贝类毒素
- 格式:ppt
- 大小:1001.00 KB
- 文档页数:31
贝类毒素资料中文名称:贝类毒素英文名称:shellfish toxin定义:贝类动物因摄取有毒藻类而在体内积累的毒素。
一、生物学名称:贝类中毒是由一些浮游藻类合成的多种毒素而引起的,这些藻类(在大多数病例中为腰鞭毛虫,可引起赤潮)是贝类的食物。
这些毒素在贝类中蓄积,有时被代谢。
其中有20种毒素可引起麻痹性贝类中毒(PSP),它们都是蛤蚌毒素的衍生物。
而腹泻性贝类中毒(DSP)则大概是由一组高分子量的聚醚引起,这些聚醚包括冈田酸,甲藻毒素,pettenotoxins,和yessotoxin。
而一类叫做短菌毒素的聚醚可引起神经毒性贝类中毒(NSP)。
失忆性贝类中毒(ASP)是由特殊的氨基酸、软骨藻酸引起,它们是贝类污染物。
二、疾病名称:贝类中毒的类型:麻痹性贝类中毒(PSP)、腹泻性贝类中毒(DSP)、神经毒性贝类中毒(NSP)、失忆性贝类中毒(ASP)。
三、疾病特征:食用了被污染的贝类可以产生各种症状,这取决于毒素的种类、它们在贝类中的浓度、和食用被污染贝类的量。
在麻痹性贝类中毒的病例中,临床表现多为神经性的,包括麻刺感,烧灼感,麻木,嗜睡,语无伦次,和呼吸麻痹。
而DSP,NSP和ASP的症状更加不典型。
DSP一般表现为较轻微的胃肠道紊乱,如恶心、呕吐、腹泻、和腹痛并伴有寒战、头痛和发热。
NSP既有胃肠道症状又有神经症状,包括麻刺感和口唇、舌头、喉部麻木,肌肉痛,眩晕,冷热感觉颠倒,腹泻,和呕吐。
ASP表现为胃肠道紊乱(呕吐,腹泻,腹痛)和神经系统症状(辨物不清,记忆丧失,方向知觉的丧失,癫痫发作,昏迷)。
四、引起疾病的相关食物:所有的贝类(滤食性软体动物)都有潜在的毒性。
但是,PSP一般与贻贝(海虹)、蛤蜊、扇贝、和干贝有关;NSP与从佛罗里达海岸和墨西哥湾捕捞的贝类有关;DSP与贻贝(海虹)、牡蛎、和干贝有关,而ASP与贻贝(海虹)有关。
发病率:因为对贝类中毒的发生及其严重性没有比较好的统计学资料,所以没有办法得到这类疾病的真正发病率。
贝毒有哪些检验方法贝类毒素又称赤潮生物毒素,是由赤潮生物产生的一系列天然活性物质。
对其贝毒需要了解其检验工作,那么贝毒有哪些检验方法?给大家详细的讲解一下。
贝毒一共有4种检验方法,1、生物检测法二十世纪五十年代,小白鼠生物学方法被首先采用于测定PSP 和NSP的毒性。
该方法是经过一系列的前处理过程(针对水溶性或脂溶性的毒素),将确定为有毒性的部分按不同剂量注射到实验用纯品系的小白鼠腹腔内,观察小白鼠的中毒情况,通过半致死浓度等指标,将致死的鼠单位(Mu)换算成毒素含量。
小白鼠生物学检测法在未知贝毒的发现和研究过程中发挥了巨大作用,在化学方法没有建立以前,作为贝毒检测的常规方法而得到了非常广泛的应用,目前世界上大约有81%的国家采用该方法检测DSP 和PSP,对于NSP和ASP 的检测有的国家仍用该方法。
我国目前也采用该方法对贝毒实施检测。
但该方法存在着很多不足和缺陷,例如:仅能指出毒性的大小,无法确定毒素的组成和含量;所测得的毒性和小鼠的品系有关,可比性较差,必须进行标准毒素的校准才有可能相比;毒性测定结果的重复性差;毒性测试所需时间长;需要受过专门训练的操作人员;小鼠维持费用较高;对很多脂溶性毒素来说,过多的干扰基质很容易造成假阳性和假阴性;另外,由于动物保护主义的反对,越来越需要其他的方法来替代它。
2、免疫分析法免疫分析法,如ELISA (酶联免疫吸附检测)、RIA(放射免疫分析)、EIA (竞争性酶免疫分析) 以及S-PIA(固态免疫珠检测),是以抗原-抗体特异性反应原理为基础,将毒素作为抗原注射到兔子等实验动物体内使其产生专一性抗体,然后从其血清中提取抗体,用放射性或荧光物质进行标记,将提取的贝毒或贝类匀浆组织暴露于标记物中,通过检测抗血清-抗原混合物中放射性或荧光强度以测定样品中毒素含量的方法。
通常采用的方法为ELISA,酶联免疫方法便宜、快速,适合处理大批量样品,它不需要非常复杂和昂贵的设备,并能够实现自动化。
S h u i c h a n y u y e在海洋生物毒素中,贝类毒素的危害十分显著,贝类滤食海洋中产毒水藻,在不断积累后形成的毒素就是所谓的贝类毒素。
将中毒症状和藻原差异作为依据,可以将贝类毒素分为多个类型,分别为麻痹性贝类毒素、腹泻类贝类毒素、神经性贝类毒素等。
其中,麻痹类毒素发生频率最高,且危害性极强,因此对此项课题进行研究,具有十分重要的意义。
一、麻痹性贝类毒素的来源Meyer等人是最早记录麻痹性贝类毒素中毒事件的国外学者,他们发现患者均在中毒之前食用了贻贝,但却无法明确贻贝的毒性来源。
之后,相关领域学者将精力逐渐投入到了麻痹性贝类毒素来源研究之中,截止至今,大量研究结果表明,贻贝中麻痹性贝类毒素主要来源于海洋甲藻,如亚历山大藻属、巴哈马麦甲藻和链状裸甲藻等,另有一些研究结果表明,淡水蓝细菌同样是麻痹性贝类的毒素来源。
这些藻类所产生的毒素非常低,直接食用不会对人类造成过多的危害,但在被其他海洋生物食用后,这些毒素就会在这些生物体内不断积累,一旦这些生物被人类所食用,就会引发中毒症状。
此外,部分有毒甲藻孢囊也会携带大量的麻痹性贝类毒素,并且在毒性上远超过活体细胞。
二、麻痹性贝类毒素的形成研究本文会通过试验的方式,对麻痹性贝类毒素的形成规律进行研究,如下:1、材料①贻贝来源本次试验所选的样品数量为个,采集自旅顺口区铁山街道柏岚子海域,鲜品采集后快速转移到实验室。
②藻株来源藻株来源主要为无棣绿奇生物公司生产的高密度浓缩液,其主要成分为小球藻。
2、实验方法①贻贝养殖在贻贝被运到实验室后,使用人工海水对其进行冲洗,在清除表面泥沙和杂质的同时,将死亡和受损的贻贝剔除,然后把剩余的贻贝全部放置在玻璃缸中,使其正面朝上,个体之间相互独立,放置数量为。
在放置之前,还需将海水加入到玻璃缸之中,并保持水体的有效循环,通过制氧装置的使用,避免贻贝因缺氧而死亡。
考虑到贻贝对水温的要求较高,需使用加热棒将水温加热到24摄氏度,养殖时间暂定为天,在养殖期间,需要每天喂食小球藻,喂食量为贻贝1%组织干重细胞的生物量,确保贻贝能够获得生存物质,同时,将贻贝中可能含有的麻痹性贝类毒素消除。
导读:贝类毒素及其贝类毒素检测的研究,摘要:贝类中毒是由一些浮游藻类合成的多种毒素而引起的,这些藻类是贝类的食物,这些毒素在贝类中蓄积,通过生物测定、物理分析、免疫化学可测定贝类毒素,赤潮毒素对人类造成的危害事件日益增多,贝类毒素属于海洋天然高分子有机化合物,它的形成与海洋中有毒素藻类赤潮密切相关,经过生物积累和放大转化为有机毒素,即贝类毒素,因此开展对贝类毒素的研究对人类有重要意义,1贝类毒素贝类(南京财经大学食品科学与工程学院,江苏南京,210000)摘要:贝类中毒是由一些浮游藻类合成的多种毒素而引起的,这些藻类是贝类的食物,这些毒素在贝类中蓄积。
通过生物测定、物理分析、免疫化学可测定贝类毒素。
关键词:贝类;毒素;检测;藻类;毒理效应;化学分析。
Shellfish poison and shellfish toxin detection research(Nanjing University of Finance and Economics Institute of Food Science and Engineering,Nanjing 21000,Nanjing,China) Abstract: shellfish poisoning is by some planktonic algae synthesis of a variety of toxin and cause, these algae is shellfish food, the poison in the shellfish accumulation. Through the bioassay, physical analysis, immune chemical measurement shellfish poison.Keywords: Shellfish; Poison; Detection; Algae, Toxicological effect; Chemical analysis. 20世纪50年代以后,海洋赤潮频繁,赤潮毒素对人类造成的危害事件日益增多。
液相色谱-高分辨质谱测定贝类中虾夷扇贝毒素贝类中的虾夷扇贝毒素是一种存在于海产品中的天然毒素,可导致贝壳中毒。
为了确保贝类产品的食品安全,准确测定虾夷扇贝毒素的含量非常重要。
本文将介绍一种液相色谱-高分辨质谱(LC-HRMS)技术,该技术可用于测定贝类中虾夷扇贝毒素的含量。
液相色谱-高分辨质谱是一种结合了液相色谱和高分辨质谱的技术,可用于分离和鉴定样品中的化合物。
在测定虾夷扇贝毒素含量时,首先需要提取样品中的毒素。
提取方法可以选择使用甲醇或乙腈等有机溶剂,将样品加入溶剂中,超声处理一段时间,然后离心沉淀,取上层液体进行进一步分析。
提取得到的样品溶液可通过液相色谱进行分析。
液相色谱中使用的固定相通常是高效液相色谱柱,根据特定的条件,贝类毒素的化合物会被分离出来。
为了提高分离效果,可以使用多级梯度洗脱,调节流动相的pH值和溶剂的成分,以达到最佳分离结果。
在分离之后,需要使用高分辨质谱对分离出来的化合物进行鉴定和定量。
高分辨质谱通常使用电喷雾离子化技术(ESI)或大气压化学电离技术(APCI)来离子化样品。
离子化后的化合物会进入质谱仪中,通过质谱仪的检测器得到离子的质荷比。
根据不同的质荷比和质谱的计数,可以确定不同化合物的存在和含量。
液相色谱-高分辨质谱技术具有许多优点,如分离能力强、准确度高、前处理简单等。
该技术还可以同时测定多种毒素,节省了时间和资源。
在使用液相色谱-高分辨质谱技术测定贝类中虾夷扇贝毒素的含量时,需要注意以下几点。
选择合适的样品处理方法和提取方法。
不同的样品可能需要不同的处理方法,以获得最佳的提取效果。
选择合适的液相色谱柱和质谱仪器,以获得最佳的分离效果和检测灵敏度。
根据样品的特殊要求和法规,确定分析的准确性和准确度要求。
液相色谱-高分辨质谱是一种适用于贝类中虾夷扇贝毒素测定的有效技术。
它可以提供准确的定量结果,并可用于同时测定多种毒素。
通过合理的样品处理和分析条件选择,可以获得高质量的分析结果,确保贝类产品的食品安全。
贝类毒素的分离提取及其在前沿科技领域的应用贝类毒素是一种常见的海洋毒素,源自海洋中的藻类和珊瑚虫等生物体,常常会对人类和动物体系造成危害。
因此,对于贝类毒素的分离提取及其应用研究,不仅在生态环境、海洋食品安全以及养殖业方面有着重要的实用价值,还在生物医学和科学研究中有着不可替代的作用。
一、贝类毒素的分离提取贝类毒素的分离提取是海洋毒素研究中的核心问题之一。
此类毒素目前已发现的种类和杂质较多,而且基本上都是高分子化合物,难以采用一般的化学分离方法进行分离纯化。
为了得到高纯度和高活性的毒素样品,需要采用多种结构与物性不同的方法,如超滤、离子交换、亲和层析、凝胶渗透、高效液相色谱以及等电聚焦等。
其中,高效液相色谱是一种最常用的分离提取方法,其优点是可分离并快速确定一些低浓度的毒素成分。
二、贝类毒素的应用研究贝类毒素的分离提取不仅在海洋生态环境、食品安全、养殖业等方面有着广泛的应用价值,同时在生物医学和科学研究中,也有着重要的应用前景。
1. 生态环境领域贝类毒素的分离提取在生态环境领域中的应用主要是对海洋环境质量的评估和管理。
通过对自然海水中的毒素含量进行监测,对海洋生态环境进行评价,并及时采取相应的环保措施,减缓或避免毒素污染对生态环境的损害。
2. 食品安全领域贝类毒素的分离提取在食品安全领域中的应用主要是对贝类致命中毒症的研究和控制。
通过对贝类中毒素含量进行定量分析和安全指标的制定,减少贝类毒素对海产品和人类健康的影响,提高海产品的安全性。
3. 养殖业领域贝类毒素的分离提取在养殖业领域中的应用主要是对贝类毒素污染的预防和控制。
通过对贝类毒素污染程度进行监测和预警,预测产生毒素的状况,减少毒素污染对养殖业的影响和损失,保障贝类养殖业的安全和发展。
4. 生物医学领域贝类毒素的分离提取在生物医学领域中的应用主要是研究其对神经、肝脏、心血管、肿瘤等疾病的影响机制和治疗。
通过对毒素的功能特性进行研究,开发有效的治疗工具,为人类疾病的治疗提供新的思路和途径。