机在不同负载和转速下均能保持稳定的运行状态。
2. 微步技术:通过精细控制驱动器的脉冲序列,使步进电机在每个方向上实现微小角度的转动,从而提高电机的定位精度和运行平稳性。
3. 环形分布电流技术:通过对定子上的磁极进行环形分布电流的控制,实现对步进电机的持续运动控制,使得步进电机的转动更为流畅和准确。
三、步进电机驱动控制技术的应用设计步进电机驱动控制技术在各个领域有着广泛的应用,主要包括以下几个方面:1. 精密定位系统:步进电机的高精度定位能力使得其在精密定位系统中得到广泛应用,如数控机床、精密测量仪器等。
通过微步技术和环形分布电流技术的应用,可以实现高精度的定位和运动控制。
2. 速度控制系统:步进电机在速度控制系统中也有着重要的应用,如打印机、电动阀等。
通过调整脉冲序列的频率和占空比,可以实现对电机转速的精确控制。
3. 数字化系统:步进电机在数字化系统中也有着广泛的应用,如数字标牌、机器人等。
通过将步进电机的运动与数字信号进行映射,可以实现数字化的运动控制和显示功能。
四、应用设计实例分析以数控机床为例,分析步进电机驱动控制技术的应用设计。
数控机床是一种高精度的加工设备,其运动控制系统对加工精度和效率具有重要影响。
步进电机、步进电机驱动器常见问题解答步进电机、步进电机驱动器常见问题解答1.什么是步进电机,什么是步进电机驱动器?步进电机是⼀种作为控制⽤的特种电机, 它的旋转是以固定的⾓度(称为“步距⾓”)⼀步⼀步运⾏的, 其特点是没有积累误差, 所以⼴泛应⽤于各种开环控制。
步进电机的运⾏要有⼀电⼦装置进⾏驱动, 这种装置就是步进电机驱动器, 它是把控制系统发出的脉冲信号转化为步进电机的⾓位移, 或者说: 控制系统每发⼀个脉冲信号, 通过驱动器就使步进电机旋转⼀步距⾓。
所以步进电机的转速与脉冲信号的频率成正⽐。
所以,控制步进脉冲信号的频率,可以对电机精确调速;控制步进脉冲的个数,可以对电机精确定位⽬的。
2.什么是驱动器的细分?什么是运⾏拍数?步距⾓如何计算?要了解“细分”,先要弄清“步距⾓”这个概念:它表⽰控制系统每发⼀个步进脉冲信号,电机所转动的⾓度。
电机出⼚时给出了⼀个步距⾓的值,如86BYG250A型电机给出的值为0.9°/1.8°(表⽰半步⼯作时为0.9°、整步⼯作时为1.8°),这个步距⾓可以称之为…电机固有步距⾓?,它不⼀定是电机实际⼯作时的真正步距⾓,真正的步距⾓和驱动器有关,参见下表(以86BYG250A电机为例):简单地讲,细分数就是指电机运⾏时的真正步距⾓是固有步距⾓(整步)的⼏分指⼀。
从上表可以看出:驱动器⼯作在10细分状态时,其步距⾓只为…电机固有步距⾓?的⼗分之⼀,也就是说:当驱动器⼯作在不细分的整步状态时,控制系统每发⼀个步进脉冲,电机转动1.8°;⽽⽤细分驱动器⼯作在10细分状态时,电机只转动了0.18°,这就是细分的基本概念。
更为准确地描述驱动器细分特性的是运⾏拍数,运⾏拍数指步进电机运⾏时每转⼀个齿距所需的脉冲数。
86BYG250A 电机有50个齿,如果运⾏拍数设置为160,那么步进电机旋转⼀圈总共需要50×160=8000步;对应步距⾓为360°÷8000=0.045°。
步进电机控制方法步进电机是一种特殊的电机,它通过控制电流的方向和大小来实现精确的位置控制。
在实际应用中,步进电机的控制方法有多种,下面将介绍几种常见的步进电机控制方法。
首先,最常见的步进电机控制方法是单相激励控制。
这种方法通过交替改变单相绕组的电流方向,来驱动步进电机旋转。
单相激励控制简单、成本低廉,适用于一些对精度要求不高的场合。
但是,由于只有单相绕组工作,所以步进电机的扭矩较小,不适用于一些需要承受大负载的场合。
其次,双相激励控制是另一种常见的步进电机控制方法。
这种方法通过交替改变两相绕组的电流方向,来驱动步进电机旋转。
双相激励控制相比单相激励控制,可以提供更大的扭矩,适用于一些需要承受大负载的场合。
但是,双相激励控制相对复杂一些,成本也会略高一些。
此外,微步进控制是一种更加精细的步进电机控制方法。
这种方法通过在步进电机每一个步进角度内,对电流进行微小的变化,来实现步进电机的平滑旋转。
微步进控制可以提供更高的分辨率和更平滑的运动,适用于一些对精度要求较高的场合。
但是,微步进控制相对复杂,对控制系统的要求也更高。
最后,闭环控制是一种更加精确的步进电机控制方法。
这种方法通过在步进电机上添加位置传感器,实时监测步进电机的位置,并根据实际位置调节电流,来实现更加精确的位置控制。
闭环控制可以有效地减小步进电机的失步现象,提高控制精度,适用于一些对控制精度要求极高的场合。
但是,闭环控制的成本和复杂度都较高。
综上所述,步进电机的控制方法有单相激励控制、双相激励控制、微步进控制和闭环控制等多种。
在实际应用中,需要根据具体的需求和条件选择合适的控制方法,以实现最佳的控制效果。
同时,随着控制技术的不断发展,步进电机的控制方法也在不断创新和完善,为各种应用场合提供更加灵活、精确的控制方案。
步进电机的驱动原理步进电机的驱动原理主要包括两种类型,开环控制和闭环控制。
开环控制是指通过控制电流的大小和方向来驱动步进电机,而闭环控制则是在开环控制的基础上增加了位置反馈系统,以实现更精确的位置控制。
首先,我们来看一下开环控制的驱动原理。
在开环控制中,步进电机的驱动器通过控制电流的大小和方向来控制电机的转动。
通常情况下,步进电机的驱动器会根据预先设定的步进角度和速度来控制电流的大小和方向,从而驱动电机按照预定的路径和速度进行转动。
开环控制的优点是结构简单、成本低廉,适用于一些对位置精度要求不高的应用场景。
而闭环控制则是在开环控制的基础上增加了位置反馈系统。
通过在步进电机上安装位置传感器,可以实时监测电机的位置,并将反馈信息传输给驱动器,从而实现更精确的位置控制。
闭环控制的优点是能够克服步进电机本身存在的一些缺点,如失步、共振等问题,提高了系统的稳定性和精度。
除了控制方式的不同,步进电机的驱动原理还与电机的类型密切相关。
常见的步进电机包括单相、双相和三相步进电机,它们的驱动原理略有不同。
单相步进电机通常采用双极性驱动方式,即通过改变电流的方向来控制电机的转向;双相步进电机则采用四相驱动方式,通过控制两对线圈的电流来实现电机的转动;而三相步进电机则采用六相驱动方式,通过控制三对线圈的电流来驱动电机。
不同类型的步进电机有不同的驱动原理,因此在实际应用中需要根据具体情况选择合适的电机类型和驱动方式。
总的来说,步进电机的驱动原理涉及到开环控制和闭环控制两种方式,以及不同类型电机的具体驱动方式。
在实际应用中,需要根据具体的需求和场景选择合适的驱动方式和电机类型,以实现更精准、稳定的位置控制。
希望本文能够帮助读者更好地理解步进电机的驱动原理,为实际应用提供一定的参考价值。
步进电机的原理及控制方法步进电机是一种常见的电机类型,具有精准定位、简单控制等优点,在许多应用领域得到广泛应用。
本文将介绍步进电机的工作原理以及常见的控制方法。
1. 工作原理步进电机是一种将电脉冲信号转换为机械位移的电机。
其工作原理基于磁场相互作用,根据电磁学原理可分为单相和双相两种类型。
1.1 单相步进电机单相步进电机由定子和转子两部分组成,定子上绕有线圈,通电时产生磁场。
转子上装有磁性材料,根据两者之间磁场相互作用来实现旋转。
1.2 双相步进电机双相步进电机比单相步进电机更常见,其定子上有两组线圈,通电时可以产生不同方向的磁场,从而实现精确的步进运动。
2. 控制方法步进电机的控制方法主要包括开环控制和闭环控制两种。
2.1 开环控制开环控制是指通过给步进电机提供一定频率和脉冲数的信号来实现旋转运动,但无法保证绝对的位置精准度。
这种方法简单易实现,适用于一些对位置要求不高的应用场景。
2.2 闭环控制闭环控制通过在步进电机系统中加入位置反馈传感器,实时监测电机位置并与设定位置进行比较,从而调整控制信号以实现精确的位置控制。
闭环控制能够提高系统的稳定性和精度,适用于对位置要求较高的应用。
3. 应用领域步进电机在许多领域得到广泛应用,如打印设备、数控机床、医疗设备等。
其精准性和简单控制特点使其成为自动化设备中重要的驱动元件。
结语步进电机作为一种重要的电机类型,具有独特的工作原理和控制方法,为许多自动化设备的驱动提供了可靠保障。
通过深入了解步进电机的原理和控制方法,可以更好地应用于实际场景中,发挥其优势,实现精准的位置控制和运动控制。
步进电机驱动器及细分控制原理(最全)word资料步进电机驱动器及细分控制原理步进电机驱动器原理:步进电机必须有驱动器和控制器才能正常工作。
驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电。
以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为AABB A A B B,其四个状态周而复始进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为AA B BA A BB,电机就逆时针转动。
随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。
其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。
重复上述过程,使绕组电流的平均值恒定,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。
步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、加速度越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力距越大。
细分控制原理:在步进电机步距角不能满足使用要求时,可采用细分驱动器来驱动步进电机。
细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。
定子A转子SNB B BSNA A(a(bAS NB B N S BS NA(c(d图3.2步进电机细分原理图仍以二相步进电机为例,当A、B相绕组同时通电时,转子将停在A、B相磁极中间,如图3.2。
若通电方向顺序按AA AABB BB BB AA AA AA BB BB BB AA,8个状态周而复始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。
上海昀研自动化科技有限公司自2004年起致力于三相混合式步进电机及驱动器的开发,42系列低压三相混合式步进电机,57系列低压、高压三相混合式步进电机,86系列低压、高压三相混合式步进电机,110、130系列高压三相混合式步进电机,YK3605MA,TK3411MA,YK3822MA,YKA3722MA等多款产品已成功应用于市场。
上海昀研自动化科技有限公司生产的三相混合式步进电机采用交流伺服原理工作,转子和定子的直径比高达50%,高速时工作扭矩大,低速时运行极其平稳,几乎无共振区。
其配套驱动器YK3822MA具有单相220V/50Hz输入,三相正弦输出,输出电流可设置,具有十细分和半流额定值60%功能;控制方式灵活,有“脉冲+方向控制”,也有“正转脉冲+反转脉冲”控制方式;有过热保护功能,因此使用起来十分的方便。
1.前言步进电机是一种开环伺服运动系统执行元件,以脉冲方式进行控制,输出角位移。
与交流伺服电机及直流伺服电机相比,其突出优点就是价格低廉,并且无积累误差。
但是,步进电机运行存在许多不足之处,如低频振荡、噪声大、分辨率不高等,又严重制约了步进电机的应用范围。
步进电机的运行性能与它的驱动器有密切的联系,可以通过驱动技术的改进来克服步进电机的缺点。
相对于其他的驱动方式,细分驱动方式不仅可以减小步进电机的步距角,提高分辨率,而且可以减少或消除低频振动,使电机运行更加平稳均匀。
总体来说,细分驱动的控制效果最好。
因为常用低端步进电机伺服系统没有编码器反馈,所以随着电机速度的升高其内部控制电流相应减小,从而造成丢步现象。
所以在速度和精度要求不高的领域,其应用非常广泛。
因为三相混合式步进电机比二相步进电机有更好的低速平稳性及输出力矩,所以三相混合式步进电机比二相步进电机有更好应用前景。
传统的三相混合式步进电机控制方法都是以硬件比较器完成,本文主要讲述使用DSP及空间矢量算法SVPWM来实现三相混合式步进电机控制。
C N C 主要内容7.2 步进电机及其驱动控制系统主要内容:•步进电机的原理;•主要性能参数;•步进驱动的特点;•驱动控制:环形分配器,功放电路。
要求:在掌握原理基础上,注重围绕应用了解各型电机的特点、性能参数、功放电路。
主要内容定义:步进电机是一种脉冲控制的执行元件,将电脉冲转化为角位移。
每给步进电机输入一个脉冲,其转轴就转过一个角度,称为步距角。
✓脉冲数量----位移量;✓脉冲频率----电机转速;✓脉冲相序----方向。
组成:由步进电机驱动电源和步进电机组成,没有反馈环节,属于开环位置控制系统。
7.2.1 步进电机概述主要内容优点:结构简单,价格便宜,工作可靠;缺点:–容易失步(尤其在高速、大负载时),影响定位精度;–在低速时容易产生振动;–细分技术的应用,明显提高了定位精度,降低了低速振动。
应用:要求一般的开环伺服驱动系统,如经济型数控机床、和电加工机床、计算机的打印机、绘图仪等设备。
步进电动机的分类按运动方式分:旋转式、直线运动式、平面运动式和滚切运动式。
按工作原理分:反应式(磁阻式)、电磁式、永磁式、混合式。
按结构分:单段式(径向式)、多段式(轴向式),印刷绕组式。
按相数分:三相、四相、五相、六相和八相等。
按使用频率分:高频步进电动机和低频步进电动机。
(1) 反应式步进电动机极与极之间的夹角为60°,每个定子磁极上均匀分布了五个齿,齿槽距相等,齿距角为9°。
转子铁心上无绕组,只有均匀分布的40个齿,齿槽距相等,齿距角为360°/40=9°。
单段式的结构:三相反应式步进电动机。
定子铁心上有六个均匀分布的磁极,沿直径相对两个极上的线圈串联,构成一相励磁绕组。
特点:转子无绕组,定转子开小齿、步距小;应用最广。
7.2 步进电机及其驱动控制系统C N C(2) 永磁式步进电动机工作原理:转子或定子一方具有永久磁钢,另一方有软磁材料制成,由绕组轮流通电产生的磁场与永久磁钢相互作用,产生转矩是转子转动。
步进电机驱动及控制技术解答
1.步进电机为什么要配步进电机驱动器才能工作?
步进电机作为一种控制精密位移及大范围调速专用的电机, 它的旋转是以自身固有的步距角角(转子与定子的机械结构所决定)一步一步运行的, 其特点是每旋转一步,步距角始终不变,能够保持精密准确的位置。
所以无论旋转多少次,始终没有积累误差。
由于控制方法简单,成本低廉,广泛应用于各种开环控制。
步进电机的运行需要有脉冲分配的功率型电子装置进行驱动, 这就是步进电机驱动器。
它接收控制系统发出的脉冲信号,按照步进电机的结构特点,顺序分配脉冲,实现控制角位移、旋转速度、旋转方向、制动加载状态、自由状态。
控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。
步进电机的转速与脉冲信号的频率成正比。
角位移量与脉冲个数相关。
步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。
步进电机驱动器,必须与步进电机的型号相匹配。
否则,将会损坏步进电机及驱动器。
2.什么是驱动器的细分?运行拍数与步距角是什么关系?
“细分”是针对“步距角”而言的。
没有细分状态,控制系统每发一个步进脉冲信号,步进电机就按照整步旋转一个特定的角度。
步进电机的参数,都会给出一个步距角的值。
如110BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这是步进电机固有步距角。
通过步进电机驱动器设置的细分状态,步进电机将会按照细分的步距角旋转位移角度,从而实现更为精密的定位。
以110BYG250A电机为例,列表说明:
电机固有步
距角运行拍
数
细分数电机运行时的真正步距角
0.9°/1.8°82细分,
即半步状
态
0.9°
0.9°/1.8°20
5细分状
态
0.36°
0.9°/1.8°40
10细分
状态
0.18°
0.9°/1.8°80
20细分
状态
0.09°
0.9°/1.8°160
40细分
状态
0.045°
可用看出,细分数就是指电机运行时的真正步距角是固有步距角(整步)的几分指一。
例如,驱动器工作在10细分状态时,其步距角只有步进电机固有步距角的十分之一。
当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,步进电机旋转1.8°;而用细分驱动器工作在10细分状态时,电机只转动了0.18°。
其实,细分就是步进电机按照微小的步距角旋转,也就是常说的微步距控制。
当然,不同的场合,有不同的控制要求。
并不是说,驱动步进电机必须要求细分。
有些步进电机的步距角设计为3.6°、7.5°、15°、36°、180°,就是为了加大步距角,以适应特殊的工况条件。
细分功能,只是是由驱动器采用精确控制步进电机的相电流方法,与步进电机的步距角无关,而与步进电机实际工作状态相关。
运行拍数与驱动器细分的关系是:运行拍数指步进电机运行时每转一个齿距所需的脉冲数。
例如:110BYG250A电机有50个齿,如果运行拍数设置为160,那么步进电机旋转一圈总共需要50×160=8000步;对应步距角为360°÷8000=0.045°。
这
就是驱动器设置为40细分状态。
对于用户来说,没有必要去计算几步几拍,这是生产厂家配套的事情。
用户只要知道:控制系统所发出的脉冲率数,除以细分数,就是步进电机整步运行的脉冲数。
例如:步进电机的步距角为1.8°时,每秒钟200个脉冲,步进电机就能够在一秒钟内旋转一圈;当驱动器设置为40细分状态,步进电机每秒钟旋转一圈的脉冲数,就要给到8000个。
3.驱动器细分有什么好处?
步进电机驱动器采用细分功能,能够消除步进电机的低频共振(震荡)现象,减少振动,降低工作噪音。
随着驱动器技术的不断提高,当今,步进电机在低速工作时的噪音已经与直流电机相差无几。
低频共振是步进电机(尤其是反应式电机)的固有特性,只有采用驱动器细分的办法,才能减轻或消除。
利用细分方法,又能够提高步进电机的输出转矩。
驱动器在细分状态下,提供给步进电机的电流显得“持续、强劲”,极大地减少步进电机旋转时的反向电动势。
驱动器的细分功能,改善了步进电机工作的旋转位移分辨率。
因此,步进电机的步距角,就没有必要做得更小。
选择现有的常规标准步距角的步进电机,配置40细分以下的驱动器,就能够完成精密控制任务。
由于步进电机步距角的原因,驱动器的细分数再加大,已经没有实际意义。
通常,选择5、8、10、20细分,就能够适应各种工控要求。
5.四相六根和八根线的,如何使用两相四线驱动器?
四相混合式步进电机,可以认为是二相混合式步进电机。
多组线圈多个抽头,是为了适应不同工控条件而设计的。
由于步进电机的线圈,与转速、转矩有着密切的关系。
高速与低速工作的步进电机参数有所不同。
通常,高速步进电机的电感要求小
一点,低速工作时要求大一点的电感量。
但是,这也不是绝对的。
更多的实际应用,还考虑权衡其它众多相关因素。
下面就几种步进电机的线圈绕组及出线,采用双极性驱动器,说明接线方法:
两相四线电机:1和2为一相,分别接A和/A;3和4为一相,分别接B和/B。
参考下图:
四相六线电机,两种方法接线:
一、1和2为一相,分别接A和/A;5和6为一相,分别接B和/B。
3和4不用,分别悬空(不要相连)。
二、1、3为一相,定义A、/A;4、6为一相,定义为B、/B。
2和5分别悬空不用(不要相连)。
参考下图:
四相八线电机,有两种接法。
并联接法:1和3相连,2和4相连,分别接A和/A;5和7相连,6和8相连,
分别接B和/B。
串联接法:1和4为一相,分别接A和/A;2、3连接好不用;5、8为一相,分别接B、/B,6、7连接好不用。