展开和折叠导学案(高冬梅)
- 格式:doc
- 大小:58.50 KB
- 文档页数:4
§1.2展开与折叠第二课时学习目标1、经历展开与折叠、模型制作等活动过程,发展空间观念,积累数学学习的经验。
2、在操作活动中认识棱柱的某些特征;3、知道棱柱、圆柱、圆锥的侧面展开图,认识到它们的多样性;4、能根据展开图判断和制作简单的立体模型。
学习重点:利用实物模型,发现并认识棱柱的一些特征。
学习难点:对棱柱性质的概括和空间想像的验证。
学习流程:一、创设情景上一节课我们从构成图形的基本元素为出发点,认识了常见几何体的某些特征.还有一位同学提出了一个问题;棱柱有几个面?几个顶点?几条线?这节课我们就来重点研究棱柱,学习了这节课后,你就可以很轻松地回答上面的问题啦.二、探求新知 (从做一做中认识棱柱的特性)一个普通的粉笔盒,就是一个棱柱,回答第(1)问题:这棱柱的上、下底面一样吗?它们各有几条边?如果棱柱的底面是五边形、六边形、七边形、八边形……n边形,它们又该有多少条棱呢?三、解决问题:我们关于这个棱柱讨论了很多了.谁来用自己的语言来描述一下棱柱的性质呢?大家可以先小组充分交流后回答.我认为棱柱有如下性质:1.棱柱上下底面的形状、大小是一样的.2.侧棱都相等.3.侧面都是长方形.4.棱柱的底面是n边形,它的侧棱就有条,它的棱应有条.棱柱的底面是n边形,就是棱柱,顶点的个数是个,有个面.四、巩固应用:按要求填写下面的表格思考:N棱柱有多少条边?多少个面?多少个侧面?多少个顶点?深化提高如下图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.五、反馈检测1.如图(1)长方体有_____个顶点,_____条棱,_____个面,这些面形状都是_____.(2)哪些面的形状和大小一定完全相同?(3)哪些棱的长度一定相等?2.想一想,再折一折,右面两图经过折叠能否围成棱柱?分析:先想一想,是对学生空间想像能力的更高要求,但也不可忽视折一折的作用,先想一想,再动手操作,是培养空间观念的重要环节.3.一个六棱柱模型如图,它的底面边长都是5厘米,侧棱长4厘米.(课本第九页图1—4) 观察这个模型,回答下列问题:(1)这个六棱柱一共有多少个面?它们分别是什么形状?哪些面的形状和大小完全相同?(2)这个六棱柱一共有多少条棱?它们的长度分别是多少?六、学生小结1.这节课我们通过动手操作发现了棱柱的几个特性:(1)上下底面完全相同. (2)侧棱长都相等. (3)侧面都是长方形等.2.我们还通过想一想,折一折发现空间观念,积累了关于棱柱的展开与折叠的数学活动经验.七、作业分层布置:1.习题2.数学日记:记叙这节课活动的收获.选作题:.设计一个棱柱形的精美的包装盒.八、小结:九、课后反思。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《展开与折叠》教案教学目标1、经历展开与折叠、模型制作等活动,发展学生的空间观念,积累数学活动经验.2、在操作活动中认识棱柱的某些特性.3、了解棱柱、圆柱、圆锥的侧面展开图,并能根据展开图判断和制作简单的立体模型.教学准备棱柱、圆柱、圆锥等.教学过程一、回顾总结1、棱柱的分类.我们已经了解了棱柱,那么棱柱之间是否还有区别呢?通常根据底面图形的边数将棱柱分为三棱柱、四棱柱、五棱柱……长方体和正方体都是四棱柱.2、棱柱的特点.若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?(1)棱柱的上、下底面是完全相同且互相平行的多边形.(2)棱柱的侧面都是矩形.(3)棱柱的侧棱长都相等.二、教学新课将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢?1、棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).图1—92、圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).图1—103、圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).图1—114、能折成棱柱的平面图形的特征.我们已经见过很多平面图形了,但并不是所有的平面图形都能折成几何体.若能折成棱柱,一定要符合以下特点:(1)棱柱的底面边数=侧面数.(2)棱柱的两个底面要分别在侧面展开图的两端.(3)四棱柱的平面展开图中只有5条相连的棱.三、课堂总结通过这节课,你学会了什么?。
1.2 展开与折叠1.经历图形的展开与折叠的活动,开展空间观念,积累数学活动经验。
2.了解圆柱、圆锥、棱柱的侧面展开图,能根据展开图判断和制作简单的立体模型。
3.通过观察发现、大胆猜测、动手操作、自主探究、合作交流,在学习中体验到:数学活动充满着探究和创造,以提高学习兴趣。
1、前置准备:〔1〕在棱柱中,任何相邻两个面的交线都叫做▁▁▁▁▁。
棱柱的所有▁▁▁▁▁都相等。
棱柱的▁▁▁▁▁相同。
▁▁▁▁▁的形状都是长方形。
〔2〕一底面是正方形的棱柱高为4cm ,正方形的边长都为2cm ,那么此棱柱共有▁▁▁▁▁条棱,所有棱长之和为▁▁▁▁▁cm 。
2、 自主学习p14“做一做〞,并把结论写下来 〔1〕▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
〔2〕▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
〔3〕▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
3、合作交流完成p14“想一想〞,你有什么新收获:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
4、归纳总结:▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。
5、当堂训练:〔1〕如以以下图所示,图形能围成一个正方体的是〔 〕①② ③ 〔2〕如图某些多面体的平面展开图,把多面体的名称写在横线上▁▁▁▁▁▁ ▁▁▁▁▁▁▁ 1、 如图,三棱柱底面边长为3cm ,侧棱长5cm ,那么此三棱柱共▁▁个面, 侧面展开图的面积为▁▁▁ cm ²。
2、 要把一个长方体剪成平面图形,需要剪▁▁▁条棱。
A B C D4、 以下几何体能展成如以下图图形的是▁▁▁。
A 、三棱柱B 、四棱柱C 、五棱柱D 、六棱柱5、如图,把一个圆锥的侧面沿图中的线剪开,那么会得到图形▁▁▁。
A 、 A 、三角形B 、圆C 、圆弧D 、扇形6、一个多面体的顶点数为v ,棱数为e ,面数为f ,以下四种情况中肯定不会出现的是▁▁▁。
A 、v 、e 、f 都是奇数B 、v 、e 、f 都是奇数C 、v 、e 、f 两奇一偶D 、v 、e 、f 一奇两偶 中考真题如图,一个3×5的方格纸,现将其剪为三局部,使每一局部都可以折成一个无盖的小方盒,问如何剪?第1课时 代入法1.会用代入法解二元一次方程组.(重点) 一、情境导入 《一千零一夜》中有这样一段文字:有一群鸽子,其中一局部在树上,另一局部在地上.树上的一只鸽子对地上的鸽子说:“假设从你们中飞上来一只,那么地上的鸽子为整个鸽群的三分之一;假设从树上飞下去一只,那么树上、地上的鸽子一样多.〞你知道树上、地上各有多少只鸽子吗?我们可以设树上有x 只鸽子,地上有y 只鸽子,得到方程组⎩⎪⎨⎪⎧x +y =3〔y -1〕,x -1=y +1.可是这个方程组怎么解呢?有几种解法?二、合作探究探究点:用代入法解二元一次方程组 【类型一】 用代入法解二元一次方程组用代入法解以下方程组:(1)⎩⎪⎨⎪⎧2x +3y =-19,①x +5y =1;② (2)⎩⎪⎨⎪⎧2x -3y =1,①y +14=x +23.②解析:对于方程组(1),比拟两个方程系数的特点可知应将方程②变形为x =1-5y ,然后代入①求解;对于方程组(2),应将方程组变形为⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5,④观察③和④中未知数的系数,绝对值最小的是2,一般应选取方程③变形,得x =3y +12.解:(1)由②,得x =1-5y.③把③代入①,得2(1-5y)+3y =-19, 2-10y +3y =-19,-7y =-21,y =3.把y =3代入③,⎩⎪⎨⎪⎧x =-14,y =3.(2)将原方程组整理,得⎩⎪⎨⎪⎧2x -3y =1,③4x -3y =-5.④由③,得x =3y +12.⑤把⑤代入④,得2(3y +1)-3y =-5, 3y =-7,y =-73.把y =-73代入⑤,得x =-3.所以原方程组的解是⎩⎪⎨⎪⎧x =-3,y =-73.方法总结:用代入法解二元一次方程组,关键是观察方程组中未知数的系数的特点,尽可能选择变形后比拟简单的或代入后容易消元的方程进行变形.【类型二】 整体代入法解二元一次方程组解方程组:⎩⎪⎨⎪⎧x +13=2y ,①2〔x +1〕-y =11.②解析:把(x +1)看作一个整体代入求解.解:由①,得x +1=6y.把x +1=6y 代入②,得2×6y-y =11.解得y =1.把y =1代入①,得x +13=2×1,x ⎩⎪⎨⎪⎧x =5,y =1.方法总结:当所给的方程组比拟复杂时,应先化简,但假设两方程中含有未知数的局部相等时,可把这一局部看作一个整体求解.【类型三】 方程组的解,用代入法求待定系数的值⎩⎪⎨⎪⎧x =2,y =1是二元一次方程组⎩⎪⎨⎪⎧ax +by =7,ax -by =1的解,那么a -b 的值为( ) A .1 B .-1 C .2 D .3解析:把解代入原方程组得⎩⎪⎨⎪⎧2a +b =7,2a -b =1,解得⎩⎪⎨⎪⎧a =2,b =3,.方法总结:解这类题就是根据方程组解的定义求,即将解代入方程组,得到关于字母系数的方程组,解方程组即可.三、板书设计解二元一,次方程组)⎩⎪⎨⎪⎧根本思路是“消元〞代入法解二元一次方程组的一般步骤回忆一元一次方程的解法,借此探索二元一次方程组的解法,使得学生的探究有很好的认知根底,探究显得十分自然流畅.充分表达了转化与化归思想.引导学生充分思考和体验转化与化归思想,增强学生的观察归纳能力,提高学生的学习能力.。
学习目标:1、经历展开与折叠、模型制作等活动过程,发展空间观念,积累数学学习的经验。
2、在操作活动中认识棱柱的某些特征;3、知道棱柱、圆柱、圆锥的侧面展开图,认识到它们的多样性;能根据展开图判断和制作简单的立体模型。
学习重点:利用实物模型,发现并认识棱柱的一些特征。
学习难点:对棱柱性质的概括和空间想像的验证。
使用说明:请先认真自学课本,结合课本内容理解并掌握几何体的展开与折叠,认真思考,独立完成导学案,不会的或是有疑问的做好标记,以备小组合作解决。
学习过程:一、 复习检测长方体有_____个顶点,_____条棱,_____个面,这些面形状都是_____.二、自主学习,小组交流:将三棱柱、四棱柱、五棱柱的表面沿某些棱展开,展成一个平面图形,你能得到那些平面图形? 三、巩固练习:如下图,哪些图形经过折叠可以围成一 个棱柱?先想一想,再折一折.四、拓展延伸:1.把圆柱圆锥的侧面展开,会得到什么图形?,先想一想,再试一试。
圆柱的侧面展开图是_____,圆锥的侧面展开图是_____2.想一想,再折一折,右面两图经过折叠能否围成棱柱?五、巩固练习1、下列图形是四棱柱的侧面展开图的是 ( )(A)(B)(C)2、下列图形中为三棱柱的展开图的是()(A)(B)(C)3、下列说法中正确的是()A、正方体是四面体B、棱锥的底面一定是四边形C、长方体是四棱柱,四棱柱是长方体D、圆柱的侧面展开图是长方形4、在下列图形中(每个小正方形都是相同的正方形),是正方体的表面展开图的是()(A)(B)(C)(D)5、如图是一个正方体的平面展开图,每个面上都标上了字母,请根据要求回答问题:(1)如果A在上面,那么哪一面会在下面?(2)如果F在上面,从右边看是E,那么哪一面会在底部?(3)如果从左边看是D,B在底部,那么哪一面会在上面?六、达标检测1.三棱锥的展开图是由个形组成的。
2.圆椎的展开图是由一个和一个形组成的图形。
3.看图,这些图经过折叠可以围成一个棱柱吗?想一想,亲自动手折一折。
展开与折叠学习目标:1.经历展开与折叠、模型制作等活动发展空间观念,积累数学活动经验;2.在大量活动经验的基础上,形成较为规范的语言;一.填空题:1.如图1,折叠后是一个 体;2.在棱柱中,任何相邻的两个面的交线都叫做______,相邻的两个侧面的交线叫做_______;3.从一个多边形的某个顶点出发,分别连接这个点和其余各顶点,可以把这个多边形分割成十个三角形,则这个多边形的边数为_____ ;4.如果一个棱往是由12个面围成的,那么这个棱柱是_ ___棱柱;5.一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm ,侧棱长4cm ,则它的所有侧面的面积之和为____ __;6.已知三棱柱有5个面6个顶点9条棱,四棱柱有6个面8个顶点12条棱,五棱柱有7个面10个顶点15条棱,……,由此可以推测n 棱柱有_____个面,____个顶点,_____条侧棱;7.展开一个棱柱的侧面是 ,分为 棱柱和 棱柱;8.如图2是一个几何体的表面展成的平面图形,则这个几何体是 9.把一个长方形卷起来,可卷成 个不同圆柱;10.一个六棱柱有 个面、 条棱和 个顶点;二.选择题:11.圆锥的侧面展开图是 ( )(A ) 三角形 (B ) 矩形 (C ) 圆 (D ) 扇形12.如图,四个三角形均为等边三角形,将图形折叠,得到的立体图形是 ( )(A ) 三棱锥 (B ) 圆锥体 (C ) 棱锥体 (D ) 六面体13.圆柱的侧面展开图是 ( )(A ) 圆形 (B ) 扇形 (C ) 三角形 (D ) 四边形14.下面的图形中,是三棱柱的侧面展开图的为 ( )(A)(B)(C)(D)15.棱柱的侧面都是()(A)正方形(B)长方形(C)五边形(D)菱形16.如图所示的立方体,如果把它展开,可以是下列图形中的()17.下列平面图形中不能围成正方体的是()(A)(B)(C)(D)18.下面几何体的表面不能展开成平面的是()(A)正方体(B)圆柱(C)圆锥(D)球19.下面几何体中,表面都是平的是()(A)圆柱(B)圆锥(C)棱柱(D)球20.下列图形经过折叠不能围成棱柱的是()(A ) (B ) (C ) (D )三.解答题:21(1)用含r 的代数式表示圆柱的体积;(2)当r =3cm ,圆周率π取3.14时,求圆柱的体积(保留整数)。
七年级数学上册第一章《丰富的图形世界》导学案1.2 展开与折叠(2)一、学习目标:1.在操作活动中认识棱柱的某些特性.2.了解棱柱展开图的形状,能正确地判断和制作简单的立体模型.3.经历展开与折叠、模型制作等活动,发展空间观念,积累数学活动经验. 二、学习重点:1.认识棱柱的某些特征,形成规范的语言。
2.能根据棱柱的展开图判断和制作简单的立体图形.三、学习难点:根据棱柱的展开图判断和操作简单的立体图形. 四、学习过程: (一)自主学习:1、棱柱的特点若有若干几何体,你能立刻找到棱柱吗?棱柱有什么与众不同的特征呢?(1)棱柱的上、下底面是___________________________.(2)棱柱的侧面都是______________. (3)棱柱的所有侧棱长都_____________.(4)棱柱侧面的个数与底面多图形的边数______________ 。
2、将下图中的棱柱沿某些棱剪开,展开成一个平面图形,你能得到哪些形状的平面图形?(二)合作探究:1、想一想:⑴下图中,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.⑵将上图中不能围成棱柱的图形作适当修改使得图形能围成一个棱柱.2、做一做:按照如图所示的方法把圆柱、圆锥的侧面展开,会得到什么图形?先想一想,再试一试.(三)点拨提高:例1:8.下面的图形中,是三棱柱的侧面展开图的为 ( )(A ) (B ) (C ) (D ) 例2:将三棱锥沿某些棱展开,可以得到如图所示的展开图。
(1)下面的两个图形能否折成三棱锥?( ) ( ) (2)将原几何体改为四棱锥,请画出它的两种展开图。
(四)练习反馈:1.如图1,折叠后是一个 ;2.一个六棱柱模型,它的上、下底面的形状、大小都相同,底面边长都是5cm ,侧棱长4cm ,则它的所有侧面的面积之和为____ __;3.展开一个棱柱的侧面是 ,分为 棱柱和 棱柱; 4.如图2是一个几何体的表面展成的平面图形,则这个几何体是 . 5.圆柱的侧面展开图是 ( )(A ) 圆形 (B ) 扇形 (C ) 三角形 (D ) 四边形 6.下列图形经过折叠不能围成棱柱的是 ( )(A ) (B )(C ) (D )BD。
《1.2 展开与折叠》学案(2) 北师大版学习目标:经历图形的展开与折叠活动,了解棱柱展开图的形状,能正确地判断和制作简单的立体模型.学习重点:在操作活动中,发展空间观念,积累数学活动经验.认识棱柱的某些特征,形成规范的语言。
学习难点:根据棱柱的展开图判断和操作简单的立体图形一、知识链接1.棱柱有什么与众不同的特征呢?(1)棱柱的上、下底面是_____________.(2)棱柱的侧面都是______________.(3)棱柱的所有侧棱长都_____________.(4)棱柱侧面的个数与底面多图形的边数 _____________ 。
棱柱各元素间的数量关系如下二、自主预习 1.左边的图形经过折叠,能围成右边如图2的棱柱吗?2.下面图形经过折叠能否围成棱柱?不能围成的再作适当的修改使所得的图形能围成一个棱柱。
三、自主探究1.圆柱的表面展开图是_________作底面和______________作侧面.2.圆锥的表面展开图是___________作底面和_______________作侧面.四、展示提升 名称 底面形状 顶点数 棱数 侧棱数 侧面数 侧面形状 总面数 n 棱柱A .B .C .D .E D CB A1、骰子是一种特的数字立方体(见图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .2、下列四个图中,是三棱锥的表面展开图的是( )3、已知为圆锥的顶点,M 为圆锥底面上一点,点在OM 上.一只蜗牛从点出发,绕圆锥侧面爬行,回到点时所爬过的最短路线的痕迹如右图所示.若沿OM 将圆锥侧面剪开并展开,所得侧面展开图是 ( )4.5多边形和圆的初步认识班别 组别 姓名学习目标:1、经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩。
2、了解多边形的有关概念,认识多边形的边、内角、顶点、对角线。
认识正多边形。
3、了解圆的有关概念,认识圆的半径、圆弧、圆心角,扇形,会计算圆心角的度数。
1.2 折叠与展开(1)导学案一、引入在我们日常生活中,折叠与展开是一种常见的操作,比如折叠纸张、折叠衣物等。
在数学上,我们也会遇到折叠与展开的问题。
本节课我们将学习折叠与展开的一些基本概念和方法。
二、折叠与展开的基本概念1. 折叠折叠是指将一个平面图形沿着一条或多条线段对折,使原来的图形变为一部分叠在另一部分上的操作。
我们经常使用纸张作为折叠的对象。
2. 展开展开是指将一个折叠好的图形重新展开,使其回到原来的形状。
展开后的图形就是原来折叠前的图形。
3. 折线和折点在折叠过程中,我们会遇到折线和折点。
折线是指连接折叠中相邻两个折点的线段。
折点是指折线的端点。
三、常见折叠形式1. 单折叠单折叠是指将一个平面图形沿着一条线段对折。
如将一个正方形沿着对角线对折,得到两个重叠的三角形。
2. 多次折叠多次折叠是指将一个平面图形沿着多条线段依次对折。
如将一个正方形先沿着对角线对折,再沿着另一条边对折,得到四个重叠的矩形。
3. 多边形折叠多边形折叠是指将一个多边形沿着一条或多条线段对折。
如将一个六边形沿着一条对角线对折,得到两个重叠的三角形和一个重叠的四边形。
四、折叠与展开的方法1. 对称性利用图形的对称性可以确定折叠前后各个点的位置关系。
比如将一个正方形折叠为两个重叠的三角形时,可以利用正方形的对称性确定折叠后三角形的位置。
2. 重叠性利用图形的重叠性可以确定折叠前后各个点的位置关系。
比如将一个正方形折叠为两个重叠的三角形时,可以利用正方形的重叠部分确定折叠后三角形的位置。
3. 折叠线的位置折叠线的位置决定了折叠后图形的形状。
不同的折叠线位置可以得到不同的折叠结果。
五、练习题1.将一个正方形沿着一条对角线折叠,得到两个重叠的三角形,试画出折叠前和折叠后的图形。
2.将一个长方形先沿着短边对折,再沿着长边对折,得到四个重叠的矩形,试画出折叠前和折叠后的图形。
3.将一个六边形沿着一条对角线对折,得到两个重叠的三角形和一个重叠的四边形,试画出折叠前和折叠后的图形。
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校《展开与折叠》教案教学内容:教材第9~13页.教学目标:1、知识与技能:进一步认识立体图形与平面图形的关系,了解立体图形可由平面图形围成,立体图形可展开为平面图形;2、过程与方法:通过展开与折叠的实践操作,在经历和体验图形的转换过程中,初步建立空间概念,发展几何直觉.3、情感与态度:体验数学与日常生活是密切相关的,认识到许多数学研究的原型都源于生活实际.教学难点:将一个正方体尽可能多地展成不同形状的平面图形.教学难点:通过图形的展开与折叠发展空间观念.教学过程:一、新课导入,提出问题.通过前面的学习,我们知道有些立体图形经过展开将会得到一个平面图形,而有些平面图形经过折叠将得到一个立体图形.今天我们来学习正方体的展开与折叠.二、动手操作,探究新知.请同学们将准备好的小正方体纸盒沿某条棱任意剪开,看看能得到哪些平面图形?注意剪开正方体棱的过程中,正方体的6个面中每个面至少有一条棱与其它面相连.把学生剪好的平面图形贴在黑板上(重复的不再贴),可以得出11种不同的展开图:将得到的平面图形分类,经过讨论得出分为4类:第一类,中间四连方,两侧各一个,共六种.第二类,中间三连方,两侧各有一、二个,共三种.第三类,中间二连方,两侧各有二个,只有一种.第四类,两排各三个,只有一种.三、先猜想再实践,发展几何直觉.练习1将一个正方体的表面沿某些棱剪开,展成以下平面图形.先想一想,再动手剪,剪错了不要紧,再粘上,重剪.(1) (2)学生思考,再动手剪,然后与同伴交流.请剪好的学生介绍自己的剪法.把一个正方体剪成如图所示的平面图形,你能剪成吗?(3) (4)学生先想,再剪,同伴之间互相交流剪的方法相互指正,对有困难的学生适时指导,学生说明(3)的剪法.(4)不能剪出,因为图中有6个面相连,而将正方体的表面展成一个平面图形面与面之间相连的棱有5条,要剪开7条棱.练习2贴出一个正方体的展开图.面A、面B、面C的对面各是哪个面?AB C D EF学生思考,猜想答案.请一位同学用透明胶粘贴成正方体展示给同学们看,验证答案.四、课堂小结.通过本节课的学习,你学到哪些知识?有何体会?学生:正方体有11种形状的平面展开图.学生:解决“展开与折叠”问题的方法:一是动手实践,二是发挥空间想像,合情推理.。