蒸汽空气对流传热传热系数的测定(精)
- 格式:ppt
- 大小:382.50 KB
- 文档页数:7
空气-水蒸气对流给热系数测定实验报告本实验使用臭氧编码器,通过悬浮思路分析,利用不同的匀速度下不同的温度差分析空气-水蒸气的对流换热系数,帮助我们理解空气-水蒸汽对流的过程。
本文将对实验的设备、方法、结果及分析进行详细介绍。
一、实验设备1. 实验室气体混合系统2. 实验室压力传感器4. 实验室水蒸气浸润计6. 实验室数据采集器二、实验方法1. 设计实验2. 实验片段将实验室气体混合系统、压力传感器、温度传感器、水蒸气浸润计和湿度传感器等设备设置在实验室中,同时使用数据采集器对数据进行实时记录。
在实验中,我们首先设置了一个不同的温度差,然后观察它们在不同的匀速度下的换热系数。
通过计算,我们可以得到不同匀速下不同温度差的换热系数。
三、实验结果及分析通过实验结果和数据分析,我们得到不同温度差和匀速度下的换热系数。
1. 换热系数随着温度差的增加而增加我们可以看到,在温度差越大的情况下,热传导的能力也越强。
颗粒与颗粒之间的间距越小,热量间的转移就越快,因此换热系数也越高。
当温度差在一定的范围内,换热系数与温度差的平方成正比。
我们还可以看到,在匀速越大的情况下,换热系数也会越大。
当匀速越大时,颗粒间的热传导也会越快,从而使换热系数更大。
综合以上分析,我们可以得到空气-水蒸汽的对流换热系数与温度差和匀速度密切相关。
当温度差和匀速度越大时,换热系数也会越大。
同时,通过这些实验结果,我们可以更好地理解空气-水蒸汽对流的过程。
四、实验结论通过本次实验,我们可以得出以下结论:1. 空气-水蒸汽的对流换热系数与温度差成正比,当温度差越大时,换热系数也会越大。
因此,我们可以通过控制空气-水蒸汽的温度差和匀速度来控制其换热系数,从而更好地理解热传导过程。
实验报告课程名称:过程工程原理实验(甲)Ⅰ指导老师:成绩:实验名称:对流传热系数的测定同组学生姓名:一、实验目的和要求1.掌握空气在传热管内对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径。
2.把测得的数据整理成nNu形式的准数方程,并与公认式进行比较。
ARe=3.了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验装置与流程本实验流程图如下图1、2所示,实验装置由蒸汽发生器、孔板流量计(变送器)、变频器、套管换热器(强化管和普通管)及温度传感器、智能显示仪表等构成。
空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器的壳程,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。
空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器的管程,热交换后从风机出口排出。
注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选取,三者必须统一。
图1 横管对流传热系数测定实验装置流程图图2 竖管对流传热系数测定实验装置流程图图中符号说明见下表所示三、实验内容和原理在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。
所谓间壁式换热,就是冷、热两种流体之间有一固体壁面,两流体分别在固体壁面的两侧流动,两流体不直接接触,通过固体壁面(传热元件)进行热量交换。
本装置主要研究汽—气综合换热,包括普通管和加强管。
其中,水蒸汽和空气通过紫铜管间接换热,空气走紫铜管内,水蒸汽走紫铜管外,采用逆流换热。
所谓加强管,是在紫铜管内加了弹簧,增大了绝对粗糙度,进而增大了空气流动的湍流程度,使换热效果更明显。
3.1 间壁式传热基本原理如图3所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
. . .. . .浙江大学化学实验报告课程名称:过程工程原理实验甲实验名称:对流传热系数的测定指导教师:专业班级:姓名:学号:同组学生:实验日期:实验地点:目录一、实验目的和要求 (2)二、实验流程与装置 (2)三、实验容和原理 (2)1.间壁式传热基本原理 (2)2.空气流量的测定 (2)3.空气在传热管对流传热系数的测定 (2)3.1牛顿冷却定律法 (2)3.2近似法 (2)3.3简易Wilson图解法 (2)4.拟合实验准数方程式 (2)5.传热准数经验式 (2)四、操作方法与实验步骤 (2)五、实验数据处理 (2)1.原始数据: (2)2.数据处理 (2)六、实验结果 (2)七、实验思考 (2)一、实验目的和要求1)掌握空气在传热管对流传热系数的测定方法,了解影响传热系数的因素和强化传热的途径;2)把测得的数据整理成形式的准数方程,并与教材中公认经验式进行比较;3)了解温度、加热功率、空气流量的自动控制原理和使用方法。
二、实验流程与装置本实验流程图(横管)如下图1所示,实验装置由蒸汽发生器、孔板流量计、变频器、套管换热器(强化管和普通管)及温度传感器、只能显示仪表等构成。
空气-水蒸气换热流程:来自蒸汽发生器的水蒸气进入套管换热器,与被风机抽进的空气进行换热交换,不凝气或未冷凝蒸汽通过阀门(F3和F4)排出,冷凝水经排出阀(F5和F6)排入盛水杯。
空气由风机提供,流量通过变频器改变风机转速达到自动控制,空气经孔板流量计进入套管换热器管,热交换后从风机出口排出。
注意:普通管和强化管的选取:在实验装置上是通过阀门(F1和F2)进行切换,仪表柜上通过旋钮进行切换,电脑界面上通过鼠标选择,三者必学统一。
图1 横管对流传热系数测定实验装置流程图图中符号说明如下表:符号名称 单位 备注 V空气流量 m 3/h 紫铜管规格Φ19×1.5mm 有效长度1020mm t1空气进口温度 ℃ t2 普通管空气出口温度 ℃三、实验容和原理在工业生产过程中,大量情况下,采用间壁式换热方式进行换热。
实验三 对流给热系数测定实验(空气-水蒸气体系)3.1 实验目的1) 观察水蒸气在水平管外壁上的冷凝现象;2)测定空气在圆形直管内强制对流给热系数和换热器总传热系数并随着流量的变化规律;3)掌握热电阻测温方法;4)掌握化工原理实验软件库(VB 实验数据处理软件系统)的使用。
3.2 基本原理在套管换热器中,环隙通以水蒸气,内管管内通以空气,水蒸气冷凝放热以加热空气,在传热过程达到稳定后,有如下关系式:V ρC P (t 2-t 1)=α0A 0(T -T W )m =αi A i (t w -t)m (1—15) 式中:V 被加热流体体积流量,m 3/s ; ρ 被加热流体密度,kg/m 3; C P 被加热流体平均比热,J/(kg ·℃);α0、αi 水蒸气对内管外壁的冷凝给热系数和流体对内管内壁的对流给热系数,W/(m 2·℃);t 1、t 2 被加热流体进、出口温度,℃; A 0、A i 内管的外壁、内壁的传热面积,m 2; (T -T W )m 水蒸气与外壁间的对数平均温度差,℃; 22112211ln )()()(w w w w m T T T T T T T T Tw T -----=- (1—16)(t w -t)m 内壁与流体间的对数平均温度差,℃;22112211ln )()()(t t t t t t t t t t w w w w mw -----=- (1—17) 式中:T 1、T 2 蒸汽进、出口温度,℃; T w1、T w2、t w1、t w2 外壁和内壁上进、出口温度,℃。
当内管材料导热性能很好,即λ值很大,且管壁厚度很薄时,可认为T w1=t w1,T w2=t w2,即为所测得的该点的壁温。
由式(1—17)可得:m P Tw T A t t C V )()(0120--=ρα (1—18)mw P it t A t t C V )()(012--=ρα (1—19) 若能测得被加热流体的V 、t 1、t 2,内管的换热面积A 0或A i ,以及水蒸气温度T ,壁温T w1、T w2,则可通过式(1 —18)算得实测的水蒸气(平均)冷凝给热系数α0;通过 式(1 —19)算得实测的流体在管内的(平均)对流给热系数αi 。
传热系数测定的实验(水蒸气-空气体系)一.实验目的1.了解管套式换热器的结构2.观察水蒸气在水平换热管外壁上的冷凝现象,判断冷凝类型3.测定水蒸气—空气在换热器中的总传热系数K和对流给热系数a,加深对其概念和影响因素的理解。
4.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值5.掌握热电偶测量温度的原理和方法二.实验原理1.总传热系数的测定在套管换热器中,环隙通以水蒸气,内管通冷空气,水蒸气冷凝放出热量加热空气。
当冷热液体在换热器内进行稳定传热时,该换热器同时满足热量衡算和传热速率方程,若忽略热损失,公式如下:Q=KAΔt m=q m c p(t2-t1)三.实验内容1.衡量水蒸气-空气通过换热器的总传热系数K对实验数据进行线性回归,求出准数方程Nu=ARe m pr0.4中的常数A,M的值2.通过计算分析影响总传热系数的因素四.实验装置来自蒸汽发生器的水蒸气进入不锈钢套管换热器,与来自风机的空气进行热交换,冷凝水通过管道排入地沟,冷空气经转自流量计进入套管换热器内管热交换后装置。
实验流程如图:五.实验步骤1.检查蒸汽发生器的仪表和水位是否正常。
2.打开换热器的总电源开关,打开仪表电源开关,观察仪器读数是否正常。
3.当蒸汽压稳定后,排除蒸汽发生器到实验装置之间管道中的冷凝水,防止夹带冷凝水的蒸汽损坏压力表及压力变送器。
4.打开换热器内的不凝性气体排除阀。
5.刚开始通入蒸汽时,要仔细调节蒸气进口阀的开度,让蒸气徐徐流入换热器中,逐渐加热,由冷态转变为热态,不得少于10MIN。
6.恒定空气流量,改变蒸气压,测量4组实验数据。
改变客气流量,恒定蒸汽压,测量4组数据7.实验完毕,清理实验场地。
传热系数测定的实验(水-热空气体系)一.实验目的1.了解列管式换热器的结构。
2.测定水-热空气在换热器中的总传热系数K和对流给热系数α加深对其概念影响因素的理解。
3.学习线性回归法确定关联式Nu=ARe m pr0.4中常数A,m的值4.掌握热电偶测量温度的原理和方法二.实验原理在列管式换热器中,壳程通冷水,管程通热空气,热空气冷却放热加热水。
实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。
二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。
间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。
当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。
固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
实验三 蒸汽─空气对流传热传热系数的测定一、实验目的1. 测定套管式换热器的总传热系数K ;2. 测定圆形直管内传热膜系数α,并学会用实验方法将流体在管内对流及强制对流 时的实验数据整理成包括传热膜系数α的准数方程式;3. 了解并掌握热电偶和电位差计的使用及其温度测量。
二、基本原理1.测定传热系数K根据传热速率方程式:m T KA ∆=φ (1)mT A K ∆=φ(2)式中: φ传热速率,W ; K 总传热系数,W/(m 2·℃);A 传热面积; m T ∆两流体的平均温度差。
实验时,若能测定或确定φ、A 和,则可测定K 。
m T ∆⑴ 实验是测定蒸汽加热空气时的对流传热总传热系数,其中蒸汽通加套管环隙加热内管的空气,具体的流程如下:在不考虑热损失的条件下,有)(122211T T c q r q p −==m m φ (3)式中: q m1— 蒸汽冷凝液的质量,kg/s ; r 1 — 蒸汽冷凝潜热,J/kg ;q m2— 空气的质量流量,kg/s ; c p2 — 空气的定压比热,J/(kg ·K);T 1、T 2— 空气的进出口温度,℃; T W1、T W2— 内管外壁温度与内壁温度,℃。
实验中传热速率φ按空气的吸热速率计算。
其中空气的质量流量由孔板流量计测量其 体积流量后转化为质量流量。
即:q m =t ρq V (4)式中:t ρ—为空气进出口平均温度下的密度,kg/m 3。
q V — 为空气的体积流量,m 3/s 。
本实验中,空气的体积流量由孔板流量计测量并通过压力传感器将其差压数字在显示仪表上显示出。
20℃ 下空气流量由公式(5)计算。
6203.000)(p C q t ∆×=V (5)其中, — 20℃ 下的体积流量,m 0t q V 3/h ;C 0— 孔板流量系数,本实验装置中其值为22.696。
p ∆—孔板两端压差,kPa 。
则实验条件下的空气流量q V (m 3/h)则需按下式计算:2732730t Tq q t t ++×=V V式中:t q V —实验条件(管内平均温度)下的空气流量,m 3/h 。
空气蒸汽对流传热系数的测定实验报告实验目的:测定空气中的蒸汽对流传热系数,了解其在热传导过程中的特性和规律。
实验原理:空气中的热传导有两个主要的途径,即对流传热和辐射传热。
在大气压力下,空气中的蒸汽通常以微小的水滴或颗粒的形式存在。
当热量传递给空气蒸汽颗粒时,其会通过对流传热的方式将热量散发到周围的空气中。
对流传热系数(h)是描述对流传热性能的一个重要参数,通过测量传热流量和温度差,可以计算出空气蒸汽对流传热系数。
实验器材:1. 空气蒸汽发生器:用于产生空气中的蒸汽。
2. 传热试样:具有良好的导热性能的金属试样。
3. 温度测量仪器:如温度计或热电偶,用于测量传热试样和周围环境的温度。
4. 流量计:用于测量蒸汽的流量。
5. 电源和电表:用于供电和测量电能消耗。
实验步骤:1. 将空气蒸汽发生器连接到传热试样,并保持一定的温度差。
2. 打开空气蒸汽发生器和流量计,开始生成空气中的蒸汽,并调整蒸汽流量至稳定。
3. 同时开启温度测量仪器,分别测量传热试样的表面温度和周围环境的温度。
4. 根据传热试样表面温度和周围环境温度的差值,计算出传热速率,即传热流量。
5. 根据蒸汽流量和传热流量,计算得到空气蒸汽的对流传热系数。
实验数据记录与处理:1. 记录传热试样表面温度和周围环境温度的数值。
2. 根据所测得的温度差值,计算出传热速率。
3. 根据蒸汽流量和传热速率的比值,计算得到空气蒸汽的对流传热系数。
实验结果与讨论:根据实验测得的数据,计算出空气蒸汽的对流传热系数,并进行实验结果的分析和讨论,比较不同实验条件下的对流传热系数差异,探究影响因素与对流传热系数的关系。
结论:通过本次实验,测定并计算得到了空气蒸汽的对流传热系数,并对影响因素进行了讨论。
实验结果可以为热传导以及相关工程问题的研究和应用提供参考。
空气-蒸汽对流给热系数测定紫铜管规格:直径φ21×2.5mm ,长度L=1000mm 外套玻璃管规格:直径φ100×5mm ,长度L=1000mm1、原始数据记录如下表:2、根据()()12211221m t T tT ln t T t T t -----=∆ 将冷热流体的进出口温度换算成冷热流体间的对数平均温差,数据总结如下表.3、在0~100℃之间,冷流体的物性与温度的关系有如下拟合公式。
(1)空气的密度与温度的关系式:52310 4.510 1.2916t t ρ--=-⨯+ (2)空气的比热与温度的关系式:60℃以下p C =1005 J / (kg ∙℃),70℃以上p C =1009 J / (kg ∙℃)。
(3)空气的导热系数与温度的关系式: 8252108100.0244t t λ--=-⨯+⨯+(4)空气的黏度与温度的关系式:6235(210510 1.716910t t μ---=-⨯+⨯+⨯)按以上公式,并以标准单位换算,得到如下数据结果表:4、对于流体在圆形直管内作强制湍流对流传热时,若符合如下范围内:Re=1.0×104~1.2×105,Pr =0.7~120,管长与管内径之比l/d ≥60,则传热准数经验式为,n 8.0Pr Re 023.0Nu = (4-9) 式中:Nu -努塞尔数,λα=dNu ,无因次;Re -雷诺数,μρ=du Re ,无因次; Pr -普兰特数,λμ=p c Pr ,无因次;当流体被加热时n =0.4,流体被冷却时n =0.3;按以上公式,并以标准单位换算,得如下数据结果表。
5、由式 ()mp t A t t c m K ∆-=1222,实验测定2m 、2121T T t t 、、、、并查取()2121t t t +=平均下冷流体对应的2p c 、换热面积A ,即可由上式计算得总给热系数K 如下表。
实验对流传热系数测定、实验目的1、掌握传热膜系数a及传热系数K的测定方法。
2、通过实验掌握确定传热膜系数准数关联式中的系数 A 和指数m、n 的方法。
3、通过实验提高对a准数关联式的理解,并分析影响a的因素,了解工程上强化传热的措施。
二、基本原理1•对流传热的核心问题是求算传热膜系数a,当流体无相变式对流传热准数关联式的一般形式为:N u=A • R e m• P r n• G p对于强制湍流而言,G准数可以忽略,故Nu=A R e m• P r n 本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m、n 和系数A。
用图解法对多变量方程进行关联时,要对不同变量R e m和P分别回归。
本实验可简化上式,即取n=0.4 (流体被加热)。
这样,上式即变为单变量方程,在两边取对数,既得到直线方程:0.4Lg(Nu/P r0.4)=LgA+mLgR e在双对数坐标中作图,找出直线斜率,即为方程的指数m。
在直线上任取一点的函数值带入方程式中,则可得到系数A,即A=Nu/(P r0.4•閒用图解法,根据实验点确定直线位置有一定的人为性。
而用最小二乘法回归,可以得到最佳关联结。
应用微机,对多变量方程进行一次回归,就能同时得到A、m、n。
2、对于方程的关联,首先要有Nu、Re、Pr的数据组。
其准数定义式分别为:R e=du p /卩,P r=cpu / 入,Nu=ad/ 入实验中改变空气的流量以改变Re准数的值。
根据定性温度(空气近、出口温度的算术平均值)计算对应的Pr 准数值。
同时,有牛顿冷却定律,求出不同流速下的传热膜系数a值。
进而算得Nu准数值。
牛顿冷却定律:Q= a- A - △t m式中:a ---- 传热膜系数,[w/m2]被加热流体体积流量,m3/sQ ---- 传热量,[w]A 总传热面积,[m2], A= n d i l△ t m――管臂温度与管内流体温度的对数平均温差,[C ]传热量Q 可由下式求得:Q=W • C p(t2-t i)/3600=p・V C p(t2-t i)/3600式中:w --- 质量流量,[kg/h];Cp――流体定压比热,[J/kg C ];t2、t1――流体进、出口温度,[C];P定性温度下流体密度,[kg/m3];3V ――流体体积流量,[m /h]。
空气蒸汽给热系数测定实验报告
实验原理:
空气蒸汽给热系数是指空气与液体或固体接触时的传热能力,通常用
对流传热系数来表示。
在实际应用中,空气蒸汽给热系数对于优化传
热设备和工艺具有重要意义。
实验步骤:
1. 准备实验装置:将一根绝热管放置于恒温水槽中,通过管中通水形
成对流传热,空气通过导热管进入绝热管,从而与水接触实现传热。
2. 打开温度控制仪,设置所需温度;同时打开水泵,使水循环;将压
力表连接在导热管上,记录空气进口和出口的压力。
3. 通过流量计调节空气流量,记录流量计读数。
4. 使用热电偶测量水的温度,并记录读数。
5. 开始实验,记录空气进口和出口的压力以及水的温度。
6. 根据实验数据计算空气蒸汽给热系数,并进行数据分析和讨论。
实验数据处理:
根据实验记录的空气进口和出口的压力以及水的温度,可以计算空气
蒸汽给热系数。
可以使用以下公式计算空气蒸汽给热系数:
hc= Q/(m×ΔT)
其中,hc为空气蒸汽给热系数,Q为传热量,m为空气质量流量,ΔT为水与空气的温差。
实验结果:
实验结果可以通过计算得出空气蒸汽给热系数的数值,并进行数据分
析和讨论。
实验结果应该符合理论计算值,并且要注意误差的来源和
可能的原因。
结论:
通过空气蒸汽给热系数的测定实验,可以得到空气与液体或固体的传
热能力,这对于传热设备和工艺的优化具有重要意义。
根据实验结果,
可以评估实验的准确性和可靠性,并进行数据分析和讨论,进一步探讨传热现象和相关机理。
实验6 空气对流传热系数的测定一、实验目的1.测定空气在圆直管中强制对流时对流传热系数。
2.通过使实验掌握并确定对流传热系数准数关联式中的系数;3.通过实验提高对准数的理解,并分析影响对流系数的因素,了解强化传热的措施;4.掌握强制对流传热系数及传热系数的测定方法;5.了解热电偶和电位差计的使用和仪表测温方法。
二、实验原理1.本实验装置为套管式换热器,空气走管内水蒸汽走管间,两流体在换热器内进行热量交换,其传热基本方程式:Q=KA ∆t m其中:Q=Wc p (t 进-t 出)∆t m =(T-t 进)-(T-t 出)/Ln(T-t 进)/(T-t 出)当测取Q 、A 后便可得到K 值。
ii m O O A 1A b A 1KA 1α+λ+α= 分析可知蒸汽的对流传热热阻、金属导热热阻都远小于空气对流热阻,则上式可近似写成ii A 1KA 1α= 又 KA=O O i i A K A K =当传热面积A i (内管内壁面积)时,由上述内容可得:mi i i t A QK ∆==α (1)2.若从实验中通过热过热电偶,测取内管的外壁温度,由于金属管热阻很小可忽略其内外壁间的温差,于是αi 也可由牛顿冷却定律(对流传热速率方程)得出:mi i t A Q∆=α (2)(2)式与(1)式比较只是∆'t m 与∆t m 略有区别,∆'t m 是以壁与空气之间的温度差的平均值。
从热阻观点看(1)式忽略了蒸汽对流传热热阻和金属管壁导热热阻。
而(2)式只忽略了金属导热热阻,因此用(2)得到的αi 应更好些。
如用(1)计算αi 可认为用代替蒸汽温度,使αi 更接近真实。
3、空气在圆直管中强制对流传热时,对流传热系数的准数关联式可写成如下形式:np Pr Re c Nu =在一定范围C 、P 、n 内为代定系数,其中在这里为已知系数,被加热时取n =0.4由实验可测得数据并整理出各准数系列数据。
4、准数关联式中把Re 与Nu 看成相关量,二者成幂函数关系,若用4.0r u P /N 与Re 为对应变量,在双对数座标上进行标绘,应得到一条直线,由此可以确定,待定系数p 和c 值,并进一步确定准数关联式的具体形式。
空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式Nu=中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m中常数B、m的值和强化比Nu/Nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1 实验装置结构参数图1 空气-水蒸气传热综合实验装置流程图1— 光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵; 5—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;孔板流量计测空气压力蒸汽压力空气入口蒸汽温度 空气出口温度12、13—蒸汽放空口; 15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=ARe m中常数A 、m 的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对 α1的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为: Nu=CRe mPr nGrl(1)式中C 、m 、n 、l 为待定参数。