高中数学第一章集合模拟测试卷
- 格式:pdf
- 大小:242.84 KB
- 文档页数:4
A BC(高中数学必修1)第一章集合部分试题[基础训练A组]一、选择题1.下列各项中,不可以组成集合的是()A.所有的正数B.等于2的数C.接近于0的数D.不等于0的偶数2.下列四个集合中,是空集的是()A.}33|{=+xx B.},,|),{(22Ryxxyyx∈-=C.}0|{2≤xx D.},01|{2Rxxxx∈=+-3.下列表示图形中的阴影部分的是()A.()()A CB CB.()()A B A CC.()()A B B CD.()A B C4.下面有四个命题:(1)集合N中最小的数是1;(2)若a-不属于N,则a属于N;(3)若,,NbNa∈∈则ba+的最小值为2;(4)xx212=+的解可表示为{}1,1;其中正确命题的个数为()A.0个B.1个C.2个D.3个5.若集合{},,M a b c=中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.若全集{}{}0,1,2,32UU C A==且,则集合A的真子集共有()A.3个B.5个C.7个D.8个二、填空题1.用符号“∈”或“∉”填空(1)0______N, 5______N, 16______N(2)1______,_______,______2RQ Q e C Qπ-(e是个无理数)(3{}|,,x x a a Q b Q=∈∈2. 若集合{}|6,A x x x N=≤∈,{|}B x x=是非质数,C A B= ,则C的非空子集的个数为。
3.若集合{}|37A x x=≤<,{}|210B x x=<<,则A B=_____________.4.设集合{32}A x x=-≤≤,{2121}B x k x k=-≤≤+,且A B⊇,则实数k的取值范围是。
5.已知{}{}221,21A y y x xB y y x==-+-==+,则A B=_________。
一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知集合{|0}M y y =≥,2{|1}N y y x ==-+,则M N =( )A .()0,1B .[]0,1C .[)0,+∞D .[)1,+∞3.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2804.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1 B .[)0,1C .(]1,3D .[]0,35.已知集合{}2|230A x x x =--≤,集合{}||1|3B x x =-≤,集合4|05x C x x -⎧⎫=≤⎨⎬+⎩⎭,则集合A ,B ,C 的关系为( )A .B A ⊆B .A B =C .C B ⊆D .A C ⊆6.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤7.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<8.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 9.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则AB =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦10.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .211.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤12.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,, C .{}123,, D .{}12, 二、填空题13.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?14.若集合{}{,,,}1,2,3,4,a b c d =且下列四个关系:①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,则符合条件的所有有序数组(,,,)a b c d 的个数是________.15.已知2{|31,},x A x x -+=≥∈R 21{|1,}3x B x x R x -=≤∈+,则A ∩B =______. 16.已知集合(){}22112|2103x P x Q x x x m ⎧-⎫=-=-+-⎨⎬⎩⎭≤,≤,其中m >0,全集U =R .若“Ux P ∈”是“∈Ux Q ”的必要不充分条件,则实数m 的取值范围为__________.17.设a ,b ,c 为实数,()()()2f x x a x bx c =+++,()()()211g x ax cx bx =+++,记集合(){}|0,S x f x x R ==∈,(){}|0,T x g x x R ==∈,若S ,T 分别为集合S ,T 的元素个数,则下列结论可能成立的是________.①1S =,0T =;②1S =,1T =;③2S =,2T =;④2S =,3T =. 18.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________19.已知集合{}{}2|21,|20xA y yB x x x ==+=--<,则()R C A B =__________.20.已知集合{}1,2,3,4,5P =,若,A B 是P 的两个非空子集,则所有满足A 中的最大数小于B 中的最小数的集合对(,)A B 的个数为____.三、解答题21.设全集U =R ,集合{}lg()0A x x a =->,{}2340B x x x =--<. (1)当1a =时,求AB ;(2)若A B A ⋃=,求实数a 的取值范围.22.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤ (1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围.23.已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围.24.已知集合M ={x |2x -4=0},集合N ={x |x 2-3x +m =0}. (1)当m =2时,求M ∩N ,M ∪N ; (2)当M ∩N =M 时,求实数m 的值.25.设全集U =R ,集合{}13A x x =-≤<,{}242B x x x =-≥-. (1)求()UA B ;(2)若集合{}0C x x a =->,满足C C =B ∪,求实数a 的取值范围. 26.已知集合{}212520A x x x =-->,{}20B x x ax b =-+≤满足AB =∅,(]=-4,8A B ⋃,求实数a ,b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.B解析:B【解析】∵集合{}2{|1}1N y y x y y ==-+=≤,{|0}M y y =≥,∴[]0,1M N ⋂=,故选B.3.B解析:B 【分析】求出{2,4.6.8.10}M =后,分别求出含有2,4,6,8,10的子集个数,然后可求得结果. 【详解】{2,4.6.8.10}M =,其中含有元素2的子集共有4216=个,含有元素4的子集共有4216=个,含有元素6的子集共有4216=个,含有元素8的子集共有4216=个,含有元素10的子集共有4216=个, 所以123k P P P P S S S S ++++(246810)16480=++++⨯=.故选:B 【点睛】本题考查了对新定义的理解能力,考查了集合的子集个数的计算公式,属于基础题.4.A解析:A 【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.5.D解析:D 【分析】根据一元二次不等式的解法可求出集合A ,根据绝对值不等式的解法可求出集合B ,根据分式不等式的解法可求出集合C ,从而可得出集合A ,B ,C 间的关系. 【详解】解:由于{}{{}2|23013A x x x x x =--≤=-≤≤,{}{}|1324B x x x x =-≤=-≤≤,{}4|0545x C x x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,可知,A C ⊆. 故选:D. 【点睛】本题考查一元二次不等式、绝对值不等式和分式不等式的解法,以及集合间的关系,考查计算能力.6.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.7.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.8.C解析:C【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.9.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.10.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.11.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析 【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a的取值范围. 【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣,当1a >-时,(1,)A a =-; 当1a =-时,A =∅; 当1a <-时,(,1)A a =- 若选择①AB A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤ 当1a =-时,A =∅,满足题意 当1a <-时,(,1)A a =-不满足题意 所以选择①,则实数a 的取值范围是[-1,1] 若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意; 当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意 所以选择②,则实数a 的取值范围是(1,)-+∞. 若选择③RB A ⊆,当1a >-时,(1,),(,1][,)RA a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意当1a =-时,,R RA A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)RA a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.14.6【分析】因为①;②;③;④中有且只有一个是正确的故分四种情况进行讨论分别分析可能存在的情况即可【详解】若仅有①成立则必有成立故①不可能成立若仅有②成立则成立此时有两种情况若仅有③成立则成立此时仅有解析:6 【分析】因为①1a =;②1b ≠;③2c =;④4d ≠中有且只有一个是正确的,故分四种情况进行讨论,分别分析可能存在的情况即可. 【详解】若仅有①成立,则1a =必有1b ≠成立,故①不可能成立.若仅有②成立,则1a ≠,1b ≠,2c ≠,4d =成立,此时有(2,3,1,4),(3,2,1,4)两种情况. 若仅有③成立,则1a ≠,1b =,2c =,4d =成立,此时仅有(3,1,2,4)成立.若仅有④成立,则1a ≠,1b =,2c ≠,4d ≠成立,此时有(2,1,4,3),(3,1,4,2),(4,1,3,2)三种情况.综上符合条件的所有有序数组(,,,)a b c d 的个数是6个. 故答案为:6. 【点睛】本题主要考查了集合的综合运用与逻辑推理的问题,需要根据题设条件分情况讨论即可.属于中等题型.15.【分析】根据指数函数的单调性解不等式化简集合A 解分式不等式化简集合B 求交集即可【详解】由得:解得故由得:解得故所以A∩B=【点睛】本题主要考查了指数不等式分式不等式集合的交集运算属于中档题解析:(]3,2-【分析】根据指数函数的单调性解不等式化简集合A ,解分式不等式化简集合B ,求交集即可. 【详解】由231x -+≥得:20x -+≥, 解得2x ≤, 故{|2}A x x =≤, 由2113x x -≤+得:403x x -≤+, 解得34x , 故{|34}B x x =-<≤, 所以A ∩B = (]3,2- 【点睛】本题主要考查了指数不等式,分式不等式,集合的交集运算,属于中档题.16.【分析】解出集合PQ 根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围【详解】由题:是的必要不充分条件即P Q 解不等式所以0P Q 所以解得:故答案为:【点睛】此题考查根据充分条件和必要条解析:9m ≥【分析】解出集合P ,Q ,根据充分条件和必要条件关系得出两个集合的包含关系即可求出范围. 【详解】 由题:“Ux P ∈”是“∈Ux Q ”的必要不充分条件,UQUP ,即P Q ,解不等式1123x --≤,12123x --≤-≤, 646x -≤-≤,210x -≤≤所以[]1122,103x P x ⎧-⎫=-=-⎨⎬⎩⎭≤, (){}()()()(){}22|210|110Q x x x m x x m x m =-+-=-+--≤≤,m >0,P Q , 所以11012m m +≥⎧⎨-≤-⎩,解得:9m ≥.故答案为:9m ≥ 【点睛】此题考查根据充分条件和必要条件判断集合的包含关系求解参数范围,关键在于准确判断两个集合的包含关系,列出不等式组求解.17.①②③【分析】①根据得到方程无实根推出或;再由此判断根的个数即可判断①;②取分别判断根的个数即可判断②;③取分别判断根的个数即可判断③;④当时方程有三个根所以由此求根的个数即可判断④【详解】①当时方解析:①②③ 【分析】①根据0T =,得到方程()()()2110=+++=g x ax cx bx 无实根,推出0a =,240b c -<或0a b c ===;再由此判断()0f x =根的个数,即可判断①;②取240a b c ≠⎧⎨-<⎩,分别判断()0f x =,()0g x =根的个数,即可判断②;③取20040a c b c ≠⎧⎪≠⎨⎪-=⎩分别判断()0f x =,()0g x =根的个数,即可判断③;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,由此求()0f x =根的个数,即可判断④.【详解】①当0T =时,方程()()()2110=+++=g x ax cx bx 无实根,所以0a =,240b c -<或0a b c ===;当0a b c ===时,()3f x x =,由()0f x =得0x =,此时1S =;当0a =,240b c -<时,()()2=++f x x x bx c ,由()0f x =得0x =,此时1S =;故①成立; ②当2040a b c ≠⎧⎨-<⎩时,由()()()20=+++=f x x a x bx c 得x a =-,即1S =;由()()()2110=+++=g x ax cx bx 得1x a=-;即1T =;存在②成立;③当20040a cbc ≠⎧⎪≠⎨⎪-=⎩时,由()()()20=+++=f x x a x bx c 得x a =-或2b x =-;由()()()2110=+++=g x ax cx bx 得 1x a =-或2=-x b;只需2b a ≠,即可满足2S =,2T =;故存在③成立;④当3T =时,方程()()()2110=+++=g x ax cx bx 有三个根,所以0a ≠,0c ≠,240b c ->,设0x 为()0g x =的一个根,则00x ≠,且200001111f a b c x x x x ⎛⎫⎛⎫⎛⎫=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭()03010g x x ==,故01x 为方程()0f x =的根.此时()0f x =有三个根,即3T =时,必有3S =,故不可能是2S =,3T =;④错; 故答案为:①②③【点睛】本题主要考查方程根的个数与集合的综合,会判断方程根的个数即可,属于常考题型. 18.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】根据条件()()[3,5]A B =R R 可得()(),35,A B =-∞+∞,结合[1,2]B A =R 的意义,可得集合A .【详解】因为集合A 、B 是实数集R 的子集,若A B =∅,则[2,0]A B A =-=R ,[1,2]BA B ==R ,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】 本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.19.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂.【详解】根据指数函数的性质可知,211xy =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-. 故答案为(]1,1-.【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.20.49【分析】分中的最大数为中的最大数为中的最大数为中的最大数为四种情况根据题意列举出满足条件的集合即可得出结果【详解】当中的最大数为即时;所以满足题意的集合对的个数为个;当中的最大数为即时;即满足题 解析:49【分析】分A 中的最大数为1,A 中的最大数为2,A 中的最大数为3,A 中的最大数为4,四种情况,根据题意列举出满足条件的集合,A B ,即可得出结果.【详解】当A 中的最大数为1,即{1}A =时,{2}B =,{3},{4},{5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{2,3,4,5}; 所以满足题意的集合对(,)A B 的个数为15个;当A 中的最大数为2,即{2},{1,2}A =时,{3}=B ,{4},{5},{3,4},{3,5},{4,5},{3,4,5};即满足题意的集合对(,)A B 的个数为2714⨯=个;当A 中的最大数为3,即{3},{1,3},{2,3},{1,2,3}A =时,{4},{5},{4,5}B =,即满足题意的集合对(,)A B 的个数4312⨯=个;当A 中的最大数为4,即{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}A =时,{5}B =,即满足题意的集合对(,)A B 的个数为8个;所以总共个数为49个.【点睛】本题主要考查集合的应用,灵活运用子集的概念,用列举法表示集合即可,属于常考题型.三、解答题21.(1)(2,4]A B ⋂=;(2)(,2]-∞-.【分析】(1)当1a =时确定集合A ,根据交集的定义求解.(2)由A B A ⋃=得B A ⊆,得出a 的取值范围.【详解】(1)当1a =时,由lg(1)0x ->得11x ->,解得2x >,所以(2,)A =+∞, 由{}2340B x x x =--<解得[]1,4B =-,所以(2,4]A B ⋂=.(2){}{}lg()01A x x a x x a =->=+,{}2340B x x x =--<得{}|14B x x =-<<,由A B A ⋃=得B A ⊆,所以(1,4)(1,)a -⊆++∞,所以11a ≤-+,解得2a ≤-,所以实数a 的取值范围是(,2]-∞-.【点睛】关键点点睛:该题考查的是有关集合的问题,在解题的过程中,注意正确求解集合,再者就是能正确判断集合之间的关系.22.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出A B 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.23.()1,2,32⎡⎤-∞-⋃⎢⎥⎣⎦【分析】先分类讨论A 是否是空集,再当A 不是空集时,分-2≤a <0,0≤a≤2,a >2三种情况分析a 的取值范围,综合讨论结果,即可得到a 的取值范围【详解】若A=∅,则a <-2,故B=C=∅,满足C ⊆B ;若A ≠∅,即a ≥-2,由23y x =+在[]2,a -上是增函数,得123y a -≤≤+,即{}123B y y a =-≤≤+ ①当20a -≤≤时,函数2z x =在[]2,a -上单调递减,则24a z ≤≤,即{}24C z a z =≤≤,要使C B ⊆,必须且只需234a +≥,解得12a ≥,这与20a -≤<矛盾; ②当02a ≤≤时,函数2z x =在[]2,0-上单调递减,在[]0,a 上单调递增,则04z ≤≤,即{}04C z z =≤≤,要使C B ⊆,必须且只需23402a a +≥⎧⎨≤≤⎩,解得122a ≤≤; ③当2a >时,函数2z x =在[]2,0-上单调递减,在[]0,a 上单调递增,则20z a ≤≤,即{}20C z z a =≤≤,要使C B ⊆,必须且只需2232a a a ⎧≤+⎨>⎩,解得23a <≤; 综上所述,a 的取值范围是()1,2,32⎡⎤-∞-⋃⎢⎥⎣⎦. 【点睛】本题考查了通过集合之间的关系求参数问题,考查了分类讨论的数学思想,要明确集合中的元素,对集合是否为空集进行分类讨论,做到不漏解.24.(1)M ∩N ={2},M ∪N ={1,2};(2)m =2.【分析】(1)先求出集合,M N ,再求出M ∩N ,M ∪N ;(2)分析得到2∈N ,解方程4-6+m =0即得解.【详解】解:(1)由题意得M ={2},当m =2时,N ={x |x 2-3x +2=0}={1,2},则M ∩N ={2},M ∪N ={1,2}.(2)因为M ∩N =M ,所以M ⊆N ,因为M ={2},所以2∈N . 所以2是关于x 的方程x 2-3x +m =0的解,即4-6+m =0,解得m =2.【点睛】本题主要考查集合的运算,考查根据集合运算的结果求参数,意在考查学生对这些知识的理解掌握水平.25.(1){2x x <或}3x ≥;(2)(),2-∞【分析】(1)求出集合B 中不等式的解集确定出集合B ,求出集合A 与集合B 的公共解集即为两集合的交集,根据全集为R ,求出交集的补集即可;(2)求出集合C 中的不等式的解集,确定出集合C ,由B 与C 的并集为集合C ,得到集合B 为集合C 的子集,即集合B 包含于集合C ,从而列出关于a 的不等式,求出不等式的解集即可得到a 的范围.【详解】(1)解不等式242x x -≥-可得:2x ≥,{}2B x x ∴=≥ 又集合{}13A x x =-≤<, 故{}23A B x x ⋂=≤<又U =R 从而(){|2U C A B x x ⋂=<或3}x ≥(2)易知集合{}{}0C x x a x x a =->=>由C C =B ∪可得:B C ⊆故有2a <即所求实数a 的取值范围是(),2-∞【点睛】本题主要考查了补集及其运算,集合的包含关系判断及应用,交集及其运算,考查了运算能力,属于中档题. 26.19,122a b == 【分析】 先化简集合A ,再根据AB =∅,(]=-4,8A B ⋃,确定集合B 求解.【详解】 因为{}231252042A x x x x x ⎧⎫=-->=-<<⎨⎬⎩⎭,{}20B x x ax b =-+≤ 满足A B =∅,(]=-4,8A B ⋃, 所以{}23082B x x ax b xx ⎧⎫=-+≤=≤≤⎨⎬⎩⎭, 所以3,82是方程20x ax b -+=的两个根, 所以382382a b ⎧+=⎪⎪⎨⎪⨯=⎪⎩ , 解得19,122a b == . 【点睛】本题主要考查了集合的基本运算,还考查了理解辨析,运算求解的能力,属于中档题.。
高中数学集合整章检测试卷(含解析)新人教A版必修1集合整章检测试卷(含答案)一、选择题1.若集合A={x||x|1,xR},B={y|y=x2,xR},则AB等于()A.{x|-11} B.{x|x0}C.{x|01} D.2.已知函数f(x)=ax2+(a3-a)x+1在(-,-1]上递增,则a的取值范畴是()A.a B.-33C.03 D.-303.若f(x)=ax2-2(a>0),且f(2)=2,则a等于()A.1+22 B.1-22C.0 D.24.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是()A.f(x)=9x+8B.f(x)=3x+2C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-45.已知M,N为集合I的非空真子集,且M,N不相等,若N(IM)=,则MN等于()A.M B.N C.I D.6.已知函数f:AB(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.MA,N=BC.M=A,NB D.MA,NB7.下列函数中,既是奇函数又是增函数的为()A.y=x +1 B.y=-x3C.y=1x D.y=x|x|8.已知函数f(x)=1x在区间[1,2]上的最大值为A,最小值为B,则A -B等于()A.12 B.-12 C.1 D.-19.设f(x)=x+3x10ffx+5 x10,则f(5)的值是()A.24 B.2 1 C.18 D.1610.f(x)=(m-1)x2+2mx+3为偶函数,则f(x)在区间(2,5)上是()A.增函数B.减函数C.有增有减D.增减性不确定11.若f(x)和g(x)差不多上奇函数,且F(x)=f(x)+g(x)+2在(0,+)上有最大值8,则在(-,0)上F(x)有()A.最小值-8 B.最大值-8C.最小值-6 D.最小值-412. 在函数y=|x|(x[-1,1])的图象上有一点P(t,|t|),此函数与x轴、直线x=-1及x=t围成图形(如图阴影部分)的面积为S,则S与t的函数关系的图象可表示为()二、填空题13.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x(0,2)时,f(x)=2x2,则f(7)=______.14.已知函数f(x)=4x2-mx+5在区间[-2,+)上是增函数,则f(1)的取值范畴是________.15.若定义运算a⊙b=b,aba,a<b,则函数f(x)=x⊙(2-x)的值域为________.16.用描述法表示如图中阴影部分的点(含边界)的坐标的集合(不含虚线)为________.三、解答题17.设集合A={x|2x2+3px+2=0},B={x|2x2+x+q=0},其中p、q为常数,xR,当AB={12}时,求p、q的值和AB.18.已知f(x),g(x)在(a,b)上是增函数,且ab,求证:f(g(x))在(a,b)上也是增函数.19.函数f(x)=4x2-4ax+a2-2a+2在区间[0, 2]上有最小值3,求a 的值.20.已知f(x)=xx-a(xa).(1)若a=-2,试证f(x)在(-,-2)内单调递增;(2)若a>0且f(x)在(1,+) 内单调递减,求a的取值范畴.21.某公司打算投资A、B两种金融产品,依照市场调查与推测,A产品的利润与投资量成正比例,其关系如图1,B产品的利润与投资量的算术平方根成正比例,其关系如图2(注:利润与投资量的单位:万元).(1)分别将A、B两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:如何样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?22.已知函数y=x+tx有如下性质:假如常数t>0,那么该函数在(0,t]上是减函数,在[t,+)上是增函数.(1)已知f(x)=4x2-12x-32x+1,x[0,1],利用上述性质,求函数f(x)的单调区间和值域;“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
第一章集合单元测试题(时间:120分钟满分150分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是()A.很小的实数可以构成集合B.集合{yy=x2—l}与集合{(X,y)y=x2-l}是同一个集合c.自然数集N中最小的数是1D.空集是任何集合的子集2.已知集合A={x|(kxvp3},B={x|Kx<2},则AUB=()A.{xx<0}B.{xk>2}C.{x|iCx<;'3}D.{x|<x<2}3•已知集合M={0,1,2}N={xk=2a—1,a^N+},则集合MQN=()A.{0}B.{1,2}C.{1}D.{2}4.已知集合M={xk=2+4,k€Z},N={xk=4+2,k^Z},若x0€M,则x0与N的关系是()A.x0€NB.x0NC.x0€N或x0ND.x0N5.已知M={yy=x2+1,x^R},N={yy=—x2+1,x^R},则MQN=()A.{0,1}B.{(0,1)}C.{1}D.以上都不是6•设全集U和集合A,B,P满足A=評,B=,P,则A与P的关系是()A.A=U PB.A=PC.APD.AP7.已知全集U={1,2,3,4,5}集合A={xk2—3x+2=0},B={xk=2a,a"},则集合口(AUB)中元素的个数是()A.1个B.2个C.3个D.4个&已知集合A={xa—1<x<a+2},B={x|3<x<5},则能使AB成立的实数a的取值范围是()A.{a|3<a<4}B.{a|<a<4}C.{a|3<a<4}D.9•设集合A={x|x—a|<1},B={x|1<x<5},若AQB=,则实数a的取值范围是()A.{a|<a<6}B.{aa<2或a>4}C.{aa<0或a>6}D.{a|<a<4}10•已知A,B均为集合U={1,3,5,7,的子集,且AQB={3},(U B)QA={9},则A等于()A.{1,3}B.{3,7,9}。
绝密★启用前高中数学第一章集合测试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 , )1. 定义集合运算:A ∗B ={z ∣z =xy,x ∈A,y ∈B},设A ={1,2},B ={1,2,3},则集合A ∗B 的所有元素之和为( ) A.16 B.18 C.14 D.82. 若集合A 具有以下性质:①集合中至少有两个元素;②若{x,y }⊆A ,则xy ,x +y ∈A ,且当x ≠0时,y x∈A ,则称集合A 是“紧密集合”.现有以下说法:①整数集是“紧密集合”;②实数集是“紧密集合”;③“紧密集合”可以是有限集;④若集合A 是“紧密集合”,且x ,y ∈A ,则x −y ∈A . 其中正确的个数为( ) A.1 B.2 C.3 D.43. 某班共有学生60名,在乒乓球、篮球、排球三项运动中每人至少会其中的一项,有些人会其中的两项.没有人三项均会.若该班32人不会打乒乓球,28人不会打篮球,24人不会打排球,则该班会其中两项运动的学生人数是( ) A.32 B.33 C.35 D.364. 方程组{x +y =1,x 2−y 2=9的解(x,y)构成的集合是( )A.(5,4)B.{5,−4}C.{(−5,4)}D.{(5,−4)}5. 下面关于集合的表示正确的个数是( )①{2, 3}≠{3, 2}; ②{(x, y)|x +y =1}={y|x +y =1}; ③{x|x >1}={y|y >1}; ④{x|x +y =1}={y|x +y =1}. A.0 B.1 C.2 D.36. 已知R 是实数集,集合A ={x|1<x <2},B ={{x|0<x <32},则阴影部分表示的集合是( )A.[0, 1]B.(0, 1]C.[0, 1)D.(0, 1)7. 下列关于集合的命题正确的有( ) ①很小的整数可以构成集合;②集合{y|y =2x 2+1}与集合{(x, y)|y =2x 2+1}是同一个集合; ③1,2,|−12|,0.5,12这些数组成的集合有5个元素; ④空集是任何集合的子集. A.0个 B.1个 C.2个 D.3个8. 从集合M ={1,3,5,7}中任取两个不同的数作为x 和y ,其中log 2(x +y )为整数的概率为( ) A.12B.13C.23D.569. 已知函数f(x)=x 2−12ln x +32在其定义域的一个子区间(a −1,a +1)内不是单调函数,则实数a 的取值范围是( ) A.(−12,32)B.[1,54)C.(1,32)D.[1,32)10. 设集合A ={x ∈N |x <2},B ={1,2,3} ,定义A ⊗B ={(x,y,z)|x ∈A,y ∈B,z ∈A ∩B},则A ⊗B 中元素的个数是( )A.6B.10C.25D.5211. 已知集合A ={x ∈Z|−2≤x <4},B ={x ∈N|x+13−x ≥0},则A ∩B 的子集个数为( ) A.4 B.8C.16D.3212. 设M,P 是两个非空集合,定义M 与P 的差集为M −P ={x|x ∈M 且x ∉P},则M −(M −P)等于( ) A.PB.M ∩PC.M ∪PD.M卷II(非选择题)二、填空题(本题共计 4 小题,每题 5 分,共计20分,)13. 已知f(x)=x2+ax+b,集合{x|f(x)=x}={4},将集合M={x|f(x)=4}用列举法表示________14. 若有限集合A={a1,a2,a3…a n},定义集合B={a i+a j|1≤i<j≤n,i,j∈N∗}中的元素个数为集合A的“容量”,记为L(A).现已知A={x∈N∗|1≤x≤m},且L(A)=4039,则正整数m的值是________.15. 已知集合A={x|ax2−3x+2=0}至多有一个元素,则a的取值范围是________.16. 已知集合A={(x, y)|x2+y2≤1, x, y∈Z},B={(x, y)||x|≤2, |y|≤2, x, y∈Z},定义集合A⊕B= {(x1+x2, y1+y2)|(x1, y1)∈A, (x2, y2)∈B},则A⊕B中元素的个数为________ .三、解答题(本题共计 7 小题,每题 10 分,共计70分,)17. 用列举法表示集合{x∈Z|0<x2−x−2≤4}.18. 已知全集U=R,函数f(x)=√1−x的定义域为集合A,函数g(x)=lg(3x−1)的定义域为集合B. (1)求集合A,B;(2)求∁U(A∩B).19. 设集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0}.(1)用列举法表示集合A;(2)若B⊆A,求实数m的值.20. 已知集合A={x|2xx−2<1},集合B={x|x2−(2m+1)x+m2+m<0}.(1)求集合A,B;(2)若B⊆A,求m的取值范围.21. 设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10−x∈S.(1)请你写出符合条件,且分别含有一个、二个、三个元素的集合S各一个;(2)是否存在恰有6个元素的集合S?若存在,写出所有的集合S;否则请说明理由.22. 已知集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2−1=0, a∈R}.(1)用列举法表示集合A;(2)若B∩A=B,求实数a的取值范围.23. 已知集合A={x|ax2−3x+2=0},其中a为常数,且a∈R.(1)若A是单元素集合,求a的取值范围;(2)若A中至少有一个元素,求a的取值范围;(3)若A中至多有一个元素,求a的取值范围.参考答案与试题解析高中数学第一章集合测试题一、选择题(本题共计 12 小题,每题 5 分,共计60分)1.【答案】A【考点】元素与集合关系的判断集合的含义与表示【解析】直接列出所有情况,确定元素即可.【解答】解:∵A={1,2},B={1,2,3},又A∗B={z∣z=xy,x∈A,y∈B},∴当x=1,y=1时,z=1;当x=1,y=2时,z=2;当x=1,y=3时,z=3;当x=2,y=1时,z=2;当x=2,y=2时,z=4;当x=2,y=3时,z=6,∴A∗B={1,2,3,4,6},∴所有元素之和为1+2+3+4+6=16.故选A.2.【答案】B【考点】集合新定义问题集合的含义与表示【解析】此题暂无解析【解答】解:若x=2,y=1,而12∉Z,则整数集不是“紧密集合”,故①错误;根据“紧密集合”的性质,实数集是“紧密集合”,故②正确;集合{−1,0,1}是“紧密集合”,则“紧密集合”可以是有限集,故③正确;集合A={−1,0,1}是“紧密集合”,当x=1,y=−1时,x−y=2∉A,故④错误.故选B.3.【答案】D【考点】集合的含义与表示【解析】【解答】解:设只会打乒乓球、篮球、排球的学生分别有x1,x2,x3人,同时会打乒乓球和篮球、排球和篮球、乒乓球和排球的学生分别为y1,y2,y3,由题意知,x1+x2+x3+y1+y2+y3=60,①x2+x3+y2=32,②x1+x3+y3=28,③x1+x2+y1=24,④①×2−(②+③+④)得y1+y2+y3=120−(32+28+24)=36(人),故该班会其中两项运动的学生人数是36人.故选D.4.【答案】D【考点】集合的含义与表示【解析】求出方程组{x+y=1x2−y2=9得解{x=5y=−4,即可得解方程组的解(x,y)构成的集合是{(5,−4)}.【解答】解:方程组{x+y=1,x2−y2=9,由x+y=1得y=1−x,代入x2−y2=9得x2−(1−x)2=9,解得x=5,把x=5代入x+y=1得y=−4,∴方程组的解为{x=5,y=−4,∴方程组{x+y=1,x2−y2=9的解(x,y)构成的集合是{(5,−4)}.故选D.5.【答案】C【考点】集合的确定性、互异性、无序性集合的含义与表示【解析】集合中的元素具有无序性,故①不成立;{(x, y)|x+y=1}是点集,而{y|x+y=1}不是点集,故②不成立;③④正确.【解答】解:∵集合中的元素具有无序性,∴ ①{2, 3}={3, 2},故①不成立;{(x, y)|x+y=1}是点集,而{y|x+y=1}不是点集,故②不成立;由集合的性质知③④正确.故选C.6.【答案】B【考点】集合的含义与表示【解析】由图观察利用集合的表示法中的描述法表达阴影部分即可;【解答】已知R是实数集,集合A={x|1<x<2},B={x|0<x<32},阴影部分表示的集合是:(∁R A)∩B={x|0<x≤1};即:(0, 1]7.【答案】B【考点】集合的含义与表示【解析】(1)(3)中由集合元素的性质:确定性、互异性可知错误;(2)中注意集合中的元素是什么;(4)中注意x=0或y=0的情况.【解答】解:①中很小的整数没有确定的标准,不满足集合元素的确定性;②中集合{y|y=2x2+1}的元素为实数,而集合{(x, y)|y=2x2+1}的元素是点;③由集合元素的互异性可知这些数组成的集合有3个元素;④空集是任何集合的子集,正确.故选B.8.【答案】A【考点】集合的含义与表示对数的运算性质列举法计算基本事件数及事件发生的概率【解析】无【解答】解:不妨设x<y,则从集合M={1,3,5,7}中任取两个不同的数作为x和y,有(1,3),(1,5),(1,7),(3,5),(3,7),(5,7)共6种可能,其中使log2(x+y)为整数的有3种可能,所以概率为12.故选A.9. 【答案】D【考点】集合的含义与表示复合函数的单调性【解析】此题暂无解析【解答】解:由题意,知f′(x)=2x−12x=4x2−12x在区间(a−1,a+1)内有零点,由f′(x)=0,得x=12,则{a−1≥0,a−1<12<a+1.得1≤a<32.故选D.10.【答案】A【考点】交集及其运算元素与集合关系的判断集合的含义与表示【解析】此题暂无解析【解答】解:因为A={x∈N|x<2}={0,1},B={1,2,3},所以A∩B={1}.由列举法可知,A⊗B={(0,1,1),(0,2,1),(0,3,1),(1,1,1),(1,2,1),(1,3,1)} , 共有6个元素.故选A.11.【答案】B【考点】交集及其运算集合的包含关系判断及应用集合的含义与表示【解析】此题暂无解析【解答】解:由题得,A={−2,−1,0,1,2,3},B={x∈N|−1≤x<3}={0,1,2},所以A∩B={0,1,2}.故该集合的子集个数为23=8.故选B.12.【答案】B【考点】集合的含义与表示【解析】本题考查集合的运算.【解答】解:由题意得M−P=∁M(M∩P),所以M−(M−P)=∁M[∁M(M∩P)]=M∩P.故选B.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】{3, 4}【考点】集合的含义与表示【解析】根据已知集合{x|f(x)=x}={4},利用方程的△,可计算方程的系数a,b,在带入集合M={x|f(x)=4}求解即可.【解答】已知f(x)=x2+ax+b,集合{x|f(x)=x}={4},即方程x2+ax+b=x,x2+(a−1)x+b=0由两个相等的实数根为4,所以△=(a−1)2−4b=0,即x2+(a−1)x+b=(x−4)2,所以b=16,a=−7,所以f(x)=x2+ax+b=x2−7x+16,所以集合M={x|f(x)=4}即x2−7x+16=4,x2−7x+12=0,用列举法表示为{3, 4},14.【答案】2021【考点】集合的含义与表示集合中元素的个数【解析】集合与新定义结合题目,关键是读懂题意.【解答】解:由题意得,集合A包括1, 2, ⋯, m−1, m,则1+2≤a i+a j≤m+m−1,即3≤a i+a j≤2m−1.因为从1到2m−1共(2m−1)个数,所以从3到2m−1共(2m−3)个数,故集合B共(2m−3)个元素,即2m−3=4039,所以m=2021.故答案为:2021.15.【答案】a≥98或a=0.【考点】集合关系中的参数取值问题集合的含义与表示【解析】此题暂无解析【解答】解:a=0时,ax2−3x+2=0,即x=23,A={23},符合要求;a≠0时,ax2−3x+2=0至多有一个解,Δ=9−8a≤0,a≥98,综上,a的取值范围为a≥98或a=0.故答案为:a≥98或a=0.16.【答案】45【考点】集合新定义问题集合中元素的个数集合的含义与表示【解析】此题暂无解析【解答】解:由题得A={(−1, 0), (0, 0), (1, 0), (0, 1), (0, −1)},如下图所示:因为B={(x, y)||x|≤2, |y|≤2, x, y∈Z},由A⊕B的定义可得,A⊕B相当于将A集合中各点上下平移或左右平移0,1,2个单位,如下图所示:所以A⊕B中的元素个数为7×7−4=45.故答案为:45.三、解答题(本题共计 7 小题,每题 10 分,共计70分)17.【答案】{−2, 3}【考点】集合的含义与表示【解析】先解出不等式,再结合x∈Z,即可写出结果.【解答】不等式x2−x−2≤4⇒(x−3)(x+2)≤0,得:−2≤x≤3,0<x2−x−2⇒(x−2)(x+1)>0⇒x>2或x<−1;∴用列举法表示集合{x∈Z|0<x2−x−2≤4}={−2, 3},18.【答案】解:(1)∵函数f(x)=√1−x的定义域为集合A,1−x≥0,即x≤1,∴集合A为(−∞,1];∵函数g(x)=lg(3x−1)的定义域为集合B,3x−1>0,即x>13,∴集合B为(13,+∞).(2)∵A=(−∞,1],B=(13,+∞),∴A∩B=(13,1].∴∁U(A∩B)=(−∞,13]∪(1,+∞).【考点】函数的定义域及其求法交、并、补集的混合运算集合的含义与表示【解析】此题暂无解析【解答】解:(1)∵函数f(x)=√1−x的定义域为集合A,1−x≥0,即x≤1,∴集合A为(−∞,1];∵函数g(x)=lg(3x−1)的定义域为集合B,3x−1>0,即x>13,∴集合B为(13,+∞).(2)∵A=(−∞,1],B=(13,+∞),∴A∩B=(13,1].∴∁U(A∩B)=(−∞,13]∪(1,+∞).19.【答案】解:(1)集合A={x|x2+3x+2=0},∵x2+3x+2=0,解得:x1=−1,x2=−2,∴集合A={x|x2+3x+2=0}={−1, −2}.(2)B={x|x2+(m+1)x+m=0},∵B⊆A,①若B=⌀,则Δ=(m +1)2−4m<0,解得:m无解,∴B≠⌀.②若集合B只有一个元素{−1},即方程只有一个解:x=−1,此时Δ=(m+1)2−4m=0且1−(m+1)+m=0,解得:m=1;③若集合B只有一个元素{−2},即方程只有一个解:x=−2,此时判别式Δ=(m+1)2−4m=0且4−2(m+1)+m=0,解得:m无解;④若集合B有两个元素{−1,−2},即方程有两个解:x1=−1,x2=−2,解得:m=2,经检验,m=1或m=2符合条件.故实数m的值为m=1或m=2.【考点】集合关系中的参数取值问题集合的含义与表示【解析】(1)化简集合A,列举元素表示集合.(2)根据B⊆A,建立条件关系,讨论集合B的元素,即可求实数m的取值.【解答】解:(1)集合A={x|x2+3x+2=0},∵x2+3x+2=0,解得:x1=−1,x2=−2,∴集合A={x|x2+3x+2=0}={−1, −2}.(2)B={x|x2+(m+1)x+m=0},∵B⊆A,①若B=⌀,则Δ=(m+1)2−4m<0,解得:m无解,∴B≠⌀.②若集合B只有一个元素{−1},即方程只有一个解:x=−1,此时Δ=(m+1)2−4m=0且1−(m+1)+m=0,解得:m=1;③若集合B只有一个元素{−2},即方程只有一个解:x=−2,此时判别式Δ=(m+1)2−4m=0且4−2(m+1)+m=0,解得:m无解;④若集合B有两个元素{−1,−2},即方程有两个解:x1=−1,x2=−2,解得:m=2,经检验,m=1或m=2符合条件.故实数m的值为m=1或m=2.20.【答案】解:(1)∵2xx−2<1⇔x+2x−2<0,解得−2<x<2,∴A={x|−2<x<2},∵x2−(2m+1)x+m2+m<0,整理得(x−m)[x−(m+1)]<0,解得m<x<m+1,∴B={x|m<x<m+1}.(2)∵A={x|−2<x<2},B={x|m<x<m+1},B⊆A,∴{m≥−2,m+1≤2,解得−2≤m≤1,∴m的取值范围是[−2, 1].【考点】一元二次不等式的解法其他不等式的解法集合的含义与表示集合的包含关系判断及应用【解析】(1)解分式不等式能求出集合A;解一元二次不等式能求出集合B.(2)由A={x|−2<x<2},B={x|m<x<m+1},B⊆A,列出不等式组,能求出m的取值范围.【解答】解:(1)∵2xx−2<1⇔x+2x−2<0,解得−2<x<2,∴A={x|−2<x<2},∵x2−(2m+1)x+m2+m<0,整理得(x−m)[x−(m+1)]<0,解得m<x<m+1,∴B={x|m<x<m+1}.(2)∵A={x|−2<x<2},B={x|m<x<m+1},B⊆A,∴{m≥−2,m+1≤2,解得−2≤m≤1,∴m的取值范围是[−2, 1].21.【答案】解:(1)含有一个元素的集合S:{5};含有二个元素的集合S:{1,9}或{2,8}或{3,7}或{4,6};含有三个元素的集合S:{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}.(2)存在,一共有四个.S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}.【考点】元素与集合关系的判断集合的含义与表示【解析】(1)根据设非空集合S具有如下性质:①元素都是正整数;②若x∈S,则10−x∈S.知:元素只有一个时,即x=10−x,即x=5;元素有二个时,即两个正数的和为10;元素有三个时,必有一个元素5,另外两个正数的和为10(2)6个元素的集合S,元素必须要是1,9;2,8;3,7;4,6;中任意选三对(3))①S⊆{1, 2, 3, 4, 5, 6, 7, 8, 9};②若5∈S,则s中的元素个数为奇数个,若5∉S,则s中的元素个数为偶数个;③符合题意的S共有31个【解答】解:(1)含有一个元素的集合S:{5};含有二个元素的集合S:{1,9}或{2,8}或{3,7}或{4,6};含有三个元素的集合S:{1,5,9}或{2,5,8}或{3,5,7}或{4,5,6}.(2)存在,一共有四个.S={1,2,3,7,8,9}或S={1,2,4,6,8,9}或S={1,3,4,6,7,9}或S={2,3,4,6,7,8}.22.【答案】解:(1)x 2+4x =0, 解得x 1=0,x 2=−4, 所以A ={0, −4}.(2)因为A ∩B =B ,所以B ⊆A ,①B =⌀时,则Δ=[2(a +1)]2−4(a 2−1)=8a +8<0,得a <−1; ②B ={0},方程有两相等实根,所以有{8a +8=0,a 2−1=0, 得a =−1;③B ={−4},方程有两相等实根,所以有{8a +8=0,a 2−8a +7=0, a 无解;④B ={0, −4},方程有两不等实根,所以有{8a +8>0,−2(a +1)=−4,a 2−1=0, 得a =1,综上,a 的取值范围为(−∞, −1]∪{1}. 【考点】集合的含义与表示集合的包含关系判断及应用【解析】(Ⅰ)容易得出A ={0, −4};(Ⅱ)根据B ∩A =B 可得出B ⊆A ,从而讨论B =⌀,B ={0},B ={−4},或B ={0, −4},根据一元二次方程的根和判别式的关系及韦达定理分别求出a 的范围即可. 【解答】解:(1)x 2+4x =0, 解得x 1=0,x 2=−4, 所以A ={0, −4}.(2)因为A ∩B =B ,所以B ⊆A ,①B =⌀时,则Δ=[2(a +1)]2−4(a 2−1)=8a +8<0,得a <−1; ②B ={0},方程有两相等实根,所以有{8a +8=0,a 2−1=0, 得a =−1;③B ={−4},方程有两相等实根,所以有{8a +8=0,a 2−8a +7=0, a 无解;④B ={0, −4},方程有两不等实根,所以有{8a +8>0,−2(a +1)=−4,a 2−1=0, 得a =1,综上,a 的取值范围为(−∞, −1]∪{1}. 23. 【答案】当a =0时,A ={x|−3x +2=0}={23},符合题意;当a ≠0时,要使A 是单元素集合,则△=(−3)2−8a =0,解得a =98,∴ A ={43}. 综上,当a =0时,A ={23}, 当a ≠0时,A ={43};当a =0时,A ={23},符合题意;当a ≠0时,要使A 中至少有一个元素,则△=(−3)2−8a ≥0,解得a ≤98. ∴ a 的取值范围是(−∞, 98].A 中有两个元素时,需满足a ≠0且△=(−3)2−8a >0, 即a <98且a ≠0;故A 中至多有一个元素时,a 的取值范围是:[98, +∞)∪{0}.【考点】集合的含义与表示 【解析】(1)分二次项系数为0和不为0求解方程ax 2−3x +2=0,得到单元素集合A ;(2)二次项系数为0满足题意,二次项系数不为0时,由判别式大于等于0求得a 的取值范围. (3)可考虑研究有两个元素的情况,求其补集即可. 【解答】当a =0时,A ={x|−3x +2=0}={23},符合题意;当a ≠0时,要使A 是单元素集合,则△=(−3)2−8a =0,解得a =98,∴ A ={43}. 综上,当a =0时,A ={23}, 当a ≠0时,A ={43};当a =0时,A ={23},符合题意;当a ≠0时,要使A 中至少有一个元素,则△=(−3)2−8a ≥0,解得a ≤98. ∴ a 的取值范围是(−∞, 98].A 中有两个元素时,需满足a ≠0且△=(−3)2−8a >0, 即a <98且a ≠0;故A 中至多有一个元素时,a 的取值范围是:[98, +∞)∪{0}.。
一、选择题1.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( )A .0B .1-C .1D .1或1-3.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个4.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,35.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,16.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,7.已知集合{}2,xA y y x R ==∈,{}148x B x -=≤,则A B =( )A .5(,)2-∞B .5[0,]2C .7(0,]2D .5(0,]28.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭9.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.设{}|22A x x =-≥,{}|1B x x a =-<,若A B =∅,则a 的取值范围为( ) A .1a <B .01a <≤C .1a ≤D .03a <≤11.设集合{}21xA y y ==-,{}1B x x =≥,则()R AC B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若A B B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________15.已知{|}A x x =>,{|(3)(3)0}B x x x x =-+>,则A B =________ 16.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且AB =________.17.已知集合M ={x ∈N |1≤x ≤15},集合A 1,A 2,A 3满足①每个集合都恰有5个元素; ②A 1∪A 2∪A 3=M .集合A i 中元素的最大值与最小值之和称为集合A i 的特征数,记为X i (i =1,2,3),则X 1+X 2+X 3的最大值与最小值的和为_____. 18.已知集合(){}22330,,A x x a x a a R x R =+--=∈∈,集合(){}22330,,B x x a x a a a R x R =+-+-=∈∈,若,A B A B ≠⋂≠∅,则A B =_______19.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.设{}{},1,05U R A x x B x x ==≥=<<,求()U A B 和()U A B ∩22.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤(1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围. 23.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数;(2)若B =∅,求m 的取值范围; (3)若A B ⊇,求m 的取值范围.24.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求U B A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.25.已知集合{|123}A x a x a =+≤≤+,{}2|7100B x x x =-+-≥. (1)已知3a =,求集合()R A B ;(2)若B A ⊆,求实数a 的范围.26.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭.(1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M xx x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭,所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.2.B解析:B【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101ab +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.4.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.5.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=,所以{(011,1A x x =<-<=, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.6.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】 解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.7.D解析:D 【分析】根据指数函数的值域可得集合A ,解指数函数的不等式可得集合B ,再进行交集运算即可. 【详解】∵{}()2,0,xA y y x R ==∈=+∞,由148x -≤,即22322x -≤,解得52x ≤,即5,2B ⎛⎤=-∞ ⎥⎝⎦, ∴5(0,]2A B ⋂=, 故选:D. 【点睛】本题主要考查了指数函数的值域,指数类型不等式的解法,集合间交集的运算,属于基础题.8.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B.【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.C解析:C 【分析】解集绝对值不等式求得,A B ,结合A B =∅求得a 的取值范围.【详解】由22x -≥得22x -≤-或22x -≥,解得0x ≤或4x ≥,所以(][),04,A =-∞⋃+∞, 由1x a -<得1a x a -<-<,解得11a x a -<<+,所以()1,1B a a =-+. 当0a ≤时,B =∅,A B =∅,符合题意.当0a >时,由于AB =∅,所以1014a a -≥⎧⎨+≤⎩,解得01a <≤.综上所述,a 的取值范围是1a ≤. 故选:C 【点睛】本小题主要考查绝对值不等式的解法,考查根据交集的结果求参数的取值范围.11.C解析:C 【解析】 【分析】化简集合A ,B 根据补集和交集的定义即可求出. 【详解】集合A ={y |y =2x ﹣1}=(﹣1,+∞),B ={x |x ≥1}=[1,+∞), 则∁R B =(﹣∞,1) 则A ∩(∁R B )=(﹣1,1), 故选:C . 【点睛】本题考查集合的交、并、补集的混合运算,是基础题.解题时要认真审题,仔细解答.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-. 故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.14.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1a x a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a aa =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想15.【分析】先分别求解集合中元素的所满足的不等式再由交集的定义求解即可【详解】由题因为解得则因为解得或则或所以故答案为:【点睛】本题考查集合的交集运算考查含根式的不等式的运算考查解高次不等式 解析:{|30}-<<x x【分析】先分别求解集合中元素的所满足的不等式,再由交集的定义求解即可 【详解】由题,因为20xx >-≥⎪⎩,解得1x <,则{}|1A x x =<,因为()()330x x x -+>,解得30x -<<或3x >,则{|30B x x =-<<或}3x >, 所以{}|30A B x x ⋂=-<<, 故答案为:{|30}-<<x x 【点睛】本题考查集合的交集运算,考查含根式的不等式的运算,考查解高次不等式16.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.17.96【分析】对分三种情况讨论求出X1+X2+X3取最小值39X1+X2+X3取最大57即得解【详解】由题意集合M ={x ∈N*|1≤x≤15}={123456789101112131415}当A1={解析:96 【分析】对123,,A A A 分三种情况讨论,求出X 1+X 2+X 3取最小值39,X 1+X 2+X 3取最大57,即得解. 【详解】由题意集合M ={x ∈N*|1≤x ≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A 1={1,4,5,6,7},A 2={3,12,13,14,15},A 3={2,8,9,10,11}时, X 1+X 2+X 3取最小值:X 1+X 2+X 3=8+18+13=39,当A 1={1,4,5,6,15},A 2={2,7,8,9,14},A 3={3,10,11,12,13}时, X 1+X 2+X 3=16+16+16=48,当A 1={1,2,3,4,15},A 2={5,6,7,8,14},A 3={9,10,11,12,13}时, X 1+X 2+X 3取最大值:X 1+X 2+X 3=16+19+22=57, ∴X 1+X 2+X 3的最大值与最小值的和为:39+57=96. 【点睛】本题主要考查集合新定义的理解和应用,意在考查学生对这些知识的理解掌握水平.18.【分析】设公共根是代入两方程作差可得即公共根就是进一步代入原方程求解两集合即可得出答案【详解】两个方程有公共根设公共根为两式相减得:即①若则两个方程都是与矛盾;②则公共根为代入得:即解得:(舍)故答 解析:{2,3,1}--【分析】设公共根是b ,代入两方程,作差可得b a =,即公共根就是a ,进一步代入原方程求解两集合,即可得出答案.【详解】A B ⋂≠∅∴两个方程有公共根设公共根为b∴2(23)30b a b a +--=,22(3)30b a b a a +-+-=两式相减得:20ab a -=,即()0a b a -=.①若0a =,则两个方程都是230x x -=,与A B ≠矛盾;②0,a ≠则b a =,∴公共根为a ,代入2(23)30x a x a +--=得:2(23)30a a a a +--= 即220a a -=,解得:0a =(舍),2a ={}2|60{3,2}A x x x ∴=+-==- 2|20{1,2}B x x x{2,3,1}A B ∴⋃=--故答案为:{2,3,1}--【点睛】本题考查了集合并集运算,能够通过,A B A B ≠⋂≠∅解读出两个集合中的方程有公共根,是解题的关键.19.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】根据条件()()[3,5]A B =R R 可得()(),35,A B =-∞+∞,结合[1,2]B A =R 的意义,可得集合A .【详解】因为集合A 、B 是实数集R 的子集,若A B =∅,则[2,0]A B A =-=R ,[1,2]BA B ==R ,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞.【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x -≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤≤组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(){}|5U A B x x ⋃=<,(){}|5U A B x x ⋂=≥.【分析】 首先根据题中所给的集合,根据补集的定义,求得{}|1UA x x =<,{0UB x =≤或5}x ,之后利用交集并集的定义求得结果.【详解】因为U =R ,{}{}1,05A x x B x x =≥=<<,所以{}|1U A x x =<,{0U B x =≤或5}x , 所以(){}|5UA B x x ⋃=<,(){}|5U A B x x ⋂=≥. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的运算,属于简单题目. 22.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出A B 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.23.(1)254个;(2)2m =-;(3)2m =-或12m -【分析】(1)利用指数函数的性质化简集合A ,再利用子集个数公式求解即可;(2)由由B =∅,223210x mx m m -+--<无解,则其对应的方程的0∆≤ (3)讨论三种情况,分别化简集合B ,利用包含关系列不等式求出m 的范围,综合三种情况可得结果.【详解】解:化简集合{|25}A x x =-≤≤,集合{}|(1)(21)0B x x m x m =-+--<.(1){},2,1,0,1,2,3,4,5x Z A ∈∴=--,即A 中含有8个元素,故A 的非空真子集数为822254-=个.(2)由B =∅,则22(3)4(21)0m m m ∆=----≤,得2(2)0m +≤,得2m =-.(3)①2m =-时,B A =∅⊆;②当2m <-时,()()21120m m m +--=+<,所以()21,1B m m =+-,因此,要B A ⊆,则只要21236152m m m +≥-⎧⇒-≤≤⎨-≤⎩,所以m 的值不存在; ③当2m >- 时,()1,21B m m =-+ ,因此,要B A ⊆,则只要1212215m m m -≥-⎧⇒-≤≤⎨+≤⎩. 综上所述,知m 的取值范围是2m =-或12m -≤≤.【点睛】本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,考查了分类讨论思想的应用,属于中档题.24.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.25.(1)(){|24}R A B x x ⋂=≤<(2)1a =【分析】 化简集合B ,(1)计算3a =时集合A ,根据补集与交集的定义;(2)由题意得出A ≠∅,根据包含关系,列出关于a 的不等式,求出实数a 的取值范围.【详解】集合{|123}A x a x a =+≤≤+{}{}22|7100|7100{|25}B x x x x x x x x =-+-≥=-+≤=≤≤;(1)当3a =时,{|49}A x x =≤≤{| 4 R A x x ∴=<或9}x >则(){|24}R A B x x ⋂=≤<(2)因为B A ⊆,{|25}B x x =≤≤,所以A ≠∅,则1232a a a +≤+⇒≥-并且由B A ⊆,得12235a a +≤⎧⎨+≥⎩,解得1a = 综上,实数a 的取值范围是1a =.【点睛】本题主要考查了交集,并集的运算以及根据包含关系求参数范围,属于中档题. 26.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >, 当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >. 【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.。
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U 是实数集R ,M ={x |x 2>4},N ={x |x -12≥1},则上图中阴影部分所表示的集合是( )A .{x |-2≤x <1}B .{x |-2≤x ≤2}C .{x |1<x ≤2}D .{x |x <2}2.设2a =5b =m ,且a 1+b 1=2,则m 等于( )A. B .10C .20D .1003.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)的大小关系是( )A .f (-1)>f (2)B .f (-1)<f (2)C .f (-1)=f (2)D .无法确定4.若集合A ={y |y =2x ,x ∈R },B ={y |y =x 2,x ∈R },则( )A .A ⊆B B .A BC .A =BD .A ∩B =∅5.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p %纳税,且年广告费超出年销售收入2%的部分也按p %纳税,其他不纳税.已知该企业去年共纳税120万元,则税率p %为( )A .10%B .12%C .25%D .40% 6.设则f (f (2))的值为( ) A .0B .1C .2D .37.定义运算:a *b =如1*2=1,则函数f(x)的值域为( ) A .RB .(0,+∞)C .(0,1]D .[1,+∞)8.若2lg(x -2y )=lg x +lg y ,则log 2y x 等于( )A .2B .2或0C .0D .-2或09.设函数,g (x )=log 2x ,则函数h (x )=f (x )-g (x )的零点个数是( ) A .4B .3C .2D .110.在下列四图中,二次函数y =ax 2+bx 与指数函数y =(a b )x 的图象只可为( )11.已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是( )12.设函数f (x )定义在实数集上,f (2-x )=f (x ),且当x ≥1时,f (x )=ln x ,则有( )A .f (31)<f (2)<f (21)B .f (21)<f (2)<f (31)C .f (21)<f (31)<f (2)D .f (2)<f (21)<f (31)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.如图,函数f (x )的图象是曲线OAB ,其中点O ,A ,B 的坐标分别为(0,0),(1,2),(3,1),则f (f (3))的值等于________.14.已知集合A ={x |x ≥2},B ={x |x ≥m },且A ∪B =A ,则实数m 的取值范围是________.15.若函数f (x )=x x2+(a +1x +a 为奇函数,则实数a =________.16.老师给出一个函数,请三位同学各说出了这个函数的一条性质:①此函数为偶函数;②定义域为{x ∈R |x ≠0};③在(0,+∞)上为增函数.老师评价说其中有一个同学的结论错误,另两位同学的结论正确.请你写出一个(或几个)这样的函数________.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设集合A 为方程-x 2-2x +8=0的解集,集合B 为不等式ax -1≤0的解集.(1)当a =1时,求A ∩B ;(2)若A ⊆B ,求实数a 的取值范围.18.(本小题满分12分)设全集为R ,A ={x |3<x <7},B ={x |4<x <10},(1)求∁R (A ∪B )及(∁R A )∩B ;(2)C ={x |a -4≤x ≤a +4},且A ∩C =A ,求a 的取值范围.19.(本小题满分12分)函数f (x )=x +12x -1,x ∈3,5].(1)判断单调性并证明;(2)求最大值和最小值.20.(本小题满分12分)已知二次函数f(x)=-x2+2ax-a在区间0,1]上有最大值2,求实数a的值.21.(本小题满分12分)已知函数f(x)的值满足f(x)>0(当x≠0时),对任意实数x,y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当0<x<1时,f(x)∈(0,1).(1)求f(1)的值,判断f(x)的奇偶性并证明;(2)判断f (x )在(0,+∞)上的单调性,并给出证明;(3)若a ≥0且f (a +1)≤93,求a 的取值范围.22.(本小题满分12分)已知函数f (x )=x 2+x a(x ≠0).(1)判断f (x )的奇偶性,并说明理由;(2)若f (1)=2,试判断f (x )在2,+∞)上的单调性.参考答案与解析1.C [题图中阴影部分可表示为(∁U M )∩N ,集合M ={x |x >2或x <-2},集合N ={x |1<x ≤3},由集合的运算,知(∁U M )∩N ={x |1<x ≤2}.]2.A [由2a =5b =m 得a =log 2m ,b =log 5m ,∴a 1+b 1=log m 2+log m 5=log m 10.∵a 1+b 1=2,∴log m 10=2,∴m 2=10,m =.]3.A [由y =f (x +1)是偶函数,得到y =f (x )的图象关于直线x =1对称,∴f (-1)=f (3). 又f (x )在[1,+∞)上为单调增函数,∴f (3)>f (2),即f (-1)>f (2).]4.A [∵x ∈R ,∴y =2x >0,即A ={y |y >0}.又B ={y |y =x 2,x ∈R }={y |y ≥0},∴A ⊆B .]5.C [利润300万元,纳税300·p %万元,年广告费超出年销售收入2%的部分为200-1000×2%=180(万元),纳税180·p %万元,共纳税300·p %+180·p %=120(万元),∴p %=25%.]6.C [∵f (2)=log 3(22-1)=log 33=1,∴f (f (2))=f (1)=2e 1-1=2.]7.C[由题意可知f (x )=2-x ,x>0.2x x ≤0,作出f (x )的图象(实线部分)如右图所示;由图可知f (x )的值域为(0,1].]8.A [方法一 排除法.由题意可知x >0,y >0,x -2y >0,∴x >2y ,y x >2,∴log 2y x >1.方法二 直接法.依题意,(x -2y )2=xy ,∴x 2-5xy +4y 2=0,∴(x -y )(x -4y )=0,∴x =y 或x =4y ,∵x -2y >0,x >0,y >0,∴x >2y ,∴x =y (舍去),∴y x =4,∴log 2y x =2.]9.B [当x ≤1时,函数f (x )=4x -4与g (x )=log 2x 的图象有两个交点,可得h (x )有两个零点,当x >1时,函数f (x )=x 2-4x +3与g (x )=log 2x 的图象有1个交点,可得函数h (x )有1个零点,∴函数h (x )共有3个零点.]10.C [∵a b >0,∴a ,b 同号.若a ,b 为正,则从A 、B 中选.又由y =ax 2+bx 知对称轴x =-2a b <0,∴B 错,但又∵y =ax 2+bx 过原点,∴A 、D 错.若a ,b 为负,则C 正确.]11.B [据题意由f (4)g (-4)=a 2×log a 4<0,得0<a <1,因此指数函数y =a x (0<a <1)是减函数,函数f (x )=a x -2的图象是把y =a x 的图象向右平移2个单位得到的,而y =log a |x |(0<a <1)是偶函数,当x >0时,y =log a |x |=log a x 是减函数.]12.C [由f (2-x )=f (x )知f (x )的图象关于直线x =22-x +x =1对称,又当x ≥1时,f (x )=ln x ,所以离对称轴x =1距离大的x 的函数值大,∵|2-1|>|31-1|>|21-1|,∴f (21)<f (31)<f (2).]13.2 解析:由图可知f (3)=1,∴f (f (3))=f (1)=2.14.2,+∞) 解析:∵A ∪B =A ,即B ⊆A ,∴实数m 的取值范围为2,+∞).15.-1 解析:由题意知,f (-x )=-f (x ),即-x x2-(a +1x +a =-x x2+(a +1x +a ,∴(a +1)x =0对x ≠0恒成立,∴a +1=0,a =-1.16.y =x 2或y =1+x ,x<01-x ,x>0,或y =-x 2(答案不唯一)解析:可结合条件来列举,如:y =x 2或y =1+x ,x<01-x ,x>0或y =-x 2.解题技巧:本题为开放型题目,答案不唯一,可结合条件来列举,如从基本初等函数中或分段函数中来找.17.解:(1)由-x 2-2x +8=0,解得A ={-4,2}.当a =1时,B =(-∞,1].∴A ∩B =.(2)∵A ⊆B ,∴2a -1≤0,-4a -1≤0,∴-41≤a ≤21,即实数a 的取值范围是21.18.解:(1)∁R (A ∪B )={x |x ≤3或x ≥10},(∁R A )∩B ={x |7≤x <10}.(2)由题意知,∵A ⊆C ,∴a -4≤3,a +4≥7,解得3≤a ≤7,即a 的取值范围是3,7].19.解:(1)f (x )在3,5]上为增函数.证明如下:任取x 1,x 2∈3,5]且x 1<x 2.∵ f (x )=x +12x -1=x +12(x +1-3=2-x +13,∴ f (x 1)-f (x 2)=x1+13-x2+13=x2+13-x1+13=(x1+1(x2+13(x1-x2,∵ 3≤x 1<x 2≤5,∴ x 1-x 2<0,(x 2+1)(x 1+1)>0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),∴ f (x )在3,5]上为增函数.(2)根据f (x )在3,5]上单调递增知,f (x )]最大值=f (5)=23,f (x )]最小值=f (3)=45.解题技巧:(1)若函数在闭区间a ,b ]上是增函数,则f (x )在a ,b ]上的最大值为f (b ),最小值为f (a ).(2)若函数在闭区间a ,b ]上是减函数,则f (x )在a ,b ]上的最大值为f (a ),最小值为f (b ).20.解:由f (x )=-(x -a )2+a 2-a ,得函数f (x )的对称轴为x =a .①当a <0时,f (x )在0,1]上单调递减,∴f (0)=2,即-a =2,∴a =-2.②当a >1时,f (x )在0,1]上单调递增,∴f (1)=2,即a =3.③当0≤a ≤1时,f (x )在0,a ]上单调递增,在a,1]上单调递减,∴f (a )=2,即a 2-a =2,解得a =2或-1与0≤a ≤1矛盾.综上,a =-2或a =3.21.解:(1)令x =y =-1,f (1)=1.f (x )为偶函数.证明如下:令y =-1,则f (-x )=f (x )·f (-1),∵f (-1)=1,∴f (-x )=f (x ),f (x )为偶函数.(2)f (x )在(0,+∞)上是增函数.设0<x 1<x 2,∴0<x2x1<1,f (x 1)=f ·x2x1=f x2x1·f (x 2),Δy =f (x 2)-f (x 1)=f (x 2)-f x2x1f (x 2)=f (x 2)x2x1.∵0<f x2x1<1,f (x 2)>0,∴Δy >0,∴f (x 1)<f (x 2),故f (x )在(0,+∞)上是增函数.(3)∵f (27)=9,又f (3×9)=f (3)×f (9)=f (3)·f (3)·f (3)=f (3)]3,∴9=f (3)]3,∴f (3)=93,∵f (a +1)≤93,∴f (a +1)≤f (3),∵a ≥0,∴a +1≤3,即a ≤2,综上知,a 的取值范围是0,2].22.解:(1)当a =0时,f (x )=x 2,f (-x )=f (x ).∴函数f (x )是偶函数.当a ≠0时,f (x )=x 2+x a (x ≠0),而f (-1)+f (1)=2≠0,f (-1)-f (1)=-2a ≠0,∴ f (-1)≠-f (1),f (-1)≠f (1).∴ 函数f (x )既不是奇函数也不是偶函数.(2)f (1)=2,即1+a =2,解得a =1,这时f (x )=x 2+x 1.任取x 1,x 2∈2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x11-x21=(x 1+x 2)(x 1-x 2)+x1x2x2-x1=(x 1-x 2)x1x21, 由于x 1≥2,x 2≥2,且x 1<x 2,∴ x 1-x 2<0,x 1+x 2>x1x21,f (x 1)<f (x 2),故f (x )在2,+∞)上单调递增.。
必修1 第一章 集合测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.下列选项中元素的全体可以组成集合的是 ( )A.学校篮球水平较高的学生B.校园中长的高大的树木C.2007年所有的欧盟国家D.中国经济发达的城市2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{ 3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参 加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A ∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14} 又,,B b A a ∈∈则有 ( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.集合A ={1,2,x },集合B ={2,4,5},若B A ={1,2,3,4,5},则x =( )A. 1B. 3C. 4D. 59.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是( ) A. 8 B . 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 , 6 },那么集合 { 2 ,7 ,8}是 ( )M N A M N B N M C M NDA. A BB. B AC. B C A C U UD. B C A C U U11.设集合{|32}M m m =∈-<<Z ,{|13}N n n MN =∈-=Z 则,≤≤ ( ) A .{}01,B .{}101-,,C .{}012,,D .{}1012-,,, 12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是( ) A .0 B .0 或1 C .1 D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.用描述法表示被3除余1的集合 .14.用适当的符号填空:(1)∅ }01{2=-x x ; (2){1,2,3} N ;(3){1} }{2x x x =; (4)0 }2{2x x x =.15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分,解答应写出文字说明,证明过程或演算步骤)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18. 已知集合}71{<<=x x A ,集合}521{+<<+=a x a x B ,若满足 }73{<<=x x B A ,求实数a 的值.19. 已知方程02=++b ax x .(1)若方程的解集只有一个元素,求实数a ,b 满足的关系式;(2)若方程的解集有两个元素分别为1,3,求实数a ,b 的值20. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足B C ⊆,求实数a 的取值范围.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 CBBCC 11~12 BB 二、13 },13{Z n n x x ∈+=,14 (1)φ⊆}01{2=-x x ;(2){1,2,3}⊆N ; (3){1}⊆}{2x x x =;(4)0∈}2{2x x x =; 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ; 13|{<≤-=⋃x x N M 或}32≤≤x . 三、17 .{0.-1,1};18. 2=a ; 19. (1) a 2-4b=0 (2) a=-4, b=3 20. 32≤≤a .。
一、选择题1.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-22.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .03.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集4.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅5.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤6.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<7.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭8.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭9.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .110.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<11.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法;④{|,}G x x a a b Q ==+∈,*运算:实数的乘法; 其中为融洽集的是________15.已知集合{}2|20A x x x x R =--<∈,,集合{}|21B x x x R =-∈≥,,则A B =________.16.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________17.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.18.设A 是集合{}123456S =,,,,,的非空子集,称A 中的元素之和为A 的“容量”,则S 的所有非空子集的“容量”之和是_______19.设,,x y z 都是非零实数,则可用列举法将x y z xy xyz x y z xy xyz++++的所有可能值组成的集合表示为________.20.设a 、b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=__________.三、解答题21.设集合{}|34A x x =-≤≤,{|132}B x m x m =-≤≤- (1)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围; (2)若AB B =,求实数m 的取值范围.22.已知集合2212x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}254B x x x =>-,{}1,C x x m m =-<∈R ,(1)求AB ;(2)若()A B C ⋂⊆,求m 的取值范围.23.已知集合{}|123A x a x a =-<<+,2{|280}B x x x =--≤. (1)当a =2时,求AB ;(2)若___________,求实数a 的取值范围.在①AB A =,②()R AC B A =,③A B ⋂=∅这三个条件中任选一个,补充在(2)问中的横线上,并求解.(注:如果选择多个条件分别解答,按第一个解答计分)24.已知集合{}|13A x x =-<<,集合(){}2|25250B x x k x k =+--<,k ∈R .(1)若1k =时,求B R,A B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数k 的取值范围.25.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围.26.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值;【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.2.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题3.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集.对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.4.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.5.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.6.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.7.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.8.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.9.B解析:B 【解析】 【分析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.10.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤.故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.11.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解. 当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意; 当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-.故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.14.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④ 【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集” 【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④ 【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力15.【分析】先解一元二次不等式得集合A 再解含绝对值不等式得集合B 最后求交集得结果【详解】因为所以故答案为:【点睛】本题考查解一元二次不等式解含绝对值不等式以及集合交集考查基本分析求解能力属基础题 解析:(]1,1-【分析】先解一元二次不等式得集合A ,再解含绝对值不等式得集合B,最后求交集得结果. 【详解】因为{}2|20(1,2)A x x x x R =--<∈=-,,{}|21(,1][3,)B x x x R =-∈=-∞+∞≥,, 所以A B =(]1,1-故答案为:(]1,1- 【点睛】本题考查解一元二次不等式、解含绝对值不等式以及集合交集,考查基本分析求解能力,属基础题.16.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若AB B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.17.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.18.672【分析】在所有的子集中每个元素出现的次数都是个由此能求出结果【详解】在所有的子集中每个元素出现的次数都是个的所有非空子集的容量之和为故答案为:672【点睛】本题主要考查学生的对新定义的分析和解解析:672 【分析】在S 所有的子集中,每个元素出现的次数都是52个,由此能求出结果. 【详解】在S 所有的子集中,每个元素出现的次数都是52个,S ∴的所有非空子集的“容量”之和为5(123456)672+++++=2故答案为:672 【点睛】本题主要考查学生的对新定义的分析和解决的能力,主要考查了转化与划归的思想.19.【分析】由题意分类讨论实数xyz 的符号列表求解所给式子的值然后确定其值组成的集合即可【详解】分类讨论xyz 的符号列表求值如下:x y z 计算结果 大于零 大于零 大于零 1 1 1 1 解析:{}5,1,1,3--【分析】由题意分类讨论实数x ,y ,z 的符号列表求解所给式子的值,然后确定其值组成的集合即可. 【详解】分类讨论x ,y ,z 的符号列表求值如下:据此可得:x y z xy xyz++++的所有可能值组成的集合表示为{}5,1,1,3--. 故答案为:{}5,1,1,3--. 【点睛】本题主要考查分类讨论的数学思想,集合中元素的互异性等知识,意在考查学生的转化能力和计算求解能力.20.【分析】根据题意得出则则有可得出由此得出然后求出实数的值于是可得出的值【详解】由于有意义则则有所以根据题意有解得因此故答案为【点睛】本题考查利用集合相等求参数的值解题的关键就是根据题意列出方程组求解 解析:2【分析】根据题意得出0a ≠,则a b b +≠,则有0a b +=,可得出1ba=-,由此得出10b a b b a a ⎧⎪=⎪+=⎨⎪⎪=⎩,然后求出实数a 、b 的值,于是可得出b a -的值. 【详解】{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,由于b a -有意义,则0a ≠,则有0a b +=,所以,1ba -=-.根据题意有10b a b ba a ⎧⎪=⎪+=⎨⎪⎪=⎩,解得11a b =-⎧⎨=⎩,因此,()112b a -=--=.故答案为2. 【点睛】本题考查利用集合相等求参数的值,解题的关键就是根据题意列出方程组求解,考查运算求解能力,属于中等题.三、解答题21.(1)4m ≥;(2)2m ≤. 【分析】(1)根据已知条件得集合A 是B 的真子集,由此可得答案;(2)由于A B B =,故B 是A 的子集,分两种情况,分别列不等式求得m 的取值范围.【详解】(1) 由x A ∈是x B ∈的充分不必要条件,所以AB ,13324m m -≤-⎧⎨-≥⎩等号不同时成立得4m ≥ ∴实数m 的取值范围为4m ≥ (2)由题意知B A ⊆ 当B =∅,3132,4m m m ->-<当B ≠∅,13324132m m m m -≥-⎧⎪-≤⎨⎪-≤-⎩,324m ≤≤综上所述:实数m 的取值范围为2m ≤. 【点睛】本题主要考查集合的运算,根据包含关系求参数的取值范围,属于基础题. 22.(1){}12x x <<;(2)12m ≤≤ 【分析】(1)解不等式,可求出集合,A B ,进而求出二者的交集即可;(2)结合(1),由()A B C ⋂⊆,可得{}12x x <<⊆{}11x m x m -<<+,进而可列出不等关系,求解即可. 【详解】 (1)由2212x x +<-,得402x x +<-,等价于()()420x x +-<,解得42x -<<, 所以集合{}42A x x =-<<,由254x x >-,解得1x >或5x <-,所以{1B x x =>或}5x <-,所以AB ={}42x x -<<{1x x >或}5x <-{}12x x =<<.(2)因为()A B C ⋂⊆,所以{}12x x <<⊆{}1,x x m m -<∈R , 即{}12x x <<⊆{}11x m x m -<<+,所以1112m m -≤⎧⎨+≥⎩,解得12m ≤≤.综上所述,实数m 的取值范围是12m ≤≤.【点睛】本题考查分式不等式、一元二次不等式的解法,考查集合的交集,考查根据集合的包含关系求参数,考查学生的推理能力与计算求解能力,属于中档题.23.(1){}|27A B x x ⋃=-≤<;(2)若选择①(]1,41,2⎡⎤-∞--⎢⎥⎣⎦;若选择②[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)当a =2时,得出集合A ,求得集合B ,根据集合的并集运算可得答案; (2)若选择①A B A =,则A B ⊆,分集合A 是空集和不是空集两种情况讨论得实数a的取值范围; 若选择②()R AC B A =,则A 是RB 的子集,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围; 若选择③A B =∅,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围.【详解】(1)当a =2时,集合{}|17A x x =<<,{}|24B x x =-≤≤,所以{}|27A B x x ⋃=-≤<;(2)若选择①A B A =,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤;综上知:实数a 的取值范围(]1,41,2⎡⎤-∞--⎢⎥⎣⎦; 若选择②()R AC B A =,则A 是RB 的子集,(,2)(4,)R B =-∞-⋃+∞,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥,综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③A B =∅,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥,综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;【点睛】易错点睛:本题容易忽略集合A 是空集的情况,导致出错:空集是任何集合的子集,是任何非空集合的真子集.24.(1)[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,5,32⎛⎫- ⎪⎝⎭;(2)[)3,+∞.【分析】(1)若1k =,化简集合B ,利用补集和并集的定义进行计算可得答案; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,分52k <-,52k =-和52k >-分别求出集合B ,列出不等式可得实数k 的取值范围.【详解】(1)若1k =,{}25|2350|12B x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭则R B =[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,A B =5,32⎛⎫- ⎪⎝⎭; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,(){}()(){}2|25250|250B x x k x k x x k x =+--<=-+<当52k <-时,5,2B k ⎛⎫=- ⎪⎝⎭,不合题意;当52k =-时,B φ=,不合题意; 当52k >-时,5,2B k ⎛⎫=- ⎪⎝⎭,只需3k ≥; 综上可得:实数k 的取值范围是[)3,+∞. 【点睛】结论点睛:本题考查集合的交并补运算,考查充分不必要条件的应用,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 25.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<. 【分析】(1)解一元二次不等式能求出集合A . (2)由AB R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得A B R =.(3)由AB ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a的取值范围. 【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->,解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解, 当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 综上所述:当0a =或1a =时,B =∅, 当0a <或1a >时,2{|}B x a x a =<<, 当01a <<时,2{|}B x a x a =<<, 要使AB R =,当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解, 当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解, 故不存在实数a ,使得A B R =.(3)AB ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>, 解得01a <<,此时,实数a 的取值范围是(0,1). 【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论; 26.(1){a|a≤7};(2){a|a <6或a >152} 【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围 【详解】(1)若A =∅,则A∩B =∅成立. 此时2a +1>3a -5, 即a <6.若A≠∅,则2135{2113516a aaa+≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B=∅的实数a的取值范围是{a|a≤7}.(2)因为A⊆(A∩B),且(A∩B)⊆A,所以A∩B=A,即A⊆B.显然A=∅满足条件,此时a<6.若A≠∅,则2135{351a aa+≤--<-或2135{2116a aa+≤-+>由2135{351a aa+≤--<-解得a∈∅;由2135{2116a aa+≤-+>解得a>152.综上,满足条件A⊆(A∩B)的实数a的取值范围是{a|a<6或a>152}.考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用。
新课标高一数学同步测试(1)—第一单元(集合)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.下列各项中,不可以组成集合的是( ) A .所有的正数 B .约等于2的数 C .接近于0的数 D .不等于0的偶数 2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( )A .1B .—1C .1或—1D .1或—1或0 3.设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( )A .MB . PC .QD .P M ⋃ 4.设U ={1,2,3,4} ,若B A ⋂={2},}4{)(=⋂B A C U ,}5,1{)()(=⋂B C A C U U ,则下列结论正确的是( ) A .A ∉3且B ∉3 B .A ∈3且B ∉3 C .A ∉3且B ∈3D .A ∈3且B ∈35.以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φ}0{,其中正确的个数是( )A .1B .2C .3D .46. 设U 为全集,Q P ,为非空集合,且PQU ,下面结论中不正确...的是 ( )A .U Q P C U =⋃)(B .=⋂Q PC U )(φ C .Q Q P =⋃D .=⋂P Q C U )(φ 7.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( )A .N M =B .MN C .N MD .φ=⋂N M9.表示图形中的阴影部分( )ABD .C B A ⋂⋃)(10.已知集合A 、B 、C 为非空集合,M=A ∩C ,N=B ∩C ,P=M ∪N ,则 ( )A .C ∩P=CB .C ∩P=P C .C ∩P=C ∪PD .C ∩P=φ 二、填空题:请把答案填在题中横线上(每小题6分,共24分).11.若集合}3|),{(}04202|),{(b x y y x y x y x y x +=⊂=+-=-+且,则_____=b . 12.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .13.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 . 14.已知}1,0,1,2{--=A ,}|{A x x y y B ∈==,则B = . 三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分). 15.(12分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z}求证:(1)3∈A ;(2)偶数4k —2 (k ∈Z)不属于A.16.(12分)(1)P ={x |x 2-2x -3=0},S ={x |a x +2=0},S ⊆P ,求a 取值?(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m ?17.(12分)在1到100的自然数中有多少个能被2或3整除的数?18.(12分)已知方程02=++q px x 的两个不相等实根为βα,。
一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭, B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( )A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x <<3.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞4.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个5.在整数集Z 中,被5所除得余数为k 的所有整数组成一个“类”,记为[]k ,即[]{5|}k n k n Z =+∈,0,1,2,3,4k =;给出四个结论:(1)2015[0]∈;(2)3[3]-∈;(3)[0][1][2][3][4]Z =⋃⋃⋃⋃;(4)“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”. 其中正确结论的个数是( ) A .1个 B .2个 C .3个 D .4个 6.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( )A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉7.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+8.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭9.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<11.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R12.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .16二、填空题13.已知集合{|M m Z =∈关于x 的方程2420x mx +-=有整数解},集合A 满足条件:①A 是非空集合且A M ⊆;②若a A ∈,则a A -∈.则所有这样的集合A 的个数为______.14.我们将b a -称为集合{|}M x a x b =≤≤的“长度”,若集合2{|}3M x m x m =≤≤+,{|0.5}N x n x n =-≤≤,且集合M 和集合N 都是集合{|01}x x ≤≤的子集,则集合M N ⋂的“长度”的最小值是________15.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 所有取值的集合为_____16.若集合{}2|20N x x x a =-+=,{}1M =,且N M ⊆,则实数a 的取值范围是_________17.设集合{}[1,2),0M N x x k =-=-≤,若M N ⋂=∅,则实数k 的取值范围为_______.18.已知集合{}{}2|21,|20xA y yB x x x ==+=--<,则()R C A B =__________.19.已知集合{|11},{|01}A x a x a B x x =-<<+=<<若A B φ⋂=,实数a 的取值范围是______.20.任意两个正整数x 、y ,定义某种运算⊗:()()x y x y x y x y x y +⎧⊗=⎨⨯⎩与奇偶相同与奇偶不同,则集合{(,)|6,,}M x y x y x y =⊗=∈*N 中元素的个数是________三、解答题21.设全集U =R ,集合{}lg()0A x x a =->,{}2340B x x x =--<. (1)当1a =时,求AB ;(2)若A B A ⋃=,求实数a 的取值范围.22.已知命题p :x ∈A ={x|a -1<x <a +1,x ∈R},命题 q :x ∈B ={x|x 2-4x +3≥0}. (1)或A∩B =∅,A ∪B =R ,求实数a (2)若是p 的必要条件,求实数a.23.已知集合{}{}27,32A x x B x a x a =-<<=≤≤-. (1)若4a =,求AB 、()RC A B ;(2)若A B A ⋃=,求实数a 的取值范围.24.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣9≤0,x ∈R ,m ∈R}. (1)若A∩B=[1,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围. 25.已知集合{}|12A x x =-≤,集合03x a B x x ⎧⎫-=<⎨⎬+⎩⎭(1)若1a =,求集合AB ;(2)若A B B ⋃=,求实数a 的取值范围.26.设集合{}|36A x x =≤<,集合{}|19B x x =<≤. 求:(1)AB ;(2)()R C A B ⋃.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭.故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.B解析:B 【分析】根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<. 故选:B . 【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.3.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.4.C解析:C 【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数. 【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=, 所以{}{}1,0,1,2,3510,1,2,AB A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个, 故选:C 【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题.5.C解析:C 【分析】根据新定义,对每个选项逐一判断,即可得到答案. 【详解】对于(1),因为20155403÷=,余数为0,所以2015[0]∈,故(1)正确; 对于(2),因为()3512-=⨯-+,所以33[]-∉,故(2)错误; 对于(3),因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故(3)正确;对于(4),因为整数,a b 属于同一“类”,所以整数,a b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数,a b ”属于同一“类”的充要条件是“[0]a b -∈”.故(4)正确.综上所述,正确的个数为:3个. 故选C . 【点睛】本题考查了集合的新定义,解题关键是理解被5所除得余数为k 的所有整数组成一个“类”,考查了分析能力和计算能力.6.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.7.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】由于()1lg 12x -<=所以{(011,1A x x =<-<=+,依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.8.B解析:B 【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-. 故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.11.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.12.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A.【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题13.15【分析】先依题意化简集合M 再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合即得这样的集合的个数【详解】设为方程的两个根则当时;当时;当时;当时;由条件①知且又由条件②知A 是有一些成对的解析:15 【分析】先依题意化简集合M ,再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合,即得这样的集合的个数. 【详解】设a ,b 为方程2420x mx +-=的两个根,则a b m +=-,42ab =-, 当1=a ,42b =时,41m =±; 当2=a ,21b =时,19m =±; 当3a =,14b =时,11m =±; 当6a =,7b =时,1m =±;{}{}{}{}{}1,111,1119,1941,411,1,11,11,19,19,41,41M =-⋃-⋃-⋃-=----,由条件①知A ≠∅且A M ⊆,又由条件②知A 是有一些成对的相反数组成的集合. 所以M 的4对相反数共能组成42115-=个不同的非空集合A . 故答案为:15. 【点睛】 关键点点睛:本题解题关键在于明确题中条件要求集合A 是由互为相反数的四组数字构成的非空集合,即计算集合个数突破难点.14.【分析】当集合的长度的最小值时与应分别在区间的左右两端由此能求出的长度的最小值【详解】由题的长度为的长度为当集合的长度的最小值时与应分别在区间的左右两端故的长度的最小值是故答案为:【点睛】本题考查交解析:16【分析】当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端,由此能求出M N ⋂的“长度”的最小值 【详解】由题,M 的“长度”为23,N 的“长度”为12, 当集合M N ⋂的“长度”的最小值时,M 与N 应分别在区间[]0,1的左右两端, 故M N ⋂的“长度”的最小值是2111326+-=, 故答案为:16【点睛】本题考查交集的“长度”的最小值的求法,考查新定义的合理运用15.【分析】分类讨论:当时;当时分别讨论中元素为1和-1两种情况依次求解【详解】由题:当时符合题意;当时或所以或1所以实数所有取值的集合为故答案为:【点睛】此题考查通过集合的包含关系求参数的值其中的易漏 解析:{}1,0,1-【分析】分类讨论:当B =∅时,0a =;当B ≠∅时,分别讨论B 中元素为1和-1两种情况依次求解. 【详解】 由题:B A ⊆当0a =时,B =∅符合题意; 当0a ≠时,1B A a ⎧⎫=-⊆⎨⎬⎩⎭,11a -=或11a -=-所以,1a =-或1,所以实数a 所有取值的集合为{}1,0,1-. 故答案为:{}1,0,1- 【点睛】此题考查通过集合的包含关系求参数的值,其中的易漏点在于漏掉考虑子集为空集的情况,依次分类讨论即可避免此类问题.16.【分析】根据条件得到或分别计算得到答案【详解】则或当时解得;当时满足综上所述:故答案为:【点睛】本题考查了根据集合的包含关系求参数忽略掉空集的情况是容易发生的错误 解析:[1,)+∝【分析】根据条件得到{}1N =或N =∅,分别计算得到答案. 【详解】N M ⊆,则{}1N =或N =∅当{}1N =时,{}{}2|201N x x x a =-+==,解得1a =;当N =∅时,{}2|20N x x x a =-+=,满足4401a a ∆=-<∴>. 综上所述:1a ≥ 故答案为:[1,)+∝ 【点睛】本题考查了根据集合的包含关系求参数,忽略掉空集的情况是容易发生的错误.17.【分析】首先求得集合N 然后确定实数k 的取值范围即可【详解】由题意可得:结合可知实数k 的取值范围是:故答案为:【点睛】本题主要考查交集的运算由集合的运算结果求参数取值范围的方法等知识意在考查学生的转化 解析:{}|1k k <-【分析】首先求得集合N ,然后确定实数k 的取值范围即可. 【详解】由题意可得:{}|N x x k =≤,结合M N ⋂=∅可知实数k 的取值范围是:1k <-. 故答案为:{}|1k k <-. 【点睛】本题主要考查交集的运算,由集合的运算结果求参数取值范围的方法等知识,意在考查学生的转化能力和计算求解能力.18.【分析】求函数的值域求得集合解一元二次不等式求得集合由此求得【详解】根据指数函数的性质可知所以有解得即所以故答案为【点睛】本小题主要考查集合交集补集的运算考查指数型函数值域的求法考查一元二次不等式的 解析:(]1,1-【分析】求函数的值域求得集合A ,解一元二次不等式求得集合B ,由此求得()R C A B ⋂. 【详解】根据指数函数的性质可知,211xy =+>,所以()1,A =+∞,有()()22210x x x x --=-+<解得12x -<<,即()1,2B =-,所以()R C A B =(]1,1-.故答案为(]1,1-. 【点睛】本小题主要考查集合交集、补集的运算,考查指数型函数值域的求法,考查一元二次不等式的解法,属于基础题.19.【分析】由根据集合的交集的运算得到或即可求解【详解】由题意集合因为则满足或解得或即实数的取值范围是故答案为:【点睛】本题主要考查了集合的运算以及利用集合的交集求参数其中解答中熟记集合交集运算列出相应解析:(][),12,-∞-⋃+∞【分析】由A B φ⋂=,根据集合的交集的运算,得到11a -≥或10a +≤,即可求解.【详解】由题意,集合{|11},{|01}A x a x a B x x =-<<+=<<,因为A B φ⋂=,则满足11a -≥或10a +≤,解得2a ≥或1a ≤-,即实数a 的取值范围是(][),12,-∞-⋃+∞.故答案为:(][),12,-∞-⋃+∞.【点睛】本题主要考查了集合的运算,以及利用集合的交集求参数,其中解答中熟记集合交集运算,列出相应的不等式是解答的关键,着重考查了推理与运算能力,属于基础题. 20.【分析】根据正整数的奇偶讨论的不同取值情况:若一奇一偶则取;若都是奇数或都是偶数则取列举出所有可能即可【详解】集合若一奇一偶则取此时所有个数为此时共有4个;若都是偶数则取此时所有个数为此时共有2个; 解析:9【分析】根据正整数的奇偶,讨论x y 、的不同取值情况:若一奇一偶,则取6xy =;若都是奇数或都是偶数,则取6x y +=,列举出所有可能即可.【详解】集合{(,)|6,,}M x y x y x y =⊗=∈*N若x y 、一奇一偶,则取6xy =,此时所有个数为16x y =⎧⎨=⎩,23x y =⎧⎨=⎩,32x y =⎧⎨=⎩,61x y =⎧⎨=⎩,此时(),x y 共有4个;若x y 、都是偶数,则取6x y +=,此时所有个数为24x y =⎧⎨=⎩,42x y =⎧⎨=⎩,此时共(),x y 有2个; 若x y 、都是奇数,则取6x y +=,此时所有个数为15x y =⎧⎨=⎩,33x y =⎧⎨=⎩, 51x y =⎧⎨=⎩此时(),x y 共有3个;综上可知,满足条件的元素共有9个.故答案为:9【点睛】本题考查了新定义运算与集合的综合应用,注意分析题意并正确理解新定义是解决此类问题的关键,属于中档题. 三、解答题21.(1)(2,4]A B ⋂=;(2)(,2]-∞-.【分析】(1)当1a =时确定集合A ,根据交集的定义求解.(2)由A B A ⋃=得B A ⊆,得出a 的取值范围.【详解】(1)当1a =时,由lg(1)0x ->得11x ->,解得2x >,所以(2,)A =+∞, 由{}2340B x x x =--<解得[]1,4B =-,所以(2,4]A B ⋂=.(2){}{}lg()01A x x a x x a =->=+, {}2340B x x x =--<得{}|14B x x =-<<,由A B A ⋃=得B A ⊆,所以(1,4)(1,)a -⊆++∞,所以11a ≤-+,解得2a ≤-,所以实数a 的取值范围是(,2]-∞-.【点睛】关键点点睛:该题考查的是有关集合的问题,在解题的过程中,注意正确求解集合,再者就是能正确判断集合之间的关系.22.(1) a =2;(2) a =2【详解】解:(1)由题意得B ={x|x≥3或x≤1},由A∩B =∅,A ∪B =R ,可知A =∁R B =(1,3)∴⇒a =2-(2)∵B ={x|x≥3或x≤1},∴:x ∈{x|1<x <3}.∵是p 的必要条件.即p ⇒, ∴A ⊆∁R B =(1,3) ∴⇒2≤a≤2⇒a =2. 本试题主要考查了命题的真值,以及集合的运算的综合运用,以及二次不等式的求解问题.23.(1)(]2,10AB =-;[]()7,10R A B =;(2)3a <. 【分析】(1)直接按集合并集的概念进行运算,先求出A R 再与集合B 取交集;(2)根据并集的结果可得B A ⊆,分B =∅、B ≠∅两种情况进行讨论求解a 的取值范围.【详解】(1)4a =,[](]4,10,(2,7)2,10B A A B ==-⇒=-, (][)[],27,+()7,10R R A A B =-∞-∞⇒=(2)A B A B A ⋃=⇒⊆,①若321B a a a =∅⇒>-⇒<;②若32122133273a a a B a a a a a ≤-≥⎧⎧⎪⎪≠∅⇒>-⇒>-⇒≤<⎨⎨⎪⎪-<<⎩⎩. 综上所述,3a <.【点睛】本题考查集合的基本运算、根据两集合并集的结果求参数的范围,属于中档题. 24.(1)m=4;(2) m >6,或m <﹣4.【解析】试题分析:(1)化简A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3},由A∩B=[1,3],得到:m=4;(2)若p 是¬q 的充分条件,即A ⊆C R B ,易得:m >6,或m <﹣4. 试题由已知得:A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3}.(1)∵A∩B=[1,3] ∴ ∴, ∴m=4;(2)∵p 是¬q 的充分条件,∴A ⊆C R B ,而C R B=x|x <m ﹣3,或x >m+3}∴m ﹣3>3,或m+3<﹣1,∴m >6,或m <﹣4.25.(1){|11}AB x x =-<;(2)3a >. 【分析】(1)若1a =,化简集合A ,B ,即可求集合A B ;(2)若A B B ⋃=,则A B ⊆,即可求实数a 的取值范围.【详解】(1)若1a =,集合{||1|2}{|13}A x x x x =-=-, 集合0{|31}3x a B x x x x ⎧⎫-=<=-<<⎨⎬+⎩⎭, {|11}A B x x ∴⋂=-<;(2)若A B B ⋃=,则A B ⊆,3a ∴>.【点睛】本题考查集合的运算,考查集合的关系,意在考查学生对这些知识的理解掌握水平,比较基础.26.(1){}|36A B x x ⋂=≤<;(2)()R C A B R ⋃=【分析】(1)根据集合的交集运算即可(2)根据集合的补集、并集运算.【详解】因为集合{}|36A x x =≤<,集合{}|19B x x =<≤ 所以{}|36A B x x ⋂=≤<.所以{|3R C A x x =<或}6x ≥,∴R C A B R ⋃=.【点睛】本题主要考查了集合的交集,补集,并集运算,属于容易题.。
一、选择题1.由实数x ,﹣x ,|x |,2x ,33x -组成的集合中,元素最多有( ) A .2个B .3个C .4个D .5个2.已知集合{}2,,M m m a b a b Q ==+∈,则下列四个元素中属于M 的元素的个数是( )①12π+;②1162+;③22+;④2323-++ A .4B .3C .2D .13.对任意x M ∈,总有2x M ∉且x M ∉,若{}0,1,2,3,4,5M ⊆,则满足条件的非空集合M 的个数是( ) A .11B .12C .15D .164.已知集合{}1,2,3,4,5,6U =,集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅.若{}3,4=UAB ,则满足条件的集合A 的个数为( )A .7个B .8个C .15个D .16个5.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭ D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭6.已知全集U =R ,集合91A xx ⎧⎫=>⎨⎬⎩⎭和{}44,B x x x Z =-<<∈关系的Venn 图如图所示,则阴影部分所表示集合中的元素共有( )A .3个B .4个C .5个D .无穷多个7.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥8.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则AB =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦9.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,110.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇11.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .212.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .2二、填空题13.若集合(){}2220A x Z x a x a =∈-++-<中有且只有一个元素,则正实数a 的取值范围是_____.14.已知常数a 是正整数,集合1{|||,}2A x x a a x Z =-<+∈,{|||2,}B x x a x Z =<∈,则集合A B 中所有元素之和为________15.若{}2230P x x x =--<,{}Q x x a =>,且P Q P =,则实数a 的取值范围是______.16.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________. 17.设,,x y z 都是非零实数,则可用列举法将x y z xy xyz x y z xy xyz++++的所有可能值组成的集合表示为________.18.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个.19.已知集合2{1,9,},{1,}A x B x ==,若A B A ⋃=,则x 的值为_________. 20.若集合{}|121A x m x m =+<≤-,{}|25B x x =-≤<,若()()R R C A C B ⊇,则m 的取值范围是_____________.三、解答题21.设集合{}{}222280,430A x x x B x x ax a =+-<=-+= (1)若x A ∈是x B ∈的必要条件,求实数a 的取值范围;(2)是否存在实数a ,使A B ϕ⋂≠成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.22.若集合{}24A x x =<<,{}3B x a x a =<<. (1)若x A ∈是x B ∈的充分条件,求实数a 的取值范围; (2)若AB =∅,求实数a 的取值范围.23.已知全集为R ,集合{}503x A x R x -=∈>+,()2{|21050}B x R x a x a =∈-++≤. (1)若RB A ⊆,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是RB A ⊆的什么条件(充分必要性).①[)7,10a ∈-;②(]7,10a ∈-;③(]6,10a ∈.24.设全集U R =,集合{|2A x x =≤-或}{}5,|2x B x x ≥=≤.求 (1)()U A B ⋃;(2)记(){},|23U A B D C x a x a ⋃==-≤≤-,且C D C ⋂= ,求a 的取值范围.25.已知集合()(){}|250A x x x k =++<(1)若()53A ⊆-,,求k 的取值范围. (2)若{}2|20B x x x =-->,且{}2A B Z ⋂⋂=-(Z 为整数集合),求k 的取值范围.26.设全集U =R .(1)解关于x 的不等式|1|10()x a a R -+->∈;(2)记A 为(1)中不等式的解集,B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,若()U C A B ⋂恰有三个元素,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.2.C解析:C 【分析】①②③都可以写成m a =+,a b 是否是有理数,④计算.【详解】①当1a +=+时,可得1,a b π==,这与,a b Q ∈矛盾,3==3a ∴+=,可得3,1a b == ,都是有理数,所以正确,2122==-,12a ∴+=-,可得11,2a b ==-,都是有理数,所以正确,④2426=+=而(22222a a b +=++,,a b Q ∈,(2a ∴+是无理数,不是集合M 中的元素,只有②③是集合M 的元素. 故选:C 【点睛】本题考查元素与集合的关系,意在考查转化与化归的思想,计算能力,属于基础题型.3.A解析:A 【分析】根据题意,0M ∉且1M ∉,且2、4不同时在集合M 中,对集合M 分两种情况讨论:①2M ∉且4M ∉;②2和4有且只有一个在集合M 中,分别列举出符合条件的集合M ,即可得出答案. 【详解】2111==,200==,由题意可知0M ∉且1M ∉,由于242=,所以,2和4不同时在集合M 中.①当2M ∉且4M ∉时,则符合条件的集合M 有:{}3、{}5、{}3,5,共3种; ②若2和4有且只有一个在集合M 中,则符合条件的集合M 有:{}2、{}2,3、{}2,5、{}2,3,5、{}4、{}3,4、{}4,5、{}3,4,5,共8种.综上所述,满足条件的非空集合M 的个数是3811+=. 故选:A. 【点睛】本题考查满足条件的集合个数的求解,列举出满足条件的集合即可,考查分类讨论思想的应用,属于中等题.4.C解析:C 【分析】由题意知3、4B ∉,则集合A 的个数等于{}1,2,5,6非空子集的个数,然后利用公式计算出集合{}1,2,5,6非空子集的个数,即可得出结果. 【详解】由题意知3、4B ∉,且集合A 、B 是U 的子集,且A B U ⋃=,A B ⋂≠∅, 则AB 为集合{}1,2,5,6的非空子集,因此,满足条件的集合A 的个数为42115-=.故选C. 【点睛】本题考查集合个数的计算,一般利用列举法将符合条件的集合列举出来,也可以转化为集合子集个数来进行计算,考查化归与转化思想的应用,属于中等题.5.B解析:B【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.6.B解析:B 【分析】先解分式不等式得集合A ,再化简B ,最后根据交集与补集定义得结果. 【详解】因为91(0,9)A x x ⎧⎫=>=⎨⎬⎩⎭,{}{}44,3,2,1,0,1,2,3B x x x Z =-<<∈=---,所以阴影部分所表示集合为(){0,1,2,3}U C A B =---,元素共有4个,故选B 【点睛】本题考查分式不等式以及交集与补集定义,考查基本分析求解能力,属基础题.7.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意;②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意; ③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.8.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.9.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.10.C【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥⎝成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).11.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.12.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A .本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题13.【分析】因为集合A 中的条件是含参数的一元二次不等式首先想到的是十字相乘法但此题行不通;应该把此不等式等价转化为的形式然后数形结合来解答需要注意的是尽可能让其中一个函数不含参数【详解】解:且∴令∴∴是解析:12,23⎛⎤⎥⎝⎦【分析】因为集合A 中的条件是含参数的一元二次不等式,首先想到的是十字相乘法,但此题行不通;应该把此不等式等价转化为()()f x g x <的形式,然后数形结合来解答,需要注意的是尽可能让其中一个函数不含参数. 【详解】 解:()2220x a x a -++-<且0a >∴()2221x x a x -+<+令()()()222;1f x x x g x a x =-+=+∴()()},{|A x f x g x x Z =∈<∴()y f x =是一个二次函数,图象是确定的一条抛物线; 而()y g x =一次函数,图象是过一定点()1,0-的动直线. 又∵,0x Z a ∈>.数形结合,可得:1223a <≤ 故答案为:12,23⎛⎤⎥⎝⎦【点睛】此题主要考查集合A 的几何意义的灵活运用,利用数形结合的数学思想来解决参数取值范14.【分析】分别求出集合中的元素再求出集合的并集即可求解【详解】由题因为所以则;因为所以则因为常数是正整数所以所以所以中所有元素之和是故答案为:【点睛】本题考查集合的并集考查解含绝对值的不等式 解析:2a【分析】分别求出集合A 、B 中的元素,再求出集合A 、B 的并集,即可求解 【详解】由题,因为12x a a -<+,所以11222x a -<<+,则11|2,22A x x a x Z ⎧⎫=-<<+∈⎨⎬⎩⎭;因为2x a <,所以22a x a -<<,则{}|22,B x a x a x Z =-<<∈, 因为常数a 是正整数, 所以{}0,,,,2A a a =,{}21,,0,,21B a a =-+-,所以{}21,,0,,21,2A B a a a ⋃=-+-,所以AB 中所有元素之和是2a ,故答案为:2a 【点睛】本题考查集合的并集,考查解含绝对值的不等式15.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中P Q P =,即可求出实数a 的取值范围.【详解】由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且PQ P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞- 【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.16.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论. 【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点, HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M , 故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心; 若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心. 故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.17.【分析】由题意分类讨论实数xyz 的符号列表求解所给式子的值然后确定其值组成的集合即可【详解】分类讨论xyz 的符号列表求值如下:x y z 计算结果 大于零 大于零 大于零 1 1 1 1 解析:{}5,1,1,3--【分析】由题意分类讨论实数x ,y ,z 的符号列表求解所给式子的值,然后确定其值组成的集合即可. 【详解】分类讨论x ,y ,z 的符号列表求值如下:据此可得:x y z xy xyz x y z xy xyz++++的所有可能值组成的集合表示为{}5,1,1,3--. 故答案为:{}5,1,1,3--. 【点睛】本题主要考查分类讨论的数学思想,集合中元素的互异性等知识,意在考查学生的转化能力和计算求解能力.18.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛解析:2 【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数. 【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个. 事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =. 故答案为2. 【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.19.或0【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值【详解】由可知B ⊆A 则或解得:或或当时满足题意;当时满足题意;当时满足题意;当时不满足集合元素的互异性舍去综上可得:x 的值为或0故解析:3,3-或0 【分析】由题意利用集合的包含关系和集合运算的互异性即可确定x 的值. 【详解】由A B A ⋃=可知B ⊆A ,则29x =或2x x =, 解得:3x =±或0x =或1x =,当3x =时,{}{}1,9,3,1,9A B ==,满足题意; 当3x =-时,{}{}1,9,3,1,9A B =-=,满足题意; 当0x =时,{}{}1,9,0,1,0A B ==,满足题意; 当1x =时,不满足集合元素的互异性,舍去. 综上可得:x 的值为3,3-或0.故答案为:3,3-或0. 【点睛】本题主要考查并集的定义,集合中元素的互异性,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.【分析】由进行反推可分为集合和集合两种情况进行分类讨论【详解】由进行反推若则解得成立由可知集合因应满足解得综上所述故答案为:【点睛】本题考查根据集合的补集与包含关系求解参数问题是中档题型在处理此类题 解析:(),3-∞【分析】由()()R R C A C B ⊇进行反推,可分为集合A =∅,和集合A ≠∅两种情况进行分类讨论 【详解】由()()R R C A C B ⊇进行反推,若A =∅,则121m m +≥-,解得2m ≤,成立 由A ≠∅可知,集合{}|121UA x x m x m =≤+>-或,{}|25UB x x x =<-≥或因()()R R C A C B ⊇,应满足12215211m m m m +≥-⎧⎪-<⎨⎪->+⎩,解得()2,3m ∈综上所述,(),3m ∈-∞ 故答案为:(),3-∞ 【点睛】本题考查根据集合的补集与包含关系求解参数问题,是中档题型,在处理此类题型中,易错点为忽略端点处等号取不取得到的问题,解题时要特别仔细三、解答题21.(1)4233a -<<;(2)存在,42a -<<. 【分析】(1)x A ∈是x B ∈的必要条件可转化为B A ⊆,建立不等式求解即可; (2)假设A B ⋂≠∅,建立不等关系,有解则存在,无解则不存在. 【详解】{}42A x x =-<<,()(){}30B x x a x a =--=(1)由已知得:B A ⊆42432a a -<<⎧∴⎨-<<⎩4233a ⇒-<<,即实数a 的取值范围4233a -<<, (2)假设存在a 满足条件,则42a -<<或432a -<<,42a ∴-<<即存在42a -<<使A B ⋂≠∅. 【点睛】本题主要考查了根据集合的包含关系求参数的取值范围,考查了必要条件,属于中档题. 22.(1)423a ≤≤;(2)23a ≤或4a ≥ 【分析】(1)考虑A 是B 的子集即可求解;(2)分类讨论当B 为空集和不为空集两种情况求解. 【详解】(1)若x A ∈是x B ∈的充分条件,234a a ≤⎧⎨≥⎩,解得423a ≤≤;(2)AB =∅,当B =∅时,即3,0a a a ≥≤,当B ≠∅时,04a a >⎧⎨≥⎩或032a a >⎧⎨≤⎩,即203a <≤或4a ≥.综上所述:23a ≤或4a ≥ 【点睛】此题考查根据充分条件与集合关系求解参数取值范围,易错点在于漏掉考虑空集情况. 23.(1)610a -≤≤;(2)答案见解析. 【分析】()1先求集合A ,B ,A R ,再由R B A ⊆得到a 的不等式,解得即可; ()2结合()1利用充分必要条件的定义逐一判定.【详解】解:()1集合5|0(3)(5,)3x A x R x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭, 所以[]35RA =-,,集合()()()2{|21050}{|250}B x R x a x a x R x a x =∈-++≤=∈--≤, 若RB A ⊆,只需352a-≤≤, 所以610a -≤≤.()2由()1可知的充要条件是[]610a ∈-,, 选择①,则结论是既不充分也不必要条件; 选择②,则结论是必要不充分条件; 选择③,则结论是充分不必要条件. 【点睛】关键点睛,利用集合关系求参数范围,求集合A ,B ,A R,再由RB A ⊆得到a 的不等式,进而利用a 的范围,判定充分必要条件,属于中档题.24.(1){}|25x x <<;(2)()1,+∞. 【解析】试题分析:(1)根据题意和并集的运算求出A B ,再由补集的运算求出()U C A B ;(2)由(1)得集合D ,由C D C =得C D ⊆,根据子集的定义对C 分类讨论,分别列出不等式求出a 的范围. 试题(1)由题意知,A =x |x ≤-2或x ≥5},B =x |x ≤2},则A ∪B =x |x ≤2或x ≥5},又全集U =R ,∁U (A ∪B )=x |2<x <5}.(2)由(1)得D =x |2<x <5},由C ∩D =C 得C ⊆D , ①当C =∅时,有-a <2a -3,解得a >1;②当C ≠∅时,有232325a aa a -≤-⎧⎪->⎨⎪-<⎩,解得a ∈∅.综上,a 的取值范围为(1,+∞).25.(1)[]3,5-;(2)5 3,?2⎡⎫-⎪⎢⎣⎭.【分析】(1)对参数k 进行分类讨论,求得对应情况下不等式的解集,再根据集合之间的关系,求得k 的范围;(2)根据(1)中集合A 的解集,集合{}2A B Z ⋂⋂=-,对参数k 进行分类讨论,即可求得k 的范围. 【详解】 (1)对集合A : 当52k =时,不等式的解集为空集,即A =∅,满足()53A ⊆-,; 当52k <时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需3k -≤,解得3k ≥-,又52k <,故53,?2k ⎡⎫∈-⎪⎢⎣⎭;当52k >时,不等式的解集为5,2A k ⎛⎫=-- ⎪⎝⎭,若满足()53A ⊆-,, 只需5k -≥-,解得5k ≤,又52k >,故5,52k ⎛⎤∈ ⎥⎝⎦综上所述若满足题意,则[]3,5k ∈-.(2)对集合B :220x x -->,解得()(),12,B =-∞-⋃+∞ 此时B Z ⋂是小于等于2-的整数和大于等于3的整数的集合. 对集合A :由(1)知: 当52k =时,A =∅,不满足{}2A B Z ⋂⋂=-,故舍去; 当52k <时,5,2A k ⎛⎫=-- ⎪⎝⎭,若满足{}2A B Z ⋂⋂=-, 只需3k -≤,解得3k ≥-,又52k <,故可得53,?2k ⎡⎫∈-⎪⎢⎣⎭; 当52k >时,5,2A k ⎛⎫=-- ⎪⎝⎭,显然不满足{}2A B Z ⋂⋂=-,故舍去. 综上所述,若满足题意,则53,?2k ⎡⎫∈-⎪⎢⎣⎭. 【点睛】本题考查由集合之间的关系,求参数的范围,属中档题;本题中需要注意对参数的分类讨论,要做到不重不漏.26.(1)见解析(2)10a -<≤ 【分析】(1)通过讨论a 的取值范围,求出不等式的解集即可.(2)解不等式组求得集合B ,通过讨论a 的范围求出A 的补集,再根据()U C A B ⋂恰有三个元素,建立不等式求解. 【详解】(1)因为|1|10()x a a R -+->∈, 所以|1|1->-x a ,当10a -< 即1a > 时,解集为R , 当10a -= 即1a = 时,解集为{}|1x x ≠ , 当10a -> 即1a < 时,11->-x a 或11-<-x a , 所以2x a >-或x a <, 所以解集为{|2x x a >- 或}x a <. 综上:1a > 时,解集为R ; 1a = 时,解集为{}|1x x ≠ ;1a < 时,解集为{|2x x a >- 或}x a <. (2)因为2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩,所以23510410x x x x -⎧-≤⎪+⎨⎪-+≥⎩,所以()()29404210x x x x x ⎧⎛⎫+-≤≠-⎪ ⎪⎝⎭⎨⎪-+≥⎩, 解得942x -<≤. 因为B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,所以{}3,2,1,0,1,2,3,4B =--- ,当1a > 时,UA =∅ 不满足()U C AB ⋂恰有三个元素.当1a = 时,{}=1UA 不满足()U C AB ⋂恰有三个元素.当1a < 时,{}=≤≤-|2UA x a x a ,21a -> ,因为()U C A B ⋂恰有三个元素,所以12224a a a a a <⎧⎪--≥⎨⎪--<⎩,解得10a -<≤ .综上:a 的取值范围是10a -<≤. 【点睛】本题主要考查了绝对值不等式,分式不等式及一元二次不等式的解法和集合的基本运算,还考查了转化化归的思想和运算求解的能力,属于中档题.。
新课标人教 A 版会集单元测试题一、选择题:〔每题〔时间4 分,共计80 分钟,总分值40 分〕100 分〕1、若是会集U1,2,3,4,5,6,7,8, A2,5,8, B1,3,5,7,那么 (U A)B等于〔〕(A)5(B)1,3,4,5,6,7,8(C)2,8(D)1,3,72、若是 U是全集, M,P,S 是U 的三个子集,那么阴影局部所表示的会集为〔〕〔A〕〔 M∩P〕∩ S;〔B〕〔 M∩P〕∪ S;〔C〕〔M∩P〕∩〔 C U S〕〔D〕〔M∩P〕∪〔 C U S〕3、会集M {( x, y) | x y2},N{( x, y) | x y 4} ,那么会集M I N 为〔〕A、x3, y1B、(3,1)C、 {3,1}D、 {(3,1)}4.A{4, 2a1, a2} ,B= { a5,1a,9},且 A B {9} ,那么 a 的值是()A. a 3B.a3C.a3D. a 5或 a35.假设会集A{ x kx24x 40, x R} 中只有一个元素 , 那么实数 k 的值为 ()B. 1C. 0或 1D.k16.会集 A{ y y x24, x N , y N} 的真子集的个数为()A. 9B. 8C. 7D. 67.符号 { a}P { a,b,c} 的会集P的个数是()A. 2B. 3C. 4D. 58. M{ y y x21, x R}, P{ x x a 1, a R} , 那么会集 M与 P 的关系是()A. M=PB.P R C .M P D.M P9.设 U为全集 , 会集 A、B、C满足条件 A B A C ,那么以下各式中必然成立的是(〕A.A B A CB.B CC.A(C U B)A(C U C)D.(C U A) B (C U A) C10.A{ x x 2x60}, B{ x mx10} ,且A B A ,那么的取值范围是( )mA.{ 1,1} B.{0, 1 ,1} C.{0,1,1} D.{1,1}323232 3 2二、选择题:〔每题 4 分,总分值 20 分〕11.设会集 M { 小于5的质数 } ,那么M的真子集的个数为.12. 设U{1,2,3,4,5,6,7,8} , A {3,4,5}, B {4,7,8}. 那么: (C U A) (C U B) ,(C U A)(C U B) .13 . 某班有学生 55 人, 其中音乐爱好者34 人 , 体育爱好者 43 人, 还有 4 人既不爱好体育也不爱好音乐 , 那么班级中即爱好体育又爱好音乐的有人.14.A{ x x1或x 5}, B{ x a x a4} ,假设A B, 那么实数a 的取值范围是.15.会集P{ x x m23m1}, T{ x x n23n1} , 有以下判断:① P T { y y 5}②P4T { y y5}③P4T④ P T其中正确的选项是 .三、解答题16. 〔此题总分值 10 分〕含有三个元素的会集 { a, b,1}{ a2 , a b,0}, 求a2007b 2021 a的值 .17.〔此题总分值 10 分〕假设会集S {小于10的正整数},A S,B S ,且 (C S A) B {1,9}, A B { 2}, (C S A) (C S B) {4,6,8} ,求A和B。
人教版高中数学必修一第一章《集合与函数》单元检测精选(含答案解析)(时间:120分钟 满分:150分) 第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为( ) A .0 B .1 C .2D .42.设函数f (x )=,则f (f(31)的值为( )A.128127B .-128127C.81D.1613.若函数y =f (x )的定义域是[0,2],则函数g (x )=x -1f(2x的定义域是( ) A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)4.已知f (x )=(m -1)x 2+3mx +3为偶函数,则f (x )在区间(-4,2)上为( ) A .增函数B .减函数C .先递增再递减D .先递减再递增5.三个数a =0.32,b =log 20.3,c =20.3之间的大小关系是( ) A .a <c <b B .a <b <c C .b <a <cD .b <c <a6.若函数f (x )唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是( )A .函数f (x )在区间(0,1)内有零点B .函数f (x )在区间(0,1)或(1,2)内有零点C .函数f (x )在区间[2,16)内无零点D .函数f (x )在区间(1,16)内无零点7.已知0<a <1,则方程a |x |=|log a x |的实根个数是( ) A .2 B .3C .4D .与a 值有关8.函数y =1+ln(x -1)(x >1)的反函数是( ) A .y =e x +1-1(x >0)B .y =e x -1+1(x >0)C .y =e x +1-1(x ∈R )D .y =e x -1+1(x ∈R )9.函数f (x )=x 2-2ax +1有两个零点,且分别在(0,1)与(1,2)内,则实数a 的取值范围是( )A .-1<a <1B .a <-1或a >1C .1<a <45D .-45<a <-110.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数y =x 2,x ∈[1,2]与函数y =x 2,x ∈[-2,-1]即为“同族函数”.请你找出下面函数解析式中能够被用来构造“同族函数”的是( )A .y =xB .y =|x -3|C .y =2xD .y =11.下列4个函数中: ①y =2008x -1;②y =log a 2 009+x 2 009-x(a >0且a ≠1); ③y =x +1x2 009+x2 008;④y =x (a -x -11+21)(a >0且a ≠1). 其中既不是奇函数,又不是偶函数的是( ) A .①B .②③C .①③D .①④12.设函数的集合P ={f (x )=log 2(x +a )+b |a =-21,0,21,1;b =-1,0,1},平面上点的集合Q ={(x ,y )|x =-21,0,21,1;y =-1,0,1},则在同一直角坐标系中,P 中函数f (x )的图象恰好经过Q 中两个点的函数的个数是( )A .4B .6C .8D .10第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上)13.已知函数f (x ),g (x )分别由下表给出:x 1 2 3 f (x )131x 1 2 3 g (x )321则不等式f [g (x )]>g [f (x )]的解为________. 14.已知log a 21>0,若≤a 1,则实数x 的取值范围为______________.15.直线y =1与曲线y =x 2-+a 有四个交点,则a 的取值范围为________________.16.已知下表中的对数值有且只有一个是错误的.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设全集为R,A={x|3≤x<7},B={x|2<x<10}.求:A∪B,∁R(A∩B),(∁R A)∩B.18.(本小题满分12分)(1)已知全集U=R,集合M={x|≤0},N={x|x2=x+12},求(∁U M)∩N;(2)已知全集U=R,集合A={x|x<-1或x>1},B={x|-1≤x<0},求A∪(∁U B).19.(本小题满分12分)已知集合A={x|-2<x<-1或x>1},B={x|a≤x<b},A∪B={x|x>-2},A ∩B={x|1<x<3},求实数a,b的值.20.(本小题满分12分)已知集合A={x|x≤a+3},B={x|x<-1或x>5}.(1)若a=-2,求A∩∁R B;(2)若A⊆B,求a的取值范围.21.(本小题满分12分)设集合A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=51,判断集合A与B的关系;(2)若A∩B=B,求实数a组成的集合C.22.(本小题满分12分)已知集合A={x|(a-1)x2+3x-2=0},B={x|x2-3x+2=0}.(1)若A≠∅,求实数a的取值范围;(2)若A∩B=A,求实数a的取值范围.参考答案与解析1.D [∵A ∪B ={0,1,2,a ,a 2}, 又∵A ∪B ={0,1,2,4,16}, ∴a2=16,a =4,即a =4. 否则有a2=4a =16矛盾.]2.A [∵f (3)=32+3×3-2=16, ∴f(31=161,∴f (f(31)=f (161)=1-2×(161)2=1-2562=128127.] 3.B [由题意得:x ≠10≤2x ≤2,∴0≤x <1.] 4.C [∵f (x )=(m -1)x 2+3mx +3是偶函数,∴m =0,f (x )=-x 2+3,函数图象是开口向下的抛物线,顶点坐标为(0,3),f (x )在(-4,2)上先增后减.]5.C [20.3>20=1=0.30>0.32>0=log 21>log 20.3.]6.C [函数f (x )唯一的一个零点在区间(0,2)内,故函数f (x )在区间[2,16)内无零点.] 7.A [分别画出函数y =a |x |与y =|log a x |的图象,通过数形结合法,可知交点个数为2.]8.D [∵函数y =1+ln(x -1)(x >1),∴ln(x -1)=y -1,x -1=e y -1,y =e x -1+1(x ∈R ).] 9.C [∵f (x )=x 2-2ax +1, ∴f (x )的图象是开口向上的抛物线.由题意得:f(2>0.f(1<0,即4-4a +1>0,1-2a +1<0,解得1<a <45.] 10.B11.C [其中①不过原点,则不可能为奇函数,而且也不可能为偶函数;③中定义域不关于原点对称,则既不是奇函数,又不是偶函数.] 12.B [当a =-21,f (x )=log 2(x -21)+b , ∵x >21,∴此时至多经过Q 中的一个点;当a =0时,f (x )=log 2x 经过(21,-1),(1,0), f (x )=log 2x +1经过(21,0),(1,1);当a =1时,f (x )=log 2(x +1)+1经过(-21,0),(0,1), f (x )=log 2(x +1)-1经过(0,-1),(1,0); 当a =21时,f (x )=log 2(x +21)经过(0,-1),(21,0) f (x )=log 2(x +21)+1经过(0,0),(21,1).]13.x =2解析 ∵f (x )、g (x )的定义域都是{1,2,3},∴当x =1时,f [g (1)]=f (3)=1,g [f (1)]=g (1)=3,不等式不成立; 当x =2时,f [g (2)]=f (2)=3,g [f (2)]=g (3)=1,此时不等式成立; 当x =3时,f [g (3)]=f (1)=1,g [f (3)]=g (1)=3, 此时,不等式不成立. 因此不等式的解为x =2. 14.(-∞,-3]∪[1,+∞) 解析 由log a 21>0得0<a <1. 由≤a 1得≤a -1,∴x 2+2x -4≥-1,解得x ≤-3或x ≥1. 15.1<a <45解析 y =x2+x +a ,x <0,x2-x +a ,x ≥0,作出图象,如图所示.此曲线与y 轴交于(0,a )点,最小值为a -41,要使y =1与其有四个交点,只需a -41<1<a ,∴1<a <45. 16.lg1.5解析 ∵lg9=2lg3,适合,故二者不可能错误,同理:lg8=3lg2=3(1-lg5),∴lg8,lg5正确.lg6=lg2+lg3=(1-lg5)+lg3=1-(a +c )+(2a -b )=1+a -b -c ,故lg6也正确.17.解:∵全集为R ,A ={x |3≤x <7},B ={x |2<x <10}, ∴A ∪B ={x |2<x <10},A ∩B ={x |3≤x <7}, ∴∁R (A ∩B )={x |x ≥7或x <3}. ∵∁R A ={x |x ≥7或x <3},∴(∁R A )∩B ={x |2<x <3或7≤x <10}.18.解:(1)M ={x |x +3=0}={-3},N ={x |x 2=x +12}={-3,4}, ∴(∁U M )∩N ={4}.(2)∵A ={x |x <-1或x >1},B ={x |-1≤x <0}, ∴∁U B ={x |x <-1或x ≥0}. ∴A ∪(∁U B )={x |x <-1或x ≥0}. 19.解:∵A ∩B ={x |1<x <3},∴b =3,又A∪B={x|x>-2},∴-2<a≤-1,又A∩B={x|1<x<3},∴-1≤a<1,∴a=-1.20.解:(1)当a=-2时,集合A={x|x≤1},∁R B={x|-1≤x≤5},∴A∩∁R B={x|-1≤x≤1}.(2)∵A={x|x≤a+3},B={x|x<-1或x>5},A⊆B,∴a+3<-1,∴a<-4.解题技巧:本题主要考查了描述法表示的集合的运算,集合间的关系,解决本题的关键是借助于数轴求出符合题意的值.在解决(2)时,特别注意参数a是否取到不等式的端点值.21.解:A={x|x2-8x+15=0}={3,5}.(1)若a=51,则B={5},所以B A.(2)若A∩B=B,则B⊆A.当a=0时,B=∅,满足B⊆A;当a≠0时,B=a1,因为B⊆A,所以a1=3或a1=5,即a=31或a=51;综上所述,实数a组成的集合C为51.22.解:(1)①当a=1时,A=32≠∅;②当a≠1时,Δ≥0,即a≥-81且a≠1,综上,a≥-81;(2)∵B={1,2},A∩B=A,∴A=∅或{1}或{2}或{1,2}.①A=∅,Δ<0,即a<-81;②当A={1}或{2}时,Δ=0,即a=0且a=-81,不存在这样的实数;③当A={1,2},Δ>0,即a>-81且a≠1,解得a=0.综上,a<-81或a=0.11。
高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为A .1B .1-C .1或1-D .1或1-或0 3.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则A .U AB = B .()U U A B = ðC .()U U A B = ðD .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧, 则下列结论正确的是A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<216.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ7.下列四个集合中,是空集的是 A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 A .M N = B .M ÜNC .N ÜMD .M N ϕ=9.表示图形中的阴影部分A .()()A CBC B .()()A B A CC .()()A B B CD .()A B C 10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.下列命题之中,U 为全集时,不正确的是A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b = .14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为 .15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围 .16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.CB A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.19.(12分)在1到100的自然数中有多少个能被2或3整除的数?20.(12分)已知集合22{|320},{|20}A x x x B x x x m =-+==-+=且=B A ,A 求m的取值范围.21.设}019|{22=-+-=a ax x x A ,}065|{2=+-=x x x B ,}082|{2=-+=x x x C .①当A B =A B 时,求a 的值;②当φÜA B ,且A C =φ时,求a 的值; ③当A B =A C ≠φ时,求a 的值;(12分)22.(12分)设1a ,2a ,3a ,4a ,5a 为自然数,A={1a ,2a ,3a ,4a ,5a }, B={21a ,22a ,23a ,24a ,25a },且1a <2a <3a <4a <5a ,并满足A ∩B={1a ,4a }, 1a +4a =10,A ∪B 中各元素之和为256,求集合A ?高中数学单元测试题必修1第一章《集合》一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共60分).1.下列集合的表示法正确的是( A )A .}1|{}1|{=+==+y x y y x xB .第二、四象限内的点集可表示为{}(,)0,,x y xy x R y R ≤∈∈;C .集合{}1,2,2,5,7;D .不等式14x -<的解集为{}5x <已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N 为(D )A .3,1x y ==-B .(3,1)-C .{3,1}-D .{(3,1)}-2.已知集合}1,1{-=A ,}1|{==mx x B ,且A B A = ,则m 的值为(D ) A .1 B .1- C .1或1- D .1或1-或03.设全集}7,6,5,4,3,2,1{=U ,集合}5,3,1{=A ,集合}5,3{=B ,则(C ) A .U A B = B .()U U A B = ð C .()U U A B = ð D .()()U U U A B = 痧4.设U ={1,2,3,4} ,若A B ={2},(){4}U A B = ð,()(){1,5}U U A B = 痧,则下列结论正确的是 ( B )A .A ∉3且B ∉3 B .A ∈3且B ∉3C .A ∉3且B ∈3D .A ∈3且B ∈35.设全集是实数集R ,{|22}M x x =-≤≤,N x x =<{|}1,则R M N ð等于(A )A .{|}x x <-2B .{|}x x -<<21C .{|}x x <1D .{|}x x -≤<21 设集合{1,2,3,4,5,6},{|26}P Q x R x ==∈≤≤,那么下列结论正确的是(D )A .P Q P =B .P Q Q ÝC .P Q Q =D .P Q P Ü 集合{|22},{|13}A x x B x x =-<<=-≤<,那么A B = (A )A .{|23}x x -<<B .{|12}x x ≤<C .{|21}x x -<≤D .{|23}x x <<以下四个关系:φ}0{∈,∈0φ,{φ}}0{⊆,φÜ}0{,其中正确的个数是( A )A .1B .2C .3D .4 下列五个写法:①{}{}00,1,2;∈②{}0;∅⊆③{}{}0,1,21,2,0;⊆④0;∈∅⑤0 ∅.=∅ 其中错误..写法的个数为 (C ) A .1 B .2 C .3 D .4 如果集合{}1->=x x P ,那么 (D )A .P ⊆0B .{}P ∈0C .P ∈∅D .{}P ⊆06.设U 为全集,Q P ,为非空集合,且P ÜQ ÜU ,下面结论中不正确...的是 ( B ) A .()U P Q U = ð B .()U P Q = ðφ C .P Q Q =D .()U Q P = ðφ 7.下列四个集合中,是空集的是 ( D )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x xD .}01|{2=+-x x x8.设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 ( B ) A .M N = B .M ÜNC .N ÜMD .M N ϕ= 已知集合 },61|{Z m m x x M ∈+==,},312|{Z n n x x N ∈-==, =P x x |{+=2p },61Z p ∈,则P N M ,,的关系 (B ) A .N M =ÜP B .M ÜP N = C .M ÜN ÜP D . N ÜP ÜM设集合},3|{Z k k x x M ∈==,},13|{Z k k x x P ∈+==,},13|{Z k k x x Q ∈-==,若Q c P b M a ∈∈∈,,,则∈-+c b a( C ) A .M B . P C .Q D .P M ⋃9.表示图形中的阴影部分( A )A .()()A CBC B .()()A B A CC .()()A B B CD .()A B CB A10.已知全集{1,2,3,4,5,6,7},{3,4,5},{1,3,6}U M N ===,则集合{2,7}等于( B )A .M NB .U U M N 痧C .U U M N 痧D .M N 11.满足{1,2,3} ÜM Ü{1,2,3,4,5,6}的集合M 的个数是(C ) A .8 B .7 C .6 D .5满足{,}M N a b = 的集合N M ,共有(C )A .7组B .8组C .9组D .10组 满足条件{1}{1,2,3}M = 的集合M 的个数是 ( C )A .4B .3C .2D .112.下列命题之中,U 为全集时,不正确的是 (B )A .若AB = φ,则()()U U A B U = 痧 B .若A B = φ,则A = φ或B = φC .若A B = U ,则()()U U A B = 痧φD .若A B = φ,则==B A φ 二、填空题:请把答案填在题中横线上(每小题5分,共20分).13.若集合{(,)|20240}{(,)|3}x y x y x y x y y x b +-=-+=⊆=+且,则b =2.14.设集合}0|),{(111=++=c x b x a y x A ,}0|),{(222=++=c x b x a y x B ,则方程)(111c x b x a ++0)(222=++c x b x a 的解集为A ∪B.15.已知集合}023|{2=+-=x ax x A 至多有一个元素,则a 的取值范围a =0或89≥a . 16.设集合{|12},{|}M x x N x x a =-≤<=≤,若M N ≠∅ ,则a 范围是{|1}a a -?设集合(]{}2,,|1,M m P y y x x R =-∞==-∈,若M P =∅ ,则实数m 范围是(D ) A .1m ≥- B .1m >- C .1m ≤- D .1m <-三、解答题:解答应写出文字说明、证明过程或演算步骤(共70分).17.(10分)已知集合A ={x |x =m 2-n 2,m ∈Z ,n ∈Z},求证:(1)3∈A ; (2)偶数4k -2 (k ∈Z)不属于A.证明:(1)3=22-12 ∴3∈A ;(2)设4k -2∈A,得存在m,n ∈Z,使4k -2=m 2-n 2成立.(m -n )(m +n )=4k -2,当m,n 同奇或同偶时,m -n,m +n 均为偶数.∴(m -n )(m +n )为4的倍数,与4k -2不是4 倍数矛盾.当m,n 同分别为奇,偶数时,m -n,m +n 均为奇数.(m -n)(m +n )为奇数,与4k -2是偶数矛盾.∴4k -2∉A18.(12分)(1)P ={x |x 2-2x -3=0},S ={x |ax +2=0},S ⊆P ,求a 取值.(2)A ={-2≤x ≤5} ,B ={x |m +1≤x ≤2m -1},B ⊆A,求m 的取值范围.解:(1)a =0,S =φ,φ⊆P 成立 a ≠0,S ≠φ,由S ⊆P ,P ={3,-1}得3a +2=0,a =23-或-a +2=0,a =2; ∴a 值为0或23-或2. (2)B =φ,即m +1>2m -1,m <2 φ⊆A 成立.B≠φ,由题得121,21,215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩得2≤m ≤3,∴m <2或2≤m ≤3 , 即m ≤3为取值范围.注:(1)特殊集合φ作用,常易漏掉;(2合思想常使集合问题简捷比. 用描述法表示图中的阴影部分(包括边界)解:}0,121,231|),{(≥≤≤-≤≤-xy y x y x19.(12分)在1到100的自然数中有多少个能被2或3整除的数?解:设集合A 为能被2整除的数组成的集合,集合B 为能被3整除的数组成的集合,则A B 为能被2或3整除的数组成的集合,A B 为能被2和3(也即6)整除的数组成的集合.显然集合A 中元素的个数为50,集合B 中元素的个数为33,集合A B 中元素的个数为16,可得集合A B 中元素的个数为50+33-16=67.某市数、理、化竞赛时,高一某班有24名学生参加数学竞赛,28名学生参加物理竞赛,19名学生参加化学竞赛,其中参加数、理、化三科竞赛的有7名,只参加数、物两科的有5名,只参加物、化两科的有3名,只参加数、化两科的有4名。
新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。
其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。
班级:_________姓名:________
选择题部分(共60分)
一、选择题(本大题共30小题,每小题2分,共60分。
在每小题给出的四个选项中,只
有一项是符合题目要求的)
1、“①难解的题目;②所有联合国常任理事国;③平面直角坐标系内靠近第四象限的一些点;④很长的多项式”中,能组成集合的是(
)A.② B.①③ C.②④ D.①②④
2、下列集合中有限集的个数为(
)(1)方程0322=--x x 的实数解组成的集合;
(2)能被3整除的整数组成的集合;
(3)一年之中四个季节的名称组成的集合;
(4)满足80<<x 的偶数x 组成的集合;
A.0个
B.1个
C.2个
D.3个
3、下列选项中元素的全体可以组成集合的是(
)
A.学校篮球水平较高的学生
B.校园中长的高大的树木
C.2007年所有的欧盟国家
D.中国经济发达的城市
4、已知集合A={2,3,a 2},若10A ∈,则a 的值为(
)A.10B.2C.-5D.5
5、设集合M={x∈R|x≤9},a=6,则(
)A.a ∉M B.a∈M C.{a}∈M D.{a|a=26}∈M
6、已知集合P={1,2},那么满足Q 是P 的子集的集合Q 的个数为(
)A.4 B.3 C.2 D.1
7、已知集合{}1,0,1-=A ,A 的子集中,含有元素0的子集共有(
)A.2个 B.4个 C.6个 D.8个
8、集合A={x|0≤x<3且x∈Z}的真子集的个数是(
)A.5B.6C.7D.8
9、满足{1,2}{}1,2,3,4,5A ⊆⊆条件的集合A 的个数为(
)A.4 B.6 C.8 D.10
10、满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是(
)A.8 B.7 C.6 D.5
11、集合{}2|210,A x x x x R =--=∈的所有子集的个数为(
)A.4 B.3 C.2 D.1
12、下列各式中,正确的是(
)A.23∈{x|x≤3}B.23∉{x|x≤3}C.23⊆{x|x≤3}D.{23}⊆{x|x≤3}
13、在下列各式中错误的个数是(
)数学第一章集合模拟测试卷
①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1};⑤
}{0,1,2φ≠⊂A.1B.2C.3D.4
14、下列图形中,表示N M ⊆的是()
15、已知集合}{{x B x x A =<<-=,21}10<<x ,则(
)A.B
A > B.
B A ⊆ C.A B D.B A 16、已知集
{}}{a x x B x x A <=<<=,21,满足A B ,则()A.2≥a B.1≤a C.1≥a D.2
≤a 17、下列关系中表述正确的是
()A.{}002=∈x B.()
{}00,0∈ C.0φ∈ D.0N ∈18、下列表述正确的是()A.}0{=∅ B.}0{⊆∅ C.}0{⊇∅ D.}
0{∈∅19、已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=(
)A.{3,5}B.{3,6}C.{3,7}D.{3,9}
20、集合A={1,2,x},集合B={2,4,5},若B A ={1,2,3,4,5},则x=(
)A.1 B.3 C.4 D.
521、已知集合{}{}2,1,,0==N x M ,若{}2=⋂N M ,则=⋃N M ()A.{}2,1,,0x B.{}2,1,0,2C.{}
2,1,0D.不能确定22、已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则=A C U ()A.∅ B.{}2,4,6 C.{}1,3,6,7 D.{}
1,3,5,723、设集合{|32}M m m =∈-<<Z ,{}{}
2,1,,0==N x M ()A.{}01,B.
{}101-,,C.{}012,,D.{}1012-,,,24、设集合M={x |x 2-x=0},N={x |x 2+x=0},则M∩N=()
A、0B、{0}C、{0,1}D、{-1,0,1}
25、设集合}0|{},12|{≥-=≤<-=k x x N x x M ,若M N φ≠ ,则k 的取值范围是()
A.2
-≤k B.1≤k C.2-≥k D.1≥k 26、若}31|{<<-=x x A ,}21|{<<=x x B ,
则A B ⋃=()M N D
N M C M
N A M N B
A.}1|{-<x x
B.}2|{<x x
C.}21|{<<-x x
D.}
21|{<<-x x 27、集合A={0,2,a},B={1,2a }.若A∪B={0,1,2,4,16},则a 的值为(
)A.0B.1C.2D.4
28、设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B 等于
()A.{x|x≥3}B.{x|x≥2}
C.{x|2≤x<3}D.{x|x≥4}
29、的
是0"x ""0"≠>x ()A.充分而不必要条件
B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要
30、已知的
”是都是实数,那么“b"a ",22>>b a b a ()
A 充分而不必要条件
B 必要而不充分条件
C 充分必要条件
D 即不充分也不必要条件
非选择题部分(共40分)
二、填空题(本大题共10小题,每小题2分,共20分)
1、大于10而小于15的整数所组成的集合是______________;
2、已知集合{}0,1-=A ,集合{}2,1,0+=x B ,且B A ⊆,则实数x 的值为________.
3、集合B={a,b,c},C={a,b,d},集合A 满足A ⊆B,A ⊆C.则集合A 的个数是________.
4、设}5,3,1,0{=A }5,4,2{=B ,则A U B=_________;A ⋂B=_______.
5、设}73|{≤≤-=x x A ,}56{≤≤-=x x B ,则A∪B=_____;A ⋂B=_______.
6、已知全集U {}5,4,3,2,1=,A {}3,1=,B {}4,3,2=,那么=⋃)(B C A U ________.
7.满足{1,3}∪A={1,3,5}的所有集合A 的个数是________.
8.已知全集U ,集合}6,3,1{},9,8,7{==A C A U ,则=U _________.
9、若P={(x ,y)|2x -y =3},Q={(x ,y )|x +2y =4},则P∩Q=_________.
10、从“⇒”“⇒/”与“⇔”中选出适当的符号填空:
(1)1______1>->x x ;(2)43__________432+=+=x x x x ;
(3)c b c a b a +=+=______;(4)b a b ab a ==+-_____0222三、解答题(共20分,解答应写出文字说明及演算步骤)
1请写出集合{1,2}的所有子集.(6分)
2、已知集合A {}0652=+-=x x x ,B={}
0=+m x x ,且A B A =⋃,求实数m 的值组成的集合。
(6分)3、已知全集}4|{≤=x x U ,集合}.
33|{},32|{≤<-=<<-=x x B x x A 求).(,,B A C B A A C U U ⋂⋂(8分)。